Fires and Emissions Quantification – Data, Methods and Tools

Krishna Vadrevu, NASA Marshall Space Flight Center, USA

Marshall Space Flight Center

Chris Justice, University of Maryland College Park, USA

Global Observations of Forest Cover and Land Use Dynamics

Contents

Burnt Areas and Emissions

 A. Burnt Area Detection
 B. Burnt Area Products
 C. Burnt Area Emission Products

- 2. Active Fires and Emissions
 - A. Active Fire Detection
 - B. Active Fire Products (Fire Radiative Power)
 - C. Fire Radiative Power Emission Products

Land Use Fire: Tropical Deforestation and Pasture Maintenance, Brazil

Fire is an Interdisciplinary Subject

Fire is an important and poorly understood Earth System process

- Land Use and Land Cover Change
 - Fire is a major cause of surface change and occurs in most vegetation zones across the world.
 - A widespread land management tool tropical deforestation, agricultural waste burning, rangeland management
- Ecology
 - fire disturbance as negative and positive ecological effects
 - US ecosystem management moving from total fire suppression to recognizing fire as an important and natural process fuel management
- Hydrology
 - impact on burned watersheds erosion and water quality
- Climate Change
 - emissions of greenhouse gases and aerosols, smoke and clouds
 - Impacts of global warming on fire regimes
- Atmospheric Composition
 - emissions of gases and pollutants greenhouse gases dry and wet deposition
- Air Quality
 - particulates health/respiratory problems, at risk citizens trans boundary transport
- Coupled Systems
 - More people, more land use pressure (intensification and extensification), more sources of ignition, warmer drier climates, more fires, more greenhouse gases, (more smoke), feedback loops ?
- Human hazard / cost / risk
 - uncontrolled wildfires are a hazard at the wildland/urban interface
 - impact on protected areas / biodiversity

Vegetation Fires and Emissions Estimation

Seiler and Crutzen (1980) – Emissions Estimation Approach

M (quantity of gas emitted) = Area x Biomass Density x Burning Efficiency x Emission Factor

- Area Satellite based mapping;
- Biomass density/fuel loading (vegetation type mapping);
- Burning or combustion efficiency (most uncertain field measurements);
- Emission factors (field or lab based) satellite based surrogate measures combined with Inverse modeling

Satellite Fire Products

Satellites	VIS	NIR	SWIR	MIR	TIR	Spatial
Disaster Monitoring Constellation	0	0				32m
ENVISAT-MERIS	0	0				300m
DMSP-OLS	0	0				2-3km
TRMMVIRS	0	0	0			2km
SPOT-VGT	0	0	0			1km
Bird		0			0	185-370m
ERS-2 ATSR ENVISAT-2 AATSR	0	0	0		0	1km
TERRA/AQUA/MODIS	0	0	0		0	250-1km
NOAA/METOP/AVHRR	0	0	0	•	0	1km
GMES-Sentinel-SLST	0	0	0	•	0	500-1km
NPP/NPOESS VIIRS	0	0	0		•	375-250
LDCM	0	0	0		0	30m
Sentinel Missions with various combinations of bands	Ś			•	>	
-Burnt Areas, Visible and SWIR -Active Fires: Thermal + MIR	В	urnt A	reas	FRP	0	7
Fire Radiative Power Products - MIR					Active	Fires

Burned Area Products and Emissions

	Place name	Forest type	Tree density (ha)	Total basal area (m2/ha)	ABG Biomass (t/ha)				
1	Garhwal Himalayas	Pine-Oak forest	889	75.12	8				
2	Shoolpaneshwar wildlife sanc	Tropical dry deciduous	NA	NA	88				
3	Bilaspur circle of Korba, Chattisgarh	Tropical dry forest	306	20.2	155				
4	Tehri Garhwal,	Mixed deciduous forest	NA	NA	130				
5	Garo Hills, NEAST-1	Shorea robusta (60 year old growth)	570	54.9	259.8				
6	Garo Hills, NEAST-2	60 year old plantation	608	54	255.96				
7	Garo Hills, NEAST-3	Mixed Sal forest - 60 yr	688	58	272.83				
8	Garo Hills, NEAST-4	Mixed Sal natural forest 50 yr	640	42.67	204.15				
9	Garo Hills, NEAST-5	As above	690	49.21	233.25				
10	Garo Hills, NEAST-6	Primary forest undisturbed	846	67.18	314.02				
11	Himalayas, Kashmir	Coniferous	120	NA	90				
12	2 Kashmir Himalayas	Himalayan temperate forest	210	NA	150				
13	Kolli forests, Eastern Ghats	Tropical Evergreen forest	1946	NA	336				
14	Chikaldhara hill station	Tropical mixed forest	NA	NA	49				
15	Banthra, Lucknow	Tropical dry deciduous	554	29.9	30				
16	5 Northern Haryana	Tropical Mixed deciduous	564	27	132				
17	Assam Gibbon	Evergreen forest	286	90.29	135.3				
18	3 Assam Kholahat	Evergreen forest	416	62.49	146.42				
19	Bhuban Hills, Assam-1	Evergreen forest	396	16.96	NA				
20	Bhuban Hills, Assam-2	Evergreen forest	590	21.14	NA				
21	Bhuban Hills, Assam-3	Evergreen forest	344	17.21	NA				
22	2 Bhuban Hills, Assam-4	Evergreen forest	614	38.44	NA				
23	Bhuban Hills, Assam-5	Evergreen forest	718	42.54	NA				
24	Bhuban Hills, Assam-6	Evergreen forest	794	45.07	NA				
25	5 Uttara Kanara	Wet semi-evergreen forest	414	25.62	249.67				
26	5 Ekkambi	Wet semi-evergreen forest	1087	43	417				
27	7 Hosur	Wet semi-evergreen forest	1409	42.95	417				
28	3 Malgi	Wet semi-evergreen forest	928	34.1	344				
29) Togralli	Wet semi-evergreen forest	1647	36.19	361				
30) Malgi	Wet semi-evergreen forest	468	33.67	340				
31	Ananthnag District, Kashmir	Low lying temperate forests	NA	NA	NA				
32	2 Ananthnag District, Kashmir-2	Juglans regia	1201	36.1	204				
33	Ananthnag District, Kashmir-3	Populus deltoides	220	38.5	157				
34	Ananthnag District, Kashmir-4	Salix sp.	195	43.6	284				
35	Ananthnag District, Kashmir-5	Pinus wallichiana	199	44.9	272				
36	Ananthnag District, Kashmir-6	Cedrus deodara	196	46.7	276				
37	Ananthnag District, Kashmir-7	Abies pindrow	197	51.9	294				

103

19.4

100.8

38 Ananthnag District, Kashmir-8

Betula utilis

India – Forest Biomass (t/ha)

Typical biomass densities can be obtained through literature review or through field surveys.

Taking girth measurements of trees and then using allometric equations linking girth with the Biomass. Per unit area measurements can be obtained through averaging the trees per plot.

- -Burning or combustion efficiency is the hardest and have highest uncertainties
- -Also called combustion completeness (how much of actual biomass is burnt in field)
- -Measurements before and after fire and accounting for moisture content

-Forest biomass – only 30% burnt -Ag. Residues – 70-80% burnt

Source: Dr. Somporn Chantara, Chiang Mai University

Combustion Chamber Experiment for Trace Gases

Biomass Burning Field Campaigns

Burnt Bamboo

Hill Tops

Secondary Growth

Dry Deciduous Forests

Multi-Wavelength Radiometer

Multi-Filter Rotating Shadow-Band Radiometer (MFRSR)

- - - ----

NRSC - ISRO

CO 11M

CO Analyser

PREDE Sky Radiometer

Automatic Weather Station

Portable Trace Gas Analyzers

 CO, CO_2, NOx, SO_2

SUV & UVA Meter

UV Multi-Filter Rotating Shadow Band Radiometer

Microtops II Sun Photometer

Portable Aerosol Spectrometer (GRIMM)

Jagee Scienti

Aethalometer

Quartz Crystal Micro balance (QCM) Cascade Impactor

Forest Fire Mapping and Monitoring, Evergreen Forests, Northeast India

Compound	Postland	Chanarral	Open	Open Patsari		Charcoal	Dung Burning	Garbage
Compound	reatianu	Chapanai	Cooking	Stoves	Making ^a	Burning ^b	Dung Burning	Burning
Carbon Dioxide (CO ₂)	1563 (65)	1703 (38)	1548 (125)	1610 (114)	1626 (244)	2385	859 (15)	1453 (69)
Carbon Monoxide (CO)	182 (60)	71 (13)	77 (26)	42 (19)	255 (52)	189 (36)	105 (10)	38 (19)
Methane (CH ₄)	11.8 (7.8)	2.74 (0.74)	4.86 (2.73)	2.32 (1.38)	39.6 (11.4)	5.29 (2.42)	11.0 (3.3)	3.66 (4.39)
Acetylene (C_2H_2)	0.14 (0.093)	0.20 (0.08)	0.97 (0.50)	0.28 (0.01)	0.21 (0.02)	0.42	-	0.40 (0.28)
Ethylene (C_2H_4)	1.79 (0.72)	0.81 (0.18)	1.53 (0.66)	0.46 (0.12)	3.80 (1.15)	0.44 (0.23)	1.12 (0.23)	1.26 (1.04)
Ethane $(C_2 H_6)$	_ /	0.36 (0.11)	1.50 (0.50)	_ /	12.2 (9.3)	0.41 (0.13)	_ /	_ /
Propylene (C ₃ H ₆)	2.3 (0.74)	0.41 (0.13)	0.57 (0.34)	0.03	4.12 (1.89)	_	1.89 (0.42)	1.26 (1.42)
Propane (C ₃ H ₈)	_ /	0.19 (0.09)	_ /	_	- /	-	_ /	
Butane $(C_4 H_{10})$	-	0.14 (0.07)	-	-	-	-	-	-
Isoprene (C ₅ H ₈)	1.07 (0.44)		-	-	-	-	-	-
Toluene ($C_6H_5CH_3$)	1.21 (0.69)	_	_	_	_	_	-	_
Benzene (C ₆ H ₆)	2.46 (1.21)	-	-	-	-	-	-	-
Methanol (CH ₃ OH)	5.36 (3.27)	0.91 (0.29)	2.26 (1.27)	0.39 (0.39)	54.9 (27.9)	1.01	4.14 (0.88)	0.94 (1.25)
Acetol (C ₃ H ₆ O ₂)	3.43 (0.36)	_	_		21.6 (35.3)	-	9.60 (2.38)	
Phenol (C ₆ H ₅ OH)	4.36 (5.06)	0.44 (0.08)	3.32	_	10.4 (6.6)	_	2.16 (0.36)	_
Furan (C_4H_4O)	1.51 (0.37)	0.22 (0.09)	0.40	_	3.94 (2.30)	_	0.95 (0.22)	_
Formaldehyde (HCHO)	1.69 (1.62)	0.88 (0.27)	2.08 (0.86)	0.37 (0.40)	3.62 (2.42)	0.60	_	0.62 (0.13)
Glycolaldehyde (C ₂ H ₄ O ₂)	1.22 (1.95)	0.06 (0.19)	0.66			_	-	
Acetaldehyde (CH ₃ CHO)	2.81 (1.36)	_	-	-	-	-	-	-
Carbonyl Sulfide (OCS)	1.20 (2.21)	-	-	-	-	_	-	-
Acetic Acid (CH ₃ COOH)	7.08 (3.40)	1.32 (0.45)	4.97 (3.32)	0.34	44.8 (27.3)	2.62	11.7 (5.08)	2.42 (3.32)
Formic Acid (HCOOH)	0.54 (0.71)	0.06 (0.03)	0.22 (0.17)	0.0048	0.68 (0.20)	0.063	0.46 (0.31)	0.18 (0.12)
Acetone (C ₃ H ₆ O)	1.08 (0.29)	_	_	-	_	-	_	_
Hydrogen Cyanide (HCN)	5.00 (4.93)	0.46 (0.11)	-	-	0.21 (0.17)	_	0.53 (0.30)	0.47
Methyl Ethyl Ketone (C ₄ H ₈ O)	_	_	-	-	_	-	-	-
Hydrogen Chloride (HCl)	-	0.17 (0.14)	-	-	-	-	-	3.61 (3.27)
Methyl Vinyl Ether (C ₃ H ₆ O)	0.85	_	-	-	-	-	-	_
Acetonitrile (CH ₃ CN)	3.70 (0.90)	-	-	-	-	-	-	-
Sulfur Dioxide (SO ₂)	_	0.68 (0.13)	-	-	-	-	0.06	0.5
Hydrogen (H ₂)	-	_	-	-	-	-	-	0.091
Ammonia (NH ₃)	10.8 (12.4)	1.26 (0.62)	0.87 (0.40)	0.03	1.24 (1.44)	0.79	4.75 (1.00)	0.94 (1.02)
Nitrogen Oxides (NO _x as NO)	-	3.29 (1.02)	1.42 (0.72)	-	0.22 (0.22)	1.41	0.5	3.74 (1.48)
Nitrous Oxide (N ₂ O)	-	0.25 (0.18)	_	-	_	0.24	-	-

Emission factors (g/kg) Akagi et al., 2011

Burnt Areas from Satellites

Typical Vegetation Reflectance and Burnt Areas

- In the visible region of the spectrum (400-700 nm; 1 micrometer (μm) = 1000 nanometers), Pigments dominate reflectance. Chlorophyll (a and b) selectively absorbs blue (400–500 nm) and red (600–700 nm) light for photosynthesis and absorbs less over the green wavelengths (500–600 nm) and thus the green appearance of healthy vegetation.
- the green wavelengths (500–600 nm) and thus the green appearance of healthy vegetation.
 In the near-infrared region (NIR) region (700-1400nm), the spongy mesophyll and cellular structure of the leaves dominate reflectance.
- In the shortwave infrared (SWIR) region, the water absorption dominates in the 1450nm, 1950nm, and 1250nm. The overall reflectance in SWIR is governed by internal vegetation structure and water absorption.
- Typical healthy vegetation shows very high reflectance in the NIR and low reflectance in the SWIR region.
- Burnt areas: A decrease in NIR and an increase in SWIR; such differences can be used to distinguish burnt areas from the healthy vegetation.

Burnt Area Signal

Burned areas are characterized by: Removal of vegetation, alteration of vegetation structure and deposits of charcoal and ash, and alteration of the vegetation structure (Pereira et al.,1997, Roy et al., 1999).

The MODIS burned area mapping algorithm takes advantage of these spectral, temporal, and structural changes.

The algorithm detects the approximate date of burning at a spatial resolution of 500 m by locating the occurrence of rapid changes in daily surface reflectance time series data.

Also, Burnt Vegetation Indices such as Normalized Burnt Ratio = NIR-SWIR / NIR+SWIR

-High NBR = Healthy Vegetation -Low NBR = bare ground and recently burnt areas

Status of MODIS Burned Area Product

MODIS Burned Area Products

Collection 6: (released 2017) •MCD64A1: Monthly L3 500 m SIN Grid •MCD64CMH: Monthly CMG

Status and Updates:

- Widely used mature product
- Stage-3 validation complete

Known Issues:

• None

Recent Publications:

- Yu et al., 2020, Quantifying the drivers and predictability of se changes in African fire. Nature Communications, 11:2893.
- Humber, M., Boschetti, L., and Giglio, L., 2019, Assessing the saccuracy of coarse resolution burned area identifications. *IEE Transactions on Geoscience and Remote Sensing*, 58:1-11.

https://modis-fire.umd.edu/

MODIS ACTIVE FIRE AND BURNED AREA PRODUCTS

Home Active Fire Products Burned Area Products User's Guides Publications About Us Links

Burned Area Products

Burned areas are characterized by deposits of charcoal and ash, removal of vegetation, and alteration of the vegetation structure (Pereira et al., 1997, Roy et al., 1999). The MODIS burned area mapping algorithm takes advantage of these spectral, temporal, and structural changes. It detects the approximate date of burning at a spatial resolution of 500 m by locating the occurrence of rapid changes in daily surface reflectance time series data. The algorithm maps the spatial extent of recent fires and not of fires that occurred in previous seasons or years.

The latest version (Collection 6) of the MODIS Global Burned Area Product was released in 2017. The new product (MCD64A1) supersedes the heritage Collection 5.1 (C5.1) MCD64A1 and MCD45A1 products whose use is deprecated. The new algorithm is designed to be extremely tolerant of cloud and aerosol contamination, which affected the Collection 5.1 MCD45A1 product. As a consequence, the Collection 6 MCD64A1 product has significantly better detection of small burns, a modest reduction in burn-date temporal uncertainty, and a large reduction in the extent of unmapped areas compared to the C5.1 products.

Please see the MODIS Burned Area Product <u>User's Guide</u> for detailed information about the MODIS burned area product suite. The entire product archive is available in a variety of formats (HDF, GeoTIFF, Shapefile). Instructions for downloading the data may be found in Section 4 of the User's Guide.

MODIS Burned Area Product 500m Latest collection: MCD64A1

The hybrid algorithm applies dynamic thresholds to composite imagery generated from a burn-sensitive vegetation index (VI) derived from MODIS short-wave infrared channels 5 and 7, and a measure of temporal texture. Active fires are used to guide the selection of burned and unburned training samples and to guide the specification of prior probabilities. Regional thresholds.

Roy et al. 2002

September 2017 MCD64A1 global burned area map. Rainbow color spectrum encodes the day of burn during the calendar month. Unburned land is shown in black. Unmapped areas are shown in white.

Burnt Areas - HDF, GeoTIFF, Shape Files

https://modis-fire.umd.edu/

Validation of 500-m Burned Area Maps

Validation using high-resolution burn scar maps manually produced from Landsat imagery.

~40 Landsat scene pairs

Giglio et al. (2009)

Validation is important as complexities can arise due to different burnt area signal variations

To first order the change in reflectance due to burning is dependent on the fraction of area burned *f* and combustion completeness *cc*

European Space Agency, Current Fire BA CCI Products – PI: Emilio Chuvieco (www.esa-fire-cci.org)

- MERIS FireCCI41: 2005-2011, 300 m.
- MODIS FireCCI50: 2001-2016, 250 m.
- MODIS FireCCI51: 2001-2017, 250 m
- AVHRR FireCCILT10: 1982-2017, 5 km.
- MSI FireCCISFD11: 2016, 20m (Africa).
- SAR FireCCIS1: 2016, 40m (Africa, Indonesia, SAmerica).

	1982 1983 1984	1985 1986	1987 19	988 1989	1990 199	1 1992 19	93 1994	1995	1996 19	97 1998	1999	2000 20	01 2002	2003	2004	2005 2	006 2007	2008	2009 2	010 201	1 2012	2013	2014 20)15 201	.6 2017
MERIS FireCCI31																									
MERIS FireCCI41																									
MODIS FireCCI50																									
MODIS FireCCI51																									
AVHRR FireCCILT10																									

		Pixel	Grid	Release
	MERIS FireCCI31	37	51	Oct. 2014
Product	MERIS FireCCI41	168	161	Jul. 2016
Downloads	MODIS FireCCI50	156	127	Feb. 2018
	MODIS FireCCI51	198	103	Nov. 2018
	AVHRR FireCCILT10	-	37	March 2019
	S2 FireCCISFD11	64	26	Nov. 2018
	Total	623	505	1128

Global Fires Emissions Database (GFED)

https://www.globalfiredata.org/

•Burned area from MODIS burnt areas <u>Giglio et al. (2013)</u>

•Burned area from "small" fires based on active fire detections outside the burned area maps detailed in <u>Randerson et al.</u> (2012) and updates in <u>van der Werf et al.</u> (2017)

•Carbon and dry matter emissions from <u>van der Werf et al. (2017)</u> – NASA CASA Model

•Fractional contributions of various fire types to total emissions

•List of emission factors to compute trace gas and aerosol emissions based on <u>Akagi</u> <u>et al. (2011)</u> as well as <u>Andreae and Merlet</u> (2001) with updates provided in 2013 by M.O. Andreae

오 o 片 💿 **6** 🔚 🦛 🚾 Ø

5:21 PM 5/31/2021 ~ () db

Active Fire Products and Emissions

https://worldview.earthdata.nasa.gov/

Justice, 2021

Plume length > 200 km

Australia, 4 Dec. 2002

Justice, 2021

NASA EOS Moderate Resolution Imaging Spectroradiometer

- MODIS Data Record 2000 present
 - Terra 10:30 & 22:30 local overpass
 - Aqua 01:30 & 13:30 local overpass
- 36 spectral bands covering 0.4 to 14.4 micrometers
 - Dedicated 1 km Fire bands (sub-pixel fire detection)
 - Channel 21: 3.96 µm, ≈ 500 K saturation (high range)
 - Channel 22: 3.96 µm, ≈ 330 K saturation (low range)
 - Channel 31: 11.0 µm, ≈ 400 K saturation (Cloud masking)
- Active fire Algorithm
 - Look for elevated signal at 4 μm ; use 11 μm channel to help exclude warm, non-fire surfaces
 - Adaptive thresholds based on local statistics so algorithm can be applied globally
 - Use additional channels to help reject false alarms
 - Small convective clouds, sun glint, land cover/vegetation boundaries, coastline, desert and other hot/reflective surfaces, urban areas

The basis for satellite active fire detection

Weins displacement Law

As temperature increases, the peak in the blackbody spectrum shifts progressively to shorter wavelengths (high frequencies).

Suggested reading: Giglio et al. 2008. Remote Sensing of the Environment, 112, 3055-3063

300K – typical land surface 600K – typical smoldering 1000K – typical flaming

Justice, 2021

Factors Affecting Detection

- Fire size
- Fire temperature
- Biome
- Season
- Surface
 temperature
- Cloudiness
- Types of clouds

- Position of sun
- Viewing geometry
- Characteristics of smoke
- Instrument issues
- Other

Interannual variability: April-May

https://firms.modaps.eosdis.nasa.gov/

Seasonal Variability (2005)

Status of MODIS Active Fire Product

MODIS Active Fire Products

Collection 6: (released 2015)

• MOD14/MYD14: Terra/Aqua L2 Swath • MOD14A1/MYD14A1: L3 Daily 500-m SIN Grid • MOD14A2/MYD14A2: L3 8-day 500 m SIN Grid MCD14ML: Monthly fire locations

Status and Updates:

- Widely used mature product
- Stage-2 validated

Known Issues:

None

Recent Publications:

- Vadrevu, K. P., Lasko, K., Giglio, L., Schroeder, W., Biswas, S., and Justice, C. O., 2019, Trends in vegetation fires in south and southeast Asian countries. Scientific Reports, 9:7422, 1-13.
- Pereira, J. M. C., et a., 2019, Anthromes displaying evidence of weekly cycles in active fire data cover 70% of the global land surface, Scientific Reports, 9:11424.

Anthromes displaying evidence of weekly cycles in active fire data cover 70% of the global land surface

J. M. C. Pereira¹, M. A. Amaral Turkman², K. F. Turkman² & D. Oom¹

Figure 2. Weekday with the fewest fire counts, 2002–2012.

Fire Information for Resource Management System (FIRMS)

FIRMS provides global NRT active fire/thermal anomaly data from MODIS and VIIRS.

Originally developed at the University of Maryland in partnership with the United Nations (UN) Food and Agriculture Organization (FAO), in 2012 FIRMS became part of LANCE

Users can:

- view data and imagery in FIRMS Fire Map
- receive email Fire Alerts
- download data in easy to use formats

Approximately 240,000 FIRMS alerts (including daily, rapid and weekly alerts) are sent to users in more than 160 countries.

Left: FIRMS Fire Map showing active fires in New South Wales, Australia. The fires, overlaid in red, are on a corrected reflectance true color image from VIIRS SNPP from 11/13/19

https://earthdata.nasa.gov/earth-observation-data/near-real-time/firms

VIIRS Heritage: MODIS and AVHRR

	VIIRS		MODIS Equivalent			A	VHRR-3 Equiva	lent	OLS Equivalent			
Band	Range (um)	HSR (m)	Band	Range	HSR	Band	Range	HSR	Band	Range	HSR	
DNB	0.500 - 0.900								HRD PMT	0.580 - 0.910 0.510 - 0.860	550 2700	
M1	0.402 - 0.422	750	8	0.405 - 0.420	1000							
M2	0.436 - 0.454	750	9	0.438 - 0.448	1000							
M3	0 478 - 0 498	750	3	0.459 - 0.479	500							
IVIS	0.478 - 0.498	750	10	0.483 - 0.493	1000							
M4	0 545 - 0 565	750	4	0.545 - 0.565	500							
	0.040 - 0.000	100	12	0.546 - 0.556	1000							
l1	0.600 - 0.680	375	1	0.620 - 0.670	250	1	0.572 - 0.703	1100				
M5	0 662 - 0 682	750	13	0.662 - 0.672	1000	1	0 572 - 0 703	1100	Π			
			14	0.673 - 0.683	1000							
<u>M6</u>	0.739 - 0.754	750	15	0.743 - 0.753	1000							
12	0.846 - 0.885	375	2	0.841 - 0.876	250	2	0.720 - 1.000	1100				
M7	0.846 - 0.885	750	16	0.862 - 0.877	1000	2	0.720 - 1.000	1100				
M8	1.230 - 1.250	750	5	SAME	500							
M9	1.371 - 1.386	750	26	1.360 - 1.390	1000							
13	1.580 - 1.640	375	6	1.628 - 1.652	500							
M10	1.580 - 1.640	750	6	1.628 - 1.652	500	3a	SAME	1100				
M11	2.225 - 2.275	750	7	2.105 - 2.155	500							
14	3.550 - 3.930	375	20	3.660 - 3.840	1000	3b	SAME	1100				
M12	3 660 - 3 840	750	20	SAME	1000	3b	3.550 - 3.930	1100				
			21	3.929 - 3.989	1000							
M13	3.973 - 4.128	750	22	3.929 - 3.989	1000							
			23	4.020 - 4.080	1000							
M14	8400-8700	/50	29	SAIVIE	1000							
M15	10.263 - 11.263	750	31	10.780 - 11.280	1000	4	10.300 - 11.300	1100				
			31	10.780 - 11.280	1000	4	10.300 - 11.300	1100				
15	10.500 - 12.400	375	32	11.770 - 12.270	1000	5	11.500 - 12.500	1100	HRD	10.300 - 12.900	550	
M16	11.538 - 12.488	750	32	11.770 - 12.270	1000	5	11.500 - 12.500	1100				

Small Fire Validation VIIRS 375 m nighttime example in Rio de Janeiro/Brazil

Subset of VIIRS L1B data o8 July 2013 4:23 UTC (1:23am local) Coinciding with <u>bonfire</u> <u>2.5 m</u> diameter experimental bonfire

Single pixel detection Pixel fraction containing active fire: 0.004%

Schroeder

MODIS 1 km × VIIRS 750 m × VIIRS 375 m Fire Data Intercomparison

Taim Ecological Reserve, Southern Brazil (March 2013)

Small Fire Validation Landsat-8 and VIIRS 375 m example in Cachoeira Paulista/Brazil

Active Fire Validation

- Use of Landsat-class data to validate VIIRS is not an option due to prohibitively large time separation between same-day acquisitions
- Use of prescribed fires (easy/accessible)
- Coincident ground, airborne, spaceborne data acquisitions
- Community-organized (reduce spending, maximize output)

Data Validation

Experimenting new/inexpensive ways of collecting reference data in support of algorithm validation

- Use of relatively low-cost drones
- Use of relatively low-cost instrumentation

Hexacopter + FLIR camera (\$\$)

Dual-band radiometer (\$)

Global Geostationary Network using Fire Thermal Anamoly Algorithm – In process (PI: Martin Wooster, Kings College London)

• 2km spatial resolution

•Data every 10 to 15 mins

- Processed using single algorithm with some adaptations to each sensor.
- NRT delivery
- Fully operational specifications
- (24/7 service, 95% data availability)

45

Active Fire Products

Instrument	Spatial resolution of	Geographic coverage	Satellite Orbit	Satellite / Agency	
	active fire data				
MODIS	1 km	Global	LEO	Terra, Aqua/ NASA	
		75.2 ° W: North and	Geostationary	GOES-E and -W /NOAA	
		South America			
<u>GOES</u> ABI	2 km	135 ° W:			
		Pacific Ocean, Hawaii,			
		North and South			
		America			
Himawari	2 km	140.7 ° E: East Asia,	Geostationary	Advanced Himawari Imager	(AHI), JAXA and
AHI		Australia, Pacific Ocean		ЈМА	
GCOM-C	<u>500 m</u>	<u>Global</u>	<u>LEO</u>	Second-generation GLobal	Imager (SGLI) JAXA
<u>SGLI</u>					
Meteosat	3 km	0 °: Europe, Africa, 41.5	Geostationary	Eumetsat	
SEVIRI		E			
VIIRS	375 m, 750 m	Global	LEO	S-NPP, JPSS1/NOAA 20 NA	SA/NOAA 20
NOAA	1 km	Global	LEO	POES / NOAA	
AVHRR				METOP / Eumetsat	
(A)ATSR	1 km	Global (but only	LEO	ERS-2* and ENVISAT	
		nighttime AF product)			
SLSTR	1 km	Global	LEO	Sentinel-3/ Eumetsat and	
				ESA	
Bird	350 m	Global (but on demand	LEO	Firebird Constellation /	
		products)		DLR	

Source: Wooster et al., (RSE, In Preparation)

Emissions Quantification

Average fuel loads, Biogeochemical models, Satellite derived estimates of Net Primary Production, empirical relations for fuel types allocation

Average values, Field based parameterizations based on fuel types and fuel moisture Average values, Field based parameterizations based on fuel types and fuel moisture

A). Can we minimize uncertainties relating to fuel loads and combustion completeness?

B). Can we do real-time or near-real time emissions instead of using burned area estimates?

Fire Radiative Power Products and Emissions

Fire Radiative Power (FRP) Products and Emissions

- Fire Radiative Power (FRP) is the rate of fire energy released per unit time, measured in megawatts [Wooster et al., (2003; 2005).
 Derived from the mid-infrared channel.
- Fire radiative energy (FRE) is therefore, FRP integrated over time and space with units in mega joules.
- FRP measurements have been previously related to the amount of biomass burnt (Wooster et al., 2003) the strength of fires (Wooster et al., 2004) and *aerosol emissions (Ichoku and Kauffman, 2005;* Vermote et al., 2009; Pereira et al., 2009; Ichoku et al., 2014; Vadrevu et al., 2012; 2018; Wooster et al., 2019, 2020)
- The FRE based emission coefficients for quantifying the gas and aerosol emissions from biomass burning have been developed by (Wooster et al., 2003) from field experiments and by (Freeborn et al., 2008) from laboratory measurements.
- Mass of smoke aerosol released from biomass burning can be linearly related to FRE. Coefficients to multiply with FRE to get Smoke emissions.

Emitted Fire Radiative Power Related to biomass combusted and trace gas emissions

Fire radiative power from MODIS active fires (2000-2005)

Giglio et al., 2006, JGR

Sentinel-3 SLSTR Active Fire & FRP Product

- Two satellites now in orbit Sentinel-3A and Sentinel-3B
- Product Processor Completed for ESA Similar to Terra MODIS Overpass Time

Southern Angola

S7 (3.7 $\mu m)$ – S8 (10.8 $\mu m)$ BT Difference

Martin Wooster | martin.wooster@kcl.ac.uk

King's College London

Relevant Bands S6 - 2.25 μm S7 - 3.7 μm S8 - 10.8 μm

F1 - 3.7 μm but low gain

Meteosat FRP-PIXEL Product Produced at EUMETSAT LSA SAF – OPERATIONAL NOW

Outside Region Not Processed Pixel Bad Data Water Body Water Body Edge PFP Failed by Background Test Invalid Background Window Warm Surface Sunglint Cloud Saturated Fire Pixel Detected Fire Pixel Not Potential Fire Pixel (PFP)

Available at the EUMETSAT LSA SAF (https://landsaf.ipma.pt/en/products/fire-products/frppixel/

Martin Wooster College London martin.wooster@kcl.ac.uk

King's

Fire Energetics and Emissions Research (FEER product) PI: Charles Ichoku

FRP based Global smoke Emissions (Both MODIS and VIIRS Products)

Emission Coefficients linking FRP and Smoke Emissions Ichoku and Ellison, 2014. Atmos. Chem. Phys., 14, 6643–6667.

Figure 7. (a) The coefficient of emission (C_e) product based on MODIS 2003–2010 FRP and AOT observations from Terra and Aqua, after applying the 11 300 filter setting (Table 2) and outlier removal processing steps described in Sects. 4.3 and 4.4., respectively, and (b) the corresponding coefficient of determination (r^2) map.

Other Emission Products

- FINN Wiedinmyer et al., 2011 <u>https://www2.acom.ucar.edu/modeling/finn-fire-inventory-ncar</u>
- FLAMBE (ARCTAS) *Reid et al., 2009*
- GBBEPx_v2 Zhang et al., 2012 http://www.ospo.noaa.gov/Products/land/gbbepx/
- GFAS_v1.2 *Kaiser et al., 2017* <u>https://www.ecmwf.int/en/forecasts/dataset/global-fire-assimilation-system</u>
- IS4Fires_v2.0 Sofiev et al., 2009; http://is4fires.fmi.fi
- QFED_2.5 Darmenov and Da Silva, 2015

http://wiki.seas.harvard.edu/geos-chem/index.php/QFED_biomass_burning_emissions

Program Focus

- Coordination of Spaceborne and In-Situ Measurements of Land cover change and Fire
- Derived Data and Information Products
- Data Availability and Access
- Assistance for Improved Data Utilization through Regional Science Networks (with the START Program)
- Communication between Science and Decision Makers
- Coordination with other programs e.g. UN REDD+, GCOS ECVs, CEOS LPV, GEOGFOI, GEOGLAM, etc.

An international forum for coordination concerning Earth Observations

GOFC-GOLD Structure

GOFC-GOLD Regional Networks

Currently active GOFC-GOLD regional networks. 1.Southeast Asia Regional Research and Information Network (SEARRIN); 2. South Asia Regional Information Network (SARIN); 3. South Central European Regional International Network (SCERIN); 4. Red Latinoamerica de Teledeteccion e Incendios Forestales (RedLaTIF); 5. West African Regional Network (WARN); 6. Observatoire Satellital des Forets d'Afrique Central (OSFAC); 7. Miombo Network (MIOMBO); 8. Southern Africa Fire Network (SAFNET); 9.Caucasus Regional Information Network (CaucRIN); 10.Mekong Regional Information Network (MekRIN); 11. Mediterranean Regional Network (MedRIN); 12. Central Asia Regional Information Network (CARIN)

https://gofcgold.org

• Thank you for your attention