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1 INTRODUCTION 

1.1 Purpose of the document 

The final report aims at fully describing the work done in the frame of the SOFT project, including  

the description of the programme of work, the activities performed and the main results. It provides 

a complete description of all the work done during the activity and covers the whole scope of the 

activity. 

1.2 Executive Summary Report 

The world’s forests have undergone substantial changes in the last decades. Deforestation and forest 

degradation in particular, contribute greatly to these changes. In certain regions and countries, the 

changes have been more rapid, which is the case in the Greater Mekong sub-region recognized as 

deforestation hotspot. Effective tools are thus urgently needed to survey Illegal logging operations 

which cause widespread concern in the region. 

Several research and government organizations have developed systems that provide regular 

updates to the public, principally based on satellite data. However, most monitoring approaches rely 

predominantly on optical remote sensing. Nevertheless, a major limitation for optical-based near real 

time applications is the presence of haze in the dry season (caused by fire) and, more importantly, of 

clouds persistent in the tropics during the wet season. Cloud cover free SAR images have great 

potential in tropical areas, but have rarely been used for forest loss monitoring compared to optical 

imagery. Yet, the dense time series of the Sentinel-1 constellation offer a unique opportunity to 

systematically monitor forests at the global scale. In addition, it has been recently demonstrated that 

forest losses can be monitored using Sentinel-1 dense time series based on reliable indicators that 

bypass environmental effects on SAR signals.  

 

In this context, the primary science objective of the SOFT project is to provide near real time forest 

loss maps over Vietnam, Cambodia and Laos using Sentinel-1 data to the users of public sectors to 

support their efforts to control logging and log trade. 

 

SAR-based Algorithms of forest loss detection were first adapted and tested over eleven test sites in 

the frame of the proof-of-concept (PoC) development. The forest loss detection method from Bouvet 

et al. (2018) was considered as the best potential candidate algorithms for the reasons detailed in 

the Final Report. Regarding the Sentinel-1 data processing, we used the pre-processing chain 

developed at CESBIO and CNES as an operational tool for Sentinel-1 GRD data processing. The chain 

is based on open source libraries and can be used freely. We selected an adapted forest definitions, 

selected the test sites and reference data for the PoC, which covered various landscapes and terrain 

slopes. We also selected relevant ancillary data such as a forest mask, the quality of which has a big 

impact on the final forest loss detection results. Using these dataset, we deeply analyzed the 

Sentinel-1 backscatter signal over forest loss and intact forest areas of Vietnam, Cambodia and Laos, 

which was needed to adapt the forest loss detection method. The quality of maps resulting from the 

PoC was analysed and assessed qualitatively and quantitatively.  
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The results of the PoC were extended to the whole Vietnam, Laos and Cambodia for the years 2018 

to 2020. We optimized, installed and ran the scripts (in Python) onto the high performance 

computing (HPC) cluster of the CNES. Then, the processing of the whole study area has been 

achieved. We mosaicked the resulting maps, checked their quality and manually corrected outliers. 

This led to the final map which is the main outcome of the SOFT project. The map provides clear 

hints of the spatial and temporal distribution of forest losses. For example, the difference between 

high forest losses currently happening in Northern Laos versus low forest losses in Northern Vietnam 

is clearly seen, although the whole Northern mountainous region is covered by similar forest types. 

We also compared the forest loss surface areas obtained from our method with the results from 

GFW and GLAD. Although we do not consider the maps of GFW and GLAD as a benchmark and 

although the use of Sentinel-1 is basically much more relevant in term of timely detection of forest 

losses, we quantitatively compared the statistics per year and country and qualitatively compared 

both maps. The results from this study and from GFW are remarkably similar, the largest difference 

(23%) being found for Laos in 2019. This result highlights the fact that our detection system can be 

used as an alert system (fast detection from sentinel-1 data) and as an annual detection system 

similar to GFW, used for example to compute national statistics. 

The final map was thoroughly validated following the recommandations from Olofsson (2014 and 

2020). We chose as sampling design a stratification with stratas defined by the map classes, mainly to 

improve the precision of the accuracy and area estimates. We specified a target standard error for 

overall accuracy of 0.01 and supposed that user's accuracies of the change class is 0.70 for forest 

disturbances and 0.90 for intact forest. The resulting sample size was therefore n=803 in total, which 

we have rounded up to 1 000 samples. We then assessed the allocation of the sample to strata so 

that the sample size allocation results in precise estimates of accuracy and area. We followed 

Olofsson’s recommendations and allocated a sample size of 100 for the forest disturbance stratum, 

and then allocated the remainder of the samples to the intact forest classes, i.e. 200 in the buffer 

areas around detected disturbances, and 700 in intact forest outside of these buffers. We used when 

possible freely accessible very high spatial resolution imagery online through Google Earth™, which 

presents low cost interpretation options. When Google Earth images were not available at the 

relevant dates, we instead accessed Planet’s very high-resolution analysis-ready mosaics as reference 

data. We then calculated the resulting confusion matrix presented in terms of the sample counts and 

the confusion matrix populated by estimated proportions of area, used to report accuracy results. 

The estimated user's accuracy (±95% confidence interval) is 0.95 for forest disturbances and 0.99 for 

intact forest (including buffer areas around disturbance) and the estimated producer's accuracy is 

0.90 for forest disturbances and 0.99 for intact forest. Finally, a quality assessment was performed by 

comparing the final map to existing optical-based products. The estimated area of 2018 and 2019 

deforestation according to the reference data was 23 437 ± 2 140 km². 

1.3 Context 

Over the last 25 years, the world’s forests have undergone substantial changes. Deforestation and 

forest degradation in particular contribute greatly to biodiversity loss through habitat destruction, 

soil erosion, terrestrial water cycle disturbances and anthropogenic CO2 emissions. Regarding the 
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latter, deforestation and forest degradation accounted for 77% and 13%, respectively, of the total 

net flux attributable to land use and land cover changes over the period from 1850 to 2015 

(estimated to have been 145 ± 16 PgC globally with 102 ± 5.8 PgC in the tropics, according to 

Houghton and Nassikas, 2017). 

In certain regions and countries, the changes have been more rapid, which is the case in the Greater 

Mekong sub-region recognized as deforestation hotspot, where forest loss from 2009 to 2030 is 

projected to reach 17% to 34% of the total forest area (15 to 30 million ha) (WWF, 2013). In this 

region, illegal and unsustainable logging and conversion of forests for agriculture, construction of 

dams and infrastructure are the direct causes of deforestation and biodiversity loss driven by 

population growth, increasing market demand, and policies that promote short-term economic 

growth. Commercial logging and log exports are regulated by governments in all Greater Mekong 

sub-region countries. However, higher demand and weak law enforcement have hindered efforts to 

control logging and the log trade. Effective tools are thus urgently needed to survey Illegal logging 

operations which cause widespread concern in the region.  

 

Vietnam is among the countries with the greatest annual changes in primary forest area and planted 

forest area in the last 20 years. According to the FAO, the extent of primary forest in Vietnam 

decreased at rates of 6.94%, 15.6% and 1.21% in 1990 to 2000, 2000 to 2005 and 2005 to 2010, 

respectively. In 2020, the proportion of primary forets area reaches 0.5% of the total surface area 

(Table 1). Meanwhile, the extent of planted trees increased with values of 0.75 Mha in 1990, 1.92 

Mha in 2000 and 3.08 Mha in 2010. The FAO currently considers Vietnam to be a reforesting country 

because tree plantations are included as forests in the FRA process, as shown by the forest area 

temporal evolution from 1990 to 2020 in Table 1. On the contrary, the amount of forest in Cambodia 

dropped from approximately 11 Mha to 8 Mha between 1990 and 2020. Laos as well experiences a 

constant decline of its forest surface. 

 

 

Table 1. Forest area in 1990, 2000, 2010 and 2020, forest area proportion in 2020 and primary forest 
proportion in 2020 in Vietnam, Cambodia and Laos according to FAO (2020). 

 Vietnam Cambodia Laos 

Forest area 1990 (ha x 103) 9 376 11 005 17 843 

Forest area 2000 (ha x 103) 11 784 10 781 17 425 

Forest area 2010 (ha x 103) 13 388 10 589 16 940 

Forest area 2020 (ha x 103) 14 643 8 068 16 595 

Forest area % of land area 2020  47.2 45.7 71.9 

Primary forest % of forest area 2020 0.5 4 - 

 

 

A remote sensing based near real-time (NRT) forest monitoring system with dedicated user needs 

assessment is adapted to combat deforestation, providing information on newly deforested areas in 

vast and sometimes inaccessible forests. These systems play a valuable role to : 
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 Provide early detections of illegal forest loss. System alerts developed in countries like Brazil 

and Peru have been critical to increasing the capacities of law enforcement and land 

management agencies in reducing illegal deforestation.  

 The detection of active forest loss (hotspots) is important for reducing emissions from 

deforestation and forest degradation (REDD+) implementation when tracking forest area 

change that requires immediate response or interventions, although early losses detection is 

not required in international forest conservation agreements such as REDD+, 

 Support national statistical reporting programs, 

 Complement a current annual global forest cover loss product, implemented in collaboration 

with Google and World Resources Institute as part of Global Forest Watch (GFW - Hansen et 

al., 2013). The annual product is based on a calendar year update, first prototyped using 

Landsat  data from 2000. 

 

At the regional scale, early warning system would help Vietnam to integrate a number of on-going 

Committee on Earth Observation satellites (CEOS) activities and data in support of forest monitoring 

for the Mekong Delta region.  

1.4 Background 

Several research and government organizations have developed systems that provide regular 

updates to the public, principally based on optical remote sensing data. With a coarse spatial 

resolution (MODIS data, 250m), the FORMA (Wheeler et al., 2014), Terra-I (Reymondin et al., 2012) 

and IDEAM systems are developed at the pantropical scale (except IDEAM covering only Colombia) 

and are respectively available biweekly, monthly and quarterly. DETER-B (Diniz et al., 2015), a 

Brazilian operational system, provides results with a 60 m spatial resolution and a 5-day frequency. It 

is developed by the Instituto Nacional de Pesquisas Espaciais (INPE), based on AWiFS data and 

including a photointerpretation step. Most recently, the Brazilian SAD (Deforestation Alert System; 

civil society) alerts were further innovated by incorporating Sentinel imagery, both optical and radar. 

Finally, with the medium resolution of 30 m Landsat data, the MINAM (Peru) and the University of 

Maryland (UMD) produce forest alerts dataset every week: PNCB Early Warning Alerts, and Global 

Land Analysis and Discovery (GLAD) forest alerts (Hansen et al., 2016) respectively.  

A NRT forest loss monitoring protocol starts with forest losses detection as precisely and quickly as 

possible. That’s why medium-resolution Landsat and Sentinel-based alerts have replaced coarse-

resolution (MODIS)-based alerts as the standard. Thereby, the detection of large areas (> 3 ha) is now 

well controlled globally. In less than a decade, sensing capability for automated forest-loss alerts has 

improved resolution from 1 km to 10 m. Such operational forest alerts systems should allow states or 

forest managers to fight against drivers of deforestation, which are generally linked to illegal 

activities. They can also be used for protected areas management, community forest monitoring, 

management of agricultural and other productive concessions and raising awareness (Finer et al., 

2018).  

However, most monitoring approaches rely predominantly on optical remote sensing, due to the 

opening of the Landsat archive in 2008 together with the availability of easily downloadable fully 
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processed images. Hansen et al. (2016) demonstrated the potential and constraints of operational 

Landsat based forest loss alerts for the humid tropics. Nevertheless, a major limitation for optical-

based NRT applications is the presence of haze in the dry season (caused by fire) and, more 

importantly, of clouds persistent in the tropics during the wet season. In fact, clouds during the wet 

season may cause important temporal detection delays, which contradicts the need for fast forest 

loss alerts. In French Guiana for instance, Ballère et al. (2021) found a median temporal delay of 143 

days (more than 4.5 months) using the GLAD optical-based system for year-round activities such as 

gold mining. And some countries like Vietnam suffer from pervasive cloud cover throughout a large 

part of the year. 

Cloud cover free Synthetic Aperture Radar (SAR) images have great potential in tropical areas, but 

have rarely been used for forest loss monitoring compared to optical imagery (for notable 

exceptions, refer to Mermoz and Le Toan, 2016; Lohberger et al., 2018; Reiche et al., 2021), partly 

because of the scarce data availability until the Sentinel-1 program (Reiche et al., 2016). An exception 

is the JJ-FAST system developed by the JAXA/JICA, based on ALOS-2 radar data that produce forest 

loss alerts over 77 tropical countries every 1.5 months with a spatial resolution of 5 ha (Watanabe et 

al., 2017). 

The dense time series of the Sentinel-1 constellation offer a unique opportunity to systematically 

monitor forests at the global scale. Since the launch of Sentinel-1 in 2014, SAR images are now easily 

accessible with systematic acquisitions at a 5x20 m spatial resolution and a 6- to 12 days revisit time 

(depending on the location) in all weather conditions. Although the C-band frequency of the Sentinel-

1 SAR system is less adapted for forest loss detection than the longer wavelengths (because it may 

lead to confusion between the intact forest and deforested area due to the backscatter variability of 

deforested area having a diversity of surface conditions), large-scale forest disturbances maps have 

emerged very recently, mostly during the SOFT project. Two notable examples are detailed below : 

 

- Doblas et al. (2020) used Google Earth Engine to extract some 8 million samples of Sentinel-1 

backscatter data over the Brazilian Amazon, and then tested two different approaches to 

deforestation detection (adaptive linear thresholding and maximum likelihood classification). 

The results were evaluated, reaching more than 95% of global accuracy. This research has 

backed the creation of a fully-automated, cloud-based deforestation detection system, which 

is actually running at INPE’s servers.  

- Reiche et al. (2021) released a new forest disturbances alerts detection system based on 

Sentinel-1 data (RADD). The detection system was built on prior developments and 

publications (e.g. Reiche et al., 2018). The user's and producer's accuracies of confirmed 

disturbance alerts were 97.6% and 95.0%, respectively, suggesting confident detection of 

forest disturbances larger than or equal to 0.2 ha. When including samples representing 

disturbance events <0.2 ha, the producer's accuracy was 83.5%. Note that validation was 

performed using probability sampling with three strata and a total of 1100 sample points. 

This work represents a step forward because of the large study area (Congo Basin and insular 

South-East Asia so far) and because the map is available via the GFW platform. 
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It has been therefore demonstrated that forest losses can be monitored using Sentinel-1 dense time 

series based on reliable indicators that bypass environmental effects on SAR signals. These methods 

have been successfully applied at the local/regional scale and are now being adapted at the pan-

tropical scale. 

 

2 WORK TO BE PERFORMED  

This section details the work to be performed in the frame of the SOFT project, including the 

description of the work packages (WP). 

2.1 Scientific and technical objectives 

As detailed in the proposal of the SOFT project, the primary science objective is to provide NRT forest 

loss maps over Vietnam, Cambodia and Laos using Sentinel-1 data to the users of public sectors to 

support their efforts to control logging and log trade.  

 

The major technical objective is to build on methods developed for mapping forest loss from 

Sentinel-1 data, identify the weaknesses in these methods when applied in various conditions and 

where possible address these issues and adapt the methods to apply them at the country scale. The 

quality of the maps are verified so that they can be used with confidence. 

 

GlobEO and CESBIO had to implement and demonstrate forest monitoring capabilities exploiting to 

the maximal extent the two Sentinel-1A and 1B platforms. Optical sensors such as Sentinel-2 were 

not considered because of the frequent cloud cover in these tropical regions. The demonstration 

covered the following types of applications and scope: 

- The regional demonstration covers relevant areas in Vietnam, Cambodia and Laos.  

- The temporal coverage of the demonstration ranges from January 2018 to January 2021. 

- The demonstration is performed in a NRT scenario. 

- Maps are thoroughly validated based on reference data obtained from in situ observations and 

mainly from very high resolution (VHR) optical images. 

- The system has to operate efficiently in a cloud computing environment, e.g. access the EO input 

data in an efficient and dynamic manner. Code optimization is performed to be able to manage the 

large quantities of data mandatory for the application. 

2.2 Work packages 

2.2.1 WP 100: Management 

This work package lasted from the beginning of the project. As a reminder, the objectives of the WP 

were to carry out an effective management of the project and coordinate and control all the work 

done within the consortium. The tasks are: 

-      WP 110 Project management and reporting 

 Organise, monitor and control all project activities and ensure the overall integrity of all WPs 
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 Report on the progress of the work on a regular basis to the ESA Technical Officer by 

providing monthly review reports to the Agency, 

 Provide meeting agendas to the Agency, at least 1 week prior to each progress meeting 

(done by teleconference) and 2 weeks prior to each project review (i.e. Kick-Off, Final 

Review); 

 Write the minutes of all progress meetings and project reviews  

 Maintain an up to date Action Items List (AIL) 

 Take all steps necessary to maintain the schedule. In case of departure from schedule, the 

project manager shall notify immediately the ESA Technical Officer and propose corrective 

actions to recover all scheduling over-run; 

 Check and review all project deliverables for quality and completeness before delivery. 

 Coordinate the participation of the end-user organisations to the project. 

- WP120 Dissemination 

 Promote and disseminate the results of the project.  

2.2.2 WP 200: Algorithm development 

This work package lasted during the first 6 months of the project from March to September 2020. 

The objectives of the WP were to develop, select and adapt SAR-based algorithms of forest loss 

detection. The tasks are: 

- WP 210 Technical and scientific engineering  

 Review of state-of-the-art in SAR-based forest loss detection and selection of candidate 

algorithms. 

 Test the retained algorithms over a set of 5-10 test sites representative of the variety of 

configurations (type of forest loss, availability of Sentinel-1). 

- WP 220 Proof-of-Concept development  

 Converge towards a unique algorithm, or a set of algorithms with application rules, which 

provide satisfying results over the 5-10 test sites. 

 

2.2.3 WP 300: Large scale mapping 

The objectives of this WP were to upscale the results from the PoC to extend it at the regional scale 

(Vietnam, Cambodia, Laos), and to produce the final forest loss maps. WP 300 started 2 months after 

the kick-off and lasted until the end of the project. The tasks are: 

-      WP 310 Demonstrator implementation 
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 Implement the algorithms in a cloud-computing environment 

 Produce forest loss maps at a monthly time scale 

- WP 320 Consistency assessment  

 Check the reliability of the large-scale implementation of the algorithms with respect to the 

PoC  

 Check the consistency of the results at the regional scale 

2.2.4 WP 400: Validation 

The objectives of the WP were to carry out a thorough validation of the produced maps. This WP 

started in October 2020 until the end of the project. The tasks are: 

-      WP 410 Demonstrator campaign and analysis 

 Collect reference data mainly from very high resolution optical images. 

 Carry out a field campaign in Vietnam to collect reference data with Vietnamese partners 

and analyse the results of the demonstration campaign. 

- WP 420 Accuracy assessment  

 Accuracy assessment following Olofsson et al. (2014,2020), with reference data from the 

field and from VHR optical imagery. 

 

3 ACTIVITIES PERFORMED AND RESULTS: WP 100 

Project management was smooth, which was facilitated by the small number of partners in the 

project. Discussions were almost daily and usually related on work planning, technical matters, and 

human resource recruitment. All project activities were organised and controled to ensure the 

successful completion of the project.  

 

Reporting consisted in gathering and synthetizing the advancements and results, and writing and 

delivering to ESA the monthly review reports, the ATBD, the mid-term review report (MTRR), the 

validation report, the final report and the executive summary report (ESR).  

 

All planned activities were achieved with the following deviations that were reported and detailed in 

the monthly reports : 

 
- Negative effects of Covid-19 on the project  

 The exceptional health situation that started exactly at the beginning of the project has had 

an impact on the WP 410. No field campaign in Vietnam could be carried out to collect 

reference data together with Vietnamese partners, because of the travel ban. Our 

Vietnamese partners were unable to organize any field campaign in 2020. We discussed the 

possibility to use field data already acquired in 2018 and 2019, but the sampling design was 

not adapted to our study (very small areas covered compared with our study area, small 

number of field dat etc.). We finally successfully validated the forest loss maps using VHR 

optical data. 
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 France was confined from March 17, 2020 to May 11, 2020 and from October 30, 2020 to 

December 15, 2020, which made recruiting complicated especially at the beginning of the 

project. Meanwhile, the contract of Alexandre Bouvet at CESBIO could be renewed from July 

2020 to work on the SOFT project. 

 

- Delivery of the forest disturbances maps 

The maps are being delivered in April 2021, instead of December 2020 due to the processing 

duration of the data.  

 

Regarding dissemination, a paper summarizing the main results of the projects will be submitted to a 

scientific journal with peer-review process before July 2021. A review paper gathering the work 

achieved on forest loss detection using SAR data is also in preparation. 

The particular context related to the Covid19 led to the cancelation of numerous workshops and 

conferences, including Forestsat 2020 that should have taken place in Krakow, Poland, for which it 

was basically planned to submit a contribution on the SOFT project. Nevertheless, numerous events 

are being organized online. The SOFT project will thus be presented at the EGU online General 

Assembly 2021 on Monday, 26 April 2021 in session BG11 - 'Remote sensing for forest applications’ - 

EGU21-16177 : Forest disturbances detection in Vietnam, Cambodia and Laos using Sentinel-1 data. 

 

4 ACTIVITIES PERFORMED AND RESULTS: WP 200 

4.1 Selection of the forest loss detection method 

The team first performed a bibliographic review related to forest disturbances detection using SAR, 

with Sentinel-1 based studies analyzed first, followed by studies based on C-band data in general and 

then other frequencies. The results of the bibliographic review have been detailed in the ATBD.  

 
However, the forest loss detection method from Bouvet et al. (2018) was considered as the best 

potential candidate algorithms for the following reasons : 

 CESBIO and GlobEO are convinced of the potential of the method, which provided excellent 

results over Peru (Bouvet al., 2018), French Guiana (Ballère et al., 2021), Gabon (Hirgschmugl 

et al., 2020), Brasil and Vietnam (unpublished results). 

 CESBIO and GlobEO created this method and thus perfectly know how to improve or adapt it 

to Vietnam, Cambodia and Laos. 

 The short time of the project (1 year) did not allow for a thorough comparison of existing 

methods. In addition, CESBIO already performed this round review exercise before the SOFT 

project and results showed that Bouvet’s method provided more accurate maps with lower 

computation time over selected test sites than others’s methods.  

 

The forest loss detection system that we adopted is composed of two steps:  

 Detect shadows that appear or disappear in a series of images, and,  

 Reconstruct the deforested patches associated to the shadows. 
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It is important to note that the main advantage of the method is to avoid false alarms detection, 

which would be far worse when forest loss patches are detected in a classical manner without the 

prior detection of shadows. The method is fully described in the ATBD, in Bouvet et al. (2018) and 

Ballère et al. (2021). 

Regarding the Sentinel-1 data processing, we used the pre-processing chain developed at CESBIO 

(https://gitlab.orfeo-toolbox.org/s1-tiling/s1tiling), as an operational tool for Sentinel-1 GRD data 

processing and tiling per the 100 km MGRS used by the Sentinel-2 processing system. The chain is 

based on open source libraries and can be used freely (Inglada and Christophe 2009). 

4.2 Forest definitions 

According to the reports submitted by Vietnam, Cambodia and Laos to the UNFCCC (respectively the 

first summary of information for Vietnam, the Cambodia forest report 2016, and the report of the 

technical assessment of the proposed forest reference emission level - FREL), Vietnam and Cambodia 

use the same forest definition, i.e. a tree cover of 10%, a minimum tree height of 5 m at maturity and 

a minimum area of 0.5 ha. Laos employs a tree cover value of 20%, 10 cm stand diameter at breast 

height (DBH) and 0.5 hectares of area. The plantations such as rubber, oil palm, teak, acacia and 

eucalyptus and other kinds of trees which fall under the above criteria area also classified as forests. 

In this study, we defined forest as at least 5 m tall trees with a tree cover exceeding 50%. Forest loss 

is defined as a forest area with a tree cover larger than 50% before disturbance and very low after 

disturbance (less than 10%, although this value is qualitative). In fact, we assumed that forest loss 

detection methods based on Sentinel-1 backscatter does not allow to identify forest loss over low 

tree cover areas. In addition, this definition is also used in Hansen et al., (2013), which is crucial when 

comparing the results from both methods.  

4.3 Sites selection for the PoC 

We selected 110x110 km2 MGRS tiles as study sites with natural forests and plantations, flat and 

steep terrain, and with available very high resolution (VHR) images in Google Earth. Table 2 

summarizes the main characteristics of the selected tiles, i.e. : 

- Country in which the tile is located, 

- Forest proportion in 2017, i.e. the proportion of forest relative to the entire tile without 

taking into account permanent water, using the tree cover map from Potapov et al. (2019), 

- Forest loss from 2000 to 2017, i.e. the proportion of forest loss using the GFW annual 

product (Hansen et al., 2013), relative to the entire tile without taking into account 

permanent water, 

- Mean slope over forest, i.e. the mean slope value over areas with tree cover higher than 50% 

in 2017. 

 

 

https://gitlab.orfeo-toolbox.org/s1-tiling/s1tiling
https://gitlab.orfeo-toolbox.org/s1-tiling/s1tiling
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Table 2. Main characterictics of the selected tile in the frame of the WP 200, i.e. country in which the tile is 
located, forest proportion in 2017 relative to the entire tile without taking into account permanent water, 
proportion of forest loss from 2000 to 2017 relative to the entire tile without taking into account permanent 
water and mean slope value over areas with tree cover higher than 50% in 2017. 

 
Country 

Forest proportion  
in 2017 (%) 

Forest loss (%) 
Mean slope 

over forest (°) 
48PVV Cambodge 25.1 15.3 3.2 

48PWV Cambodge 52.1 28.5 3.6 

48PYA 
Cambodge - Vietnam 

Laos 
60.1 21.3 12.1 

49PBS Vietnam 67.2 21.4 16.1 

48PZC Vietnam 58.5 21.1 17.9 

48QXD Vietnam - Laos 72.9 18.8 14.6 

48PUT Cambodge 73.9 12.3 8.8 

48PXT Vietnam - Cambodge 28.5 12.2 3.8 

48QVF Laos - Vietnam 83.6 10.4 20.4 

48QTH Laos 76.2 16.4 21 

48QVK Vietnam 50.6 7.3 23.1 

 

 

We tested the method over the following 6 tiles : 48PVV, 48PWV, 48PYA, 49PBS, 48PZC and 48QXD 

(in white in Figure 1), and quantitatively assessed the results over these tiles using reference data 

described in section 4.4. Among the 6 test tiles, 3 tiles are located mainly in Vietnam and 3 tiles in 

Cambodia, with 2 tiles intersecting Laos. Five out of the 6 tiles have a forest proportion higher than 

50% and all the tiles show a proportion of forest loss higher than 15%. The mean slope value over 

forest ranges between 3 and 18°. More information related to these tiles is provided in the ATBD.  

 

We then tested the retained method over 5 other tiles : 48PUT, 48PXT, 48QVF, 48QTH and 48QVK 

(Figure 1). The test was qualitative as no reference data could be selected over these tiles because of 

the lack of historical VHR optical data (Planet free cloud mosaic data were not released yet before 

September 2020).  
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Figure 1. Study sites used in the proof-of-concept development. Reference data (forest loss in red and intact 
forest in green) were selected in the tiles in white and are described in section 4.4. 

4.4 Reference data selection for the PoC 

Reference data were selected manually to analyze the temporal backscatter over forest loss and 

intact forests areas, in order to 1) understand the interactions of the SAR backscatter before forest 

loss and after forest loss events, and 2) quantify the separability of forest loss areas and intact forest 

areas in term of detection. We extracted polygons of forest loss and intact forest in test sites through 

visual interpretation of Google Earth and Sentinel-2 Cloudless images (https://s2maps.eu). At least 

two available images should be acquired close in time before and after the time window of the PoC, 

i.e. from end of 2017 to end of 2019. In general, several images from historical data were analysed to 

ensure reliable selections. The following criteria were used to choose the reference data: 

 Selection of forest loss areas in natural forests and plantations, 

 Selection of small (< 1 ha) and larger plots, 

 Selection of plots over flat and steep terrain, 

 Selection of plots over various landscapes, with preferably different drivers of deforestation, 

 Only clear-cut areas were extracted. 

https://s2maps.eu/
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The spatial distribution of the reference polygons are shown in Figure 1 and the numbers and sizes of 

the reference polygons are shown in Table 3. A total of 539 plots were selected in 5 sites over 6 

MGRS tiles: 48PVV, 48PWV, 48PYA, 49PBS, 48PZC and 48QXD. The histogram of the reference plots 

size is shown in Figure 2. Approximately 69% of the intact forest reference plots have a surface area 

lower than 100 ha, and 76% of the forest loss reference plots have a surface area lower than 2 ha. 

Table 3. Numbers and sizes of the reference polygons constituting the training and testing database for forest 
loss assessment. 

 Nb. areas Mean size (ha) Surface (ha) 

Forest loss 457 4.3 1 971 

Intact forest 82 381.2 31 260 

 
 

 

Figure 2. Distribution of the forest loss and intact forest reference plots surface area. 

 

Although no tile has been selected as a study site in the mountains of Northern Vietnam and Laos, 

the distributions of the terrain slope values over the forest loss and intact forest reference plots 

(Figure 3) show that reference data have been chosen over a variety of reliefs, with mean values up 

to 12.5° and 23.5° for forest loss and intact forest plots repectively, over the tile 48PZC for example. 

The selection of these plots ensures the faisability of the analysis in flat and steep areas detailed in 

the ATBD. This is crucial as forests over slopes exceeding 20° represent 5.3% of the whole study area 

and 11.3% of total forest area (Mermoz et al., 2016).  
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Figure 3. Distribution of the terrain slope values over the forest loss and intact forest reference plots. 

 

4.5 Ancillary data selection 
 
In addition to Sentinel-1 images, numerous ancillary data were used in the project and are 

summarized in Table 4. 

 

Table 4. Summary of ancillary data  

Dataset type Dataset name Time frequency Resolution Reference 

Forest mask Tree canopy cover Annual 30m Potapov et al. 2019 

Forest loss Global Forest Watch  Annual 30m Hansen et al. 2013 

Forest loss alerts GLAD Alerts Weekly  30m Hansen et al. 2016 

Forest loss alerts JJ-Fast 1.5 months 5 ha Watanabe et al. 2017 

Tree canopy height Tree canopy height Annual 30m Potapov et al. 2021 

Precipitations GSMap Daily 0.1° Kubota et al. 2020 

 
The first step of the forest loss monitoring workflow is the use of an initial benchmark forest/non-

forest mask (hereafter referred to as the forest mask), which accurately represents the forest area at 

the beginning of the change detection time window. The quality of the forest mask has a tremendous 

impact on the quality of the forest loss maps.  
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We compared various tree canopy cover maps detailed in the ATBD. We drew the following 

conclusions: 

 The tree canopy cover 2010 from Hansen et al. (2013) can be updated to a 2017 forest mask by 

using the annual tree cover loss layer from GFW. However, it appeared that the quality of this 

map was much lower than the one from Potapov et al. (2019) (that is shown in Figure 4), partly 

because the 2010 map was produced using the Landsat 7 satellite data, whose the Scan Line 

Corrector in the Enhanced Thematic Mapper Plus (ETM+) instrument failed. A comparison 

between the two maps is shown in Figure 5, 

 The accuracy of the forest/non-forest map from Shimada et al. (2014) was found to be too low, 

 The Land use land cover maps 2017 from Trung et al. (2018), Duong et al. (2018) and Tung et 

al. (2016) have been derived in three parts (Northern, Central and Southern Vietnam) with two 

different methods, leading to spatial differences of quality. In addition, these maps covered 

Vietnam only, 

 The spatial resolution of the fraction of green vegetation cover and the C3S global land cover 

was too coarse regarding the objectives of the SOFT project. 

 

We finally selected the tree canopy cover map that has been produced in the frame of a joint project 

conducted by the GLAD laboratory from UMD and SERVIR-Mekong. The method used to derive the 

tree canopy cover map has been extensively described in Potapov et al. (2019). The obtained tree 

canopy cover (Figure 4) is defined as a proportion of canopy cover from woody vegetation taller than 

5 m at 30 m pixel size from 2010 to 2017. Note that natural tree cover and tree plantation and 

agroforestry were not discriminated.  

 

 
Figure 4. Tree canopy cover 2017 and primary forest extent at 30 m pixel size from Potapov et al. (2019) 
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Figure 5. Comparison between the tree cover maps from Hansen et al. (2013) and Potapov et al. (2019). The 
map from Hansen is particularly affected by the failure of the Landsat -7 Scan Line Corrector in the Enhanced 
Thematic Mapper Plus (ETM+) instrument. 

In addition to tree cover maps, we also used: 

- Forest loss dataset from Hansen et al. (2013), from Hansen et al. (2016) and from JJ-FAST 

(Watanabe et al., 2017). Existing forest loss detection systems are useful in the SOFT project. 

These products were not considered here as benchmarks, but rather helped in the selection 

of study sites where forest losses are active and were compared with our forest loss maps. 

- The last global forest canopy height map at 30 m resolution, which was developed recently 

through the integration of the Global Ecosystem Dynamics Investigation (GEDI) lidar forest 

structure measurements and Landsat analysis-ready data (ARD) time-series. 

- Precipitations data. We analyzed rainfalls together with SAR backscatter using the Global 

Satellite Mapping of Precipitations (GSMaP) product (Kubota et al., 2020) to better 

understand the SAR backscatter behavior. 

 

The above-mentioned dataset are fully described in the ATBD.  
 

4.6 Analysis results in the frame of the PoC 

Analyses of the Sentinel-1 backscatter signal over forest loss and intact forest areas of Vietnam, 

Cambodia and Laos were needed to adapt the forest loss detection method. Basic tools have 

therefore been developed to quickly analyze temporal images and backscatter profiles and for quick 

image vizualisation, which is useful to check the quality of the data before and after processing 

(problems related to geometric shifts and outliers in Sentinel-1 images). Figure 6 shows examples of 

temporal backscatter profiles over the tiles 48PWV, 48PYA and 48QXD. Temporal backscatter profiles 

consisted in profiles of backscatter and radar change ratio (RCR - Tanase et al., 2018) at VV and VH 

polarizations over reference data, and precipitations using the Global Satellite Mapping of 

Precipitations (GSMaP) product (Kubota et al., 2020). Temporal backscatter profiles allow to 
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understand the backscatter temporal variations over plots with various characteristics, such as 

terrain slope and humidity due to rainfalls.  

 

 
Figure 6. Backscatter γ0

VV and radar change ratio (RCR) time series from October 2017 to end of 2019 for the 
tiles 48PWV, 48PYA and 48QXD. Precip means precipitations. 

 

We also analysed the probability density function (PDF) and cumulative PDF of the minimum RCR 

indicator min(RCR) (Tanase et al., 2018, Bouvet et al., 2018) over the reference data of forest loss and 

intact forest areas, for each selected tile detailed in section 4.3, in ascending and descending modes 

separately. Figure 7 shows an example over the tile 48PVV. In Figure 7, the term «shadows» means 

that 25% of the pixels of each plot with the lowest min(RCR) values were used to draw the PDF.  
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Figure 7. Probability density function (PDF) and cumulative PDF of the min(RCR) indicator at VV and VH 
polarization for reference data over the tile 48PVV in ascending (ASC) and descending (DES) modes. The term 
«shadows» means that 25% of the pixels of each plot with the lowest min(RCR) values were used to draw the 
PDF. 

From these plots, we quantified the following indicators describing the separability of forest loss and 

intact forest reference data, with two different scenarii: 

- Scenario s1: In this scenario, the true positive detection (TD) of the intact forest class is targetted 

to 95%, ensuring a trade-off between low false alarms rate and accurate forest loss detection. 

Note that TD is defined as true positive samples divided by the sum of true positive and false 

negative samples for a given min(RCR) threshold. 

- Scenario s2 : This scenario is more flexible. A range of indicator values is computed to correspond 

to various user needs, from detections with the highest possible certainty to avoid field teams 

being sent to sites at which deforestation events were falsely detected, to the most accurate map 

in term of producer and user accuracy.  

 

In Table 5, the indicators described above were quantified for the tile 48PVV in ascending and 

descending modes. Regarding scenario 2, the range of values for each indicator in Table 5 are 
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associated with the best 10 E[TDFL ,TDIF]-s2 values (FL and IF mean forest loss and intact forest 

respectively). We drew from these results the following conclusions : 

- The separability between forest loss and intact forest reference data is obviously better when 

shadows are considered, as the pixels with the lowest min(RCR) values are selected in this case. 

- Although results obtained at VV and VH polarizations are in general quite similar, results were 

systematically better at VH polarization as shown in the ATBD. 

- The min(RCR) values were remarkably stable, ranging from -5.7 to -2.3 dB in general. 

The indicators assessment for the other tiles of the PoC is detailed in the ATBD. 

Table 5. Assessment of indicators describing the separability of forest loss and intact forest reference data over 
the tile 48PVV with two scenarii : scenario s1 that is a trade-off between low false alarms rate and accurate 
forest loss detection and scenario s2 corresponding to the most accurate map in term of producer and user 
accuracy. The ranges of values for each indicator of scenario 2 are associated with the best 10 E[TDFL ,TDIF]-
s2 values. The terms nb FL and nb IF refer to the number of pixels from the forest loss and intact forest 
reference dataset that were used for computing the indicators. The true positive detection TD is defined as 
true positive samples divided by the sum of true positive and false negative samples for a given min(RCR) 
threshold. The term all means that all available reference data were used, whereas the term shad means that 
25% of the pixels of each plot with the lowest min(RCR) values were used. 

   scenario 1 scenario 2 

nb FL 
x103 

nb IF 
x103 

min(RCR) 
s1 (db) 

TDFL  
s1 (%) 

min(RCR) 
s2 (db) 

TDFL  
s2 (%) 

TDIF  
s2 (%) 

E[TDFL ,TDIF] 
s2  (%) 

48
P

V
V

 

A
SC

 0
2

6
 V

V
 all 87 

142 -3.1 

97 
-4.1 
-3.2 

92.1 
96.7 

99.8 
95.8 

96 
97.2 

shad 22 100 
-4.8 
-3.9 

99.7 
100 

100 
99.7 

99.8 
100 

V
H

 all 87 

142 -3 

97.9 
-4.3 
-3.4 

95.5 
97.4 

100 
98.4 

97.8 
98.2 

shad 22 100 
-5.5 
-4.5 

99.9 
100 

100 
100 

100 
100 

D
ES

 0
91

 V
V

 all 87 

142 -3.2 

93.2 
-4 

-3.1 
86 

94.5 
99.6 
91.3 

92.8 
94.6 

shad 22 99.5 
-5.1 
-4.2 

98.4 
98.6 

100 
99.8 

99.2 
99.2 

V
H

 all 87 

142 -3 

95.7 
-4.1 
-3.2 

92.2 
95.2 

99.9 
96.9 

96 
96.7 

shad 22 99.2 
-5 

-4.1 
98.5 
98.6 

100 
99.9 

99.2 
99.3 

 

4.7 Map resulting from the PoC 

From the analysis above, we decided to restricted ourselves to the VH polarization to keep a 

consistent time series over the full date range. We applied the methodology fully described in the 

ATBD to the tiles selected in the frame of the PoC. We then discarded small outliers in the obtained 

maps by sieving and retained segments of more than 4 pixels, which correspond to a minimum 

mapping unit of 0.04 ha. The resulting forest loss map is shown in Figure 8, where the indicated 
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numbers correspond to specific areas shown in Figure 9. Figure 9 shows forest loss in plantations 

(subfigure 9 in Figure 9) versus natural forest (e.g. subfigures 5 and 6), logging roads (subfigure 7), 

and small disturbed areas (subfigure 3) versus large disturbed areas (subfigure 6). Figure 9 also 

highlights the high rate of good detection (forest loss reference data in red) and low rate of false 

alarms (intact reference data in green). 

 

 

 
Figure 8. Forest loss detection results over the tiles selected in the frame of the PoC. Forest areas from Potapov 
et al. (2019) are in dark green and the background image is from Google Earth. The indicated numbers 
correspond to specific areas presented in Figure 9.  
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Figure 9. Visual comparison of forest loss detection results, highlighting the various sizes and distributions of 
disturbed areas. Intact forest and forest loss reference data are drawn in green and red respectively. Forest 
areas from Potapov et al. (2019) are in dark green and the background image is from Google Earth. 
 
 

We computed confusion matrices (Table 6) for the tiles 49PBS and 48PZC, where reference data were 

selected and where terrain relief is the steepest. Producer, user and overall acuracy were found to be 

higher than 94% and kappa index higher than 0.96. We noticed a slight over-estimation of detected 

forest losses (UA of 94% for the two tiles). However, these results showed that accurate forest loss 

detection is possible, even over hilly or mountainous areas. 
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Table 6. Assessment (pixel counting) of the forest loss detection method accuracy for the tile 49PBS (left) and 
48PZC (right). Columns show the forest loss (FL) and intact forest (IF) as determined by the detection method, 
whereas rows indicate the reference data. PA, UA and OA are in % and stand for producer, user and overall 
acuracy, k stands for kappa index. 
 

   FL IF UA 

FL 25 315 1 380 94.8 

IF 0 418 231 100 

 PA 100 99.7  

OA 99.7   

k 0.97   
 

 FL IF UA 

FL 12 561 730 94.5 

IF 211 71 487 99.7 

PA 98.3 99  

OA 98.9   

k 0.96   
 

 

5 ACTIVITIES PERFORMED AND RESULTS: WP 300 

In the frame of WP 300, we mainly optimized, installed and ran the scripts (in Python) onto the high 

performance computing (HPC) cluster of the CNES. 

 

The main technical challenge was the processing of the large amount of available Sentinel-1 data (see 

Figure 10), with 37 and 34 frames of Sentinel-1 data in ascending and descending geometry 

respectively, to cover the whole study area. Given the small duration of the project and the amount 

of data to be processed, we started to work on this WP from the beginning of the project.  

 

 
Figure 10. Number and distribution of Sentinel-1 frames in ascending and descending modes over Vietnam, 
Cambodia and Laos. 

 

In the frame of the extension of the GeoRice project funded by ESA (Contract Change Notice number 

1 of the ESA Contract 4000113388/15/I-NB) and conducted by CESBIO and GlobEO, a part of Sentinel-
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1 data used in the SOFT project, over Vietnam, Cambodia and Laos was already processed at the 

beginning of the SOFT project and made available in the CEOS analysis ready data (ARD) format in 

sigma naught. To complete the processing specific to the SOFT project (i.e. to forest monitoring), we 

first processed and standardized all the data needed to convert sigmal naught Sentinel-1 backscatter 

from the GeoRice project to topographic-corrected gamma naught, i.e., terrain slope and aspect 

angles, and local incidence angles. We downloaded and fully processed the Sentinel-1 dataset in 

ascending mode from 2018 to 2021 and in descending mode in 2020 (not processed in the frame of 

the GeoRice project) and converted sigmal naught Sentinel-1 backscatter to topographic-corrected 

gamma naught over selected test sites. We then filtered in NRT mode the Sentinel-1 images. To do 

so, each new acquired image was filtered using previously acquired images, instead of filtering the 

whole stack of images. 

We could handle efficiently the large amount of Sentinel-1 data available using the pre-processing 

chain developed at CESBIO, detailed in the ATBD. The chain is highly scalable (multithreading / 

multiprocessor), which made it easy to install onto the high performance computing (HPC) CNES 

cluster in May 2020. After the installation of the codes, we performed tests of the various scripts 

(NRT speckle filtering, detection of forest loss, post-processing). We also fixed some problems related 

to data management, e.g. the large amount of Sentinel-1 data by compressing input and output data 

and removing input data on-the-fly when not necessary anymore in the detection algorithm. 

 

Then, the processing of the whole study area has been achieved. We mosaicked the resulting maps, 

checked their quality and manually corrected outliers. Outliers were found to be rare as the forest 

loss detection method is not applied over areas with potential false alarms, i.e. with backscatter 

varying in time (such as water areas, bare soils, mangroves and non forest areas in general). 

Nevertheless, some tiles had to be reprocessed due to flaws in the acquisition of the Sentinel-1 data, 

leading for example to geometric inconsistencies. 

 

The final forest loss map over Vietnam, Laos and Cambodia from 2018 to 2021, is shown in Figure 11. 

The map provides clear hints of the spatial and temporal distribution of forest losses. For example, 

Figure 12 shows the difference between high forest losses currently happening in Northern Laos 

versus low forest losses in Northern Vietnam, although the whole Northern mountainous region is 

covered by similar forest types. 

 

Specific areas of the whole forest loss map are shown in Figure 13. Figure 13 shows forest loss in 

various environments and forest types, from North to South of the study area. It is important to note 

that the method provided accurate results whatever the topography, as emphasized in the ATBD 

following the results of the PoC. 
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Figure 11. Forest disturbances map using Sentinel-1 data in Vietnam, Laos and Cambodia from the end of 2017 
to the beginning of 2021. 
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Figure 12. Forest disturbances map using Sentinel-1 data at the border between Laos and Vietnam, from the 
end of 2017 to the beginning of 2021. The background image is from Google Earth. The map evidences high 
forest losses currently happening in Northern Laos versus low forest losses in Northern Vietnam. 
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Figure 13. Visual comparison of forest loss detection results, highlighting the various sizes and distributions of 
disturbed areas. Forest areas from Potapov et al. (2019) are in dark green and the background image is from 
Google Earth. 
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We also compared the forest loss surface areas obtained from our method with the results from 

GFW and GLAD. Although we do not consider the maps of GFW and GLAD as a benchmark and 

although the use of Sentinel-1 is basically much more relevant in term of timely detection of forest 

losses, we quantitatively compared the statistics per year and country (Table 7) and qualitatively 

compared both maps (Figure 14). Note that at the time of the writting, the GFW maps were not 

available for the year 2020. We also wrote to the GLAD team to ask for the GLAD 2018 alerts (that 

are not available anymore on line), but did not receive any answer. The results from this study and 

from GFW are remarkably similar, the largest difference (23%) being found for Laos in 2019. This 

result highlights the fact that our detection system can be used as an alert system (fast detection 

from sentinel-1 data) and as an annual detection system similar to GFW, used for example to 

compute national statistics. As expected, the GLAD alerts allowed to detect much less forest loss 

areas, with notable time delays (see Ballère et al., 2021 for a detailed analysis on this topic). 

Table 7. Surface areas per year and country in hectare, from this study, Global Forest Watch (Hansen et al., 
2013) and GLAD (Hansen et al., 2016).   

 This study 
GFW  

(Hansen et al., 2013) 
GLAD  

(Hansen et al., 2016) 

Vietnam 2018 345 121 422 300 - 
Vietnam 2019 445 977 421 910 83 361 
Vietnam 2020 333 655 - - 

Cambodia 2018 200 400 180 970 - 
Cambodia 2019 281 335 236 780 119 042 

Laos 2018 327 152 400 290 - 
Laos 2019 648 089 498 830 153 187 
Laos 2020 292 383 - - 

 

We performed visual comparisons between the maps resulting from our study and from GFW. The 

example in Figure 14 (Up) illustrates the fact that in many areas, the results from both methods are 

rather similar. However, the exemple in Figure 14 (Bottom) emphasizes a phenomenon that is 

common in the resulting maps : only the edges of the disturbed areas are detected in the GFW maps, 

contrary to the maps from our method in which the disturbed areas are accurately detected. 
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Figure 14. Visual comparison between the forest disturbances maps from this study (Left) and from Global 
Forest Watch (Right). The two areas are centred on 102.75°N and 20.48°E in Laos (Up) and 107.21°N and 
16.61°E in Vietnam (Bottom). The background image is from Google Earth. 

 

6 ACTIVITIES PERFORMED AND RESULTS: WP 400 

The validation framework is primarily based on the good practices recommended by Olofsson et al. 

(2014 and 2020). 

 

In the frame of the SOFT project, we chose as sampling design a stratification with stratas defined by 

the map classes, mainly to improve the precision of the accuracy and area estimates. The stratified 

design satisfies the basic accuracy assessment objectives and most of the desirable design criteria. 

We selected a buffer stratum in addition to an intact forest stratum and a forest disturbances 

stratum, for the reasons detailed in the validation report and as recommanded by Olofsson et al. 

(2020).  

 

We specified a target standard error for overall accuracy of 0.01 and supposed that user's accuracies 

of the change class is 0.70 for forest disturbances and 0.90 for intact forest. The resulting sample size 

is therefore n=803 in total, which we have rounded up to 1 000 samples. 

 

We then assessed the allocation of the sample to strata so that the sample size allocation results in 

precise estimates of accuracy and area. We followed Olofsson’s recommendations and allocated a 

sample size of 100 for the forest disturbance stratum, and then allocated the remainder of the 
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samples to the intact forest classes, i.e. 200 in the buffer areas around detected disturbances, and 

700 in intact forest outside of these buffers. Figure 15 shows the location of the 1 000 samples in the 

study area. 

 

 
Figure 15. Location of the 100 disturbance samples, 200 buffer samples (intact forest around disturbance) and 
700 intact forest samples used for the validation. Light green areas represent the baseline forest map. 

 

Both high- and very high spatial resolution (<10 m and <1 m respectively) satellite data were viable 

candidates for reference data. We used when possible freely accessible very high spatial resolution 

imagery online through Google Earth™ (Google, 2011), which presents low cost interpretation 

options. Google Earth images are actually a relatively relevant source of validation data for remote 

sensing studies. When Google Earth images were not available at the relevant dates, we instead 

accessed Planet’s very high-resolution analysis-ready mosaics as reference data. Through Norway’s 

International Climate and Forests Initiative, these pan-tropical 4.8 m resolution mosaics were 

recently released in order to help reduce the loss of tropical forests, amongst others.  

 

The resulting confusion matrix presented in terms of the sample counts is displayed in Table 8, and 

the confusion matrix populated by estimated proportions of area, used to report accuracy results is 

shown in Table 9. 
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Table 8. Error matrix of sample counts 

  Reference   

  Disturbances Intact Total Am,i (km²) Wi 

Map 

Disturbances 96 5 101 22 222 5.84% 

Intact buffer 3 194 197 70 667 18.58% 

Intact  3 693 696 287 462 75.58% 

Total 102 892 994 380 351 100% 
 

 

Table 9. Error matrix in Table 8 populated by estimated proportions of area, used to report accuracy results 

  Reference   

  Disturbances Intact Total (Wi) Am,i (km²) 

Map 

Disturbances 5.55% 0.29% 5.84% 22 222 

Intact buffer 0.28% 18.30% 18.58% 70 667 

Intact 0.33% 75.25% 75.58% 287 462 

Total 6.16% 93.84% 100% 380 351 
 

 

 

We then estimated from the confusion matrix in Table 9 user's accuracy, producer's accuracy and 

overall accuracy. Variances for these accuracy measures are estimated using Eqs. (5)–(7) from 

Olofsson et al. (2014): 

 The estimated user's accuracy (±95% confidence interval) is 0.950 ± 0.043 for forest 

disturbances and 0.993 ± 0.005 for intact forest (including buffer areas around disturbance).  

 The estimated producer's accuracy is 0.898 ± 0.061 for forest disturbances and 0.997 ± 0.043 

for intact forest.  

 The estimated overall accuracy is 0.991 ± 0.006. 

 

We also estimated area proportions from the confusion matrix in Table 9. The row totals of the 

confusion matrix give the mapped area proportions Wi while the column totals give the estimated 

area proportions according to the reference data. Multiplying the latter by the total mapped area 

gives the stratified area estimate of each class according to the reference data. For example, the 

estimated area of 2018 and 2019 deforestation according to the reference data is      =       

                     m          m . The mapped area of deforestation Am,1 of 22 222 km² 

was thus underestimated by 1 215 km².  

 

The final step is to estimate a confidence interval for the area of each class. From Eq. (10) in Olofsson 

et al (2014),                  and the standard error for the estimated area of forest loss is 

        =                               m         m . The margin of error of the 

confidence interval is 1.96 × 1 092 = 2 140 km². We have thus estimated the area of deforestation 

with a 95% confidence interval: 23 437 ± 2 140 km².  
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