

INTRODUCTION TO SAR REMOTE SENSING

Thuy Le Toan

10 May 2021

ESA UNCLASSIFIED – For ESA Official Use Only

→ THE EUROPEAN SPACE AGENCY

Thuy Le Toan, Radar Polarimetry Courses 2021

Contents

- **1. Introduction to SAR remote sensing**
- 2. Statistical properties of SAR images
- 3. Physical content of SAR data
- 4. Application to agriculture
- 4. Application to forests –Biomass estimation

__ II ▶ :: ━ + II ━ ≝ __ II II __ := : :: ∞ II __ := := !* ∞

*

→ THE EUROPEAN SPACE AGENCY

SAR: all-weather observing system

Forest loss in Cameroon Sentinel-2

2016-05-19

Sentinel-1

→ THE EUROPEAN SPACE AGENCY

Marginal atmospheric effects

Very low attenuation by atmospheric constituents for $\lambda > \sim 5$ cm

Principle of imaging radar

Side Looking Radar

Linear displacement of the antenna along

The range information comes from the time needed by the pulse to travel way and back

Why side looking ?

Antenna scattering

Synthetic aperture technique

An array of antennas is equivalent to a single antenna moving along the flight line L_S if the received signals are coherently recorded and added, and the target assumed to be static during the period

The echoes from $X_1, X_2, ...X_n$ are recorded coherently (amplitude and phase as a function of time)

Azimuth resolution

$$Ra = \frac{\lambda R}{L_{S}}$$

The SAR image

What does the SAR measure ?

- 1. Amplitude which depends on the target properties (dielectric and geometric properties)
- 2. **Phase** which is function of the sensor-target distance and target properties

SAR measurement modes-BIOMASS

→ THE EUROPEAN SPACE AGENCY

Polarimetric Interferometry (PolinSAR)

Tree height inversion

→ THE EUROPEAN SPACE AGENCY

Accurate range measurement

Radar Interferometry

Relief

Etna

Digital elevation models

Cartography of terrain displacements

cnes

Radar Interferometry

ERS intensity image

ERS Interferometry Mesa, USA/ Mexico border

• Impact of a geothermal plant on the environment. Interferogram processed from two ERS images, acquired at two years interval. The fringes characterize the ground subsidence around the plant. One observe a subsidence of about 6 cm (2 fringes) which covers 17km x 8km.

rnes

→ THE EUROPEAN SPACE AGENCY

Principal available SAR data

Satellite	Life- time	Frequen- cy	Polarisation	Resolution	Frame	Repeat cycle	Access
TerraSAR-X TanDEM-X	2007- 2010-	X-band λ= 3.5cm	Single HH,VV Dual: HH/VV,HH/HV VV/VH	Spotlight: <1m,1.7x3.5m Stripmap: 3x3m ScanSAR:18x40m	Spotlight:3x10km Stripmap:50x30km ScanSAR:150x100, 200x200km	11days	Restrained Scientific, Commercial
COSMO- Skymed	2007-	X-band λ= 3.5cm	Single: HH, VV, HV,VH Dual	Spotlight < 1m Stripmap: 3x15m ScanSAR:30x100m	Spotlight:10x10km Stripmap:40x40km ScanSAR:100x100, 200x200km	Sat: 16 d Constellatio n: hrs	Commercial Limited scientific.
Radarsat-2	2007-	C-band λ= 5.6cm	Single: HH, VV, HV,VH Dual: HH/HV,VV/VH Quad	Spotlight : 1.5m Stripmap: 3x3m 25x25m ScanSAR:35x35m 100x100 m	Spotlight:18x8km Stripmap: 20x170km ScanSAR:300x300, 500x500km	24 days	Commercial
ALOS-2 PALSAR-2	2014-	L-band λ= 24.6cm	Single: HH, VV, HV,VH Dual: HH/HV,VV/VH Quad	Spotlight : 1x3m Stripmap: 3x10m ScanSAR:25x100m	Spotlight:25x25km Stripmap:50x70km 70x70km ScanSAR: 355x355km	14days	Commercial Limited proposal-based Scientific.
Sentinel-1	2014-	C-band λ= 5.6cm	Single: HH, VV Dual: HH/HV,VV/VH	Stripmap: 5x5m Interferometric Wide Swath (IW): 5x20m Extra Wide Swath (EW): 20x40m	Stripmap: 375km IW:250 km EW:400 km	12days S1 &S2: 6 days	Free & Open Access

*

→ THE EUROPEAN SPACE AGENCY

Principal SAR missions

→ THE EUROPEAN SPACE AGENCY

Radar frequency bands

→ THE EUROPEAN SPACE AGENCY

Frequency band	Wavelength (cm)	Frequency (GHz)
Ка	0.8-1.1	40 - 26.5
К	1.1-1.7	26.5 - 18
Ku	1.7-2.4	18 - 12.5
X	2.4-3.8	12.5 -8
С	3.8-7.5	8 - 4
S	7.5-15	4 - 2
L	15 -30	2 - 1
Р	30 -100	1 - 0.3

$$f(GHz) \xrightarrow{0.1 \quad 1 \quad 10 \quad 100} \lambda(cm) \qquad f(in \text{ Hertz})=C/\lambda$$

$$f(GHz) \xrightarrow{Ku \ Ka \ X \ C \quad S \ L \ P} \delta(cm) \qquad C=3.10^8 \text{ m}$$

$$\lambda = wavelength in \text{ m}_2$$

Polarisation

· = ⅠⅠ ▶ :: = + ⅠⅠ = ≝ = ⅠⅠ ⅠⅠ = = :: + ● ⅠⅠ = = :: + ● ₩ : = := :

Polarisation

💶 📕 🛌 🚦 🚥 🕂 📲 🔚 📰 🔚 🔜 📲 🔜 📲 🛶 🔯 📲 💶 🚼 🖬 🔤 🍁 🔹 🔶

Polarisation

The radar scattering

Thuy Le Toan, CESBIO, Toulouse, France

Basic measurement

The basic measurement made by a SAR is called S (amplitude and phase). This is the complex image.

Main types of images:

A is the amplitude image. $I = A^2$ is the intensity image. (the phase of a single image is not exploitable)

→ THE EUROPEAN SPACE AGENCY

The radar cross section

The radar cross-section (RCS) is defined as

$$\sigma_{pq} = 4\pi \left| S_{pq} \right|^2 = 4\pi R^2 \frac{P_s}{P_i} \qquad [\text{m}^2]$$

R is the radar-target distance P_i is the incident power, P_s is the power scattered by the target.

For distributed targets each resolution cell contains many scatterers and the phase varies rapidly with position.

The differential backscattering coefficient, σ° , is

$$\sigma^{o} = \frac{4\pi R^{2}}{\Delta A} \frac{P_{s}}{P_{i}} \qquad [m^{2}/m^{2}]$$

where ΔA is the area of the illuminated surface over which the phase can be considered constant.

Slant and ground range

Slant range

Ground range

Source: CCRS tutorials

Contents

- **1. Introduction to SAR remote sensing**
- 2. Statistical properties of SAR images
- 3. Physical content of SAR data
- 4. Application to agriculture
- 4. Application to forests –Biomass estimation

What is a SAR image?

Thuy Le Toan, CESBIO, Toulouse, France

The image is seen as a **picture**.

Pixels are numbers.

Image is affected by **speckle** noise

Example of an intensity image APP HH image 400 x 400 pixels (of 12.5m) Gaoyou, Jiangsu province, China, 2004 05 24

EUROPEAN SPACE AGENCY

Thuy Le Toan, CESBIO, Toulouse, France

Same image, after speckle filtering

HH (magenta) and VV (green) images 400 x400 pixels Gaoyou, Jiangsu province, 2004 09 06

Thuy Le Toan, CESBIO, Toulouse, France

Origin of speckle noise

Speckle noise must be reduced.

Before speckle filtering

After speckle filtering

...to start analysing SAR images content

Statistics of speckle

Probability density distribution of speckle:

- Intensity image: Gamma distribution
- Amplitude image: Rayleigh distribution

$$\operatorname{var}(I) = \frac{\sigma^2}{L}$$

The gamma distribution

Multilooking reduces the effect of speckle. The distribution tends to normality as L increases.

 $\operatorname{var}(I) = \frac{\sigma^2}{L}$

Speckle filtering reduces variance and preserves radiometry

Non filtered – 4 looks

· e esa

Speckle filtering

$I = \sigma.V$ I: measured intensity σ : scene reflectivity (what we want to measure) v: speckle noise L: number of looks $\overline{I} = \sigma$ $var(I) = \frac{\sigma^2}{L}$

Speckle filtering consists in assessing σ from I by reducing the variance of I (and therefore increasing the Equivalent Number of Looks).

- **1. Frequency filtering**: spectral filtering during SAR processing (production of multi-look images)
- 2. Spatial filtering: local estimations using moving kernels Filters of Lee, Kuan, Frost, MAP widely available
- **3. Multi channel filtering**: applied on multiple images of the same scene Multi polarisation, multi temporal, and multi frequency

Multi-image intensity filtering (temporal and polarisation)

Purpose of filter:

(1) Preserve radiometry \Rightarrow unbiased

$$\langle I_k(x,y)\rangle = \langle J_k(x,y)\rangle \quad 1 \leq k \leq M$$

(2) Minimise the variance of J_{k}

✦ THE EUROPEAN SPACE AGENCY

esa

.0

Contents

- **1. Introduction to SAR remote sensing**
- 2. Statistical properties of SAR images
- 3. Physical content of SAR data
- 4. Application to agriculture
- 4. Application to forests –Biomass estimation

Scattering Mechanisms

The backscattered signal results from:

- surface scattering
- volume scattering
- multiple volume-surface scattering

The relative importance of these contributions depends on geometric and dielectric properties of the medium (surface and volume)

[,] Le Toan, CESBIO, Toulouse, France

- All of these factors depend on
 - the radar frequency
 - the polarisation
 - the incidence angle

E EUROPEAN SPACE AGENO

Scattering mechanisms

EUROPEAN SPACE AGENCY

esa

Es

Interactions between radar wave and vegetation cover

scatterers size scat

scatterers density

scatterers orientation

soil roughness

Dielectric properties

scatterers water content

46

Surface scattering

Contents

- **1. Introduction to SAR remote sensing**
- 2. Statistical properties of SAR images
- 3. Physical content of SAR data
- 4. Application to agriculture
- **5.** Application to forests –Biomass estimation

Scattering from soil surface

Radar backscatter depends on the dielectric and geometry of the target, and on the frequency, polarisation and incidence angle of the wave e.g. Small Perturbation Method for surface scattering

$$\sigma_{pp}^{0} = 4(ks)^{2} (kl)^{2} \cos^{4} \theta \left| \alpha_{pp} \right|^{2} \left[1 + 2(kl\sin\theta)^{2} \right]^{-3/2}$$

$$\sigma_{hv}^{0}(\theta) = 0$$

Here

θ

k = $2\pi / \lambda$ (Wave number)

- = incidence angle
- *s* = surface RMS height
 - = surface autocorrelation length

$$\alpha_{hh} = \frac{\cos\theta - \sqrt{\epsilon - \sin^2\theta}}{\cos\theta + \sqrt{\epsilon - \sin^2\theta}} \qquad \qquad \alpha_{vv} = (\epsilon - 1) \frac{\sin^2\theta - \epsilon (1 + \sin^2\theta)}{(\epsilon \cos\theta + \sqrt{\epsilon - \sin^2\theta})}$$

 ϵ = dielectric constant

 σ^0 is the backscattering coefficient

Agricultural surface roughness statistics

Tillage	Rms	Rms	Corr. Length	Corr. Length	-
	(mean)	(std)	(mean)	(std.)	
Seedbed	0.6	0.3	3.7	2.6	
Harrowed	1.6	0.7	3.8	2.9	
Ploughed	2.7	1.0	6.9	2.7	

RMS heights s and correlation length | (mean and std in cm)

· e e sa

Soil dielectric constant

Dielectric constant as a function of soil volumetric water content

Sensitivity to soil moisture and surface roughness

Simultaneous effect of roughness and moisture on the radar signal

Our first ERS experiment in 1992 on irrigated area in Gharb, Morocco

We mapped irrigated fields, but to retrieve soil moisture was found hard with a single ERS data!

Polarisation in surface scattering

54

Thuy Le Toan, CESBIO, Toulouse, France

SBIO E EUROPEAN SPACE AGENCY

Interactions mechanisms of a vegetation cover

Attenuated surface scattering

$$\sigma^{0} = \sigma^{0}_{soil} + \sigma^{0}_{veg.} + \sigma^{0}_{soil-veg.}$$

Volume scattering

Thuy Le Toan, CESBIO, Toulouse, France

56

CESBIO E EUROPEAN SPACE AGENCY

Single and multiple scattering

Polarisation in volume scattering

57

Thuy Le Toan, CESBIO, Toulouse, France

→ THE EUROPEAN SPACE AGENCY

Optical image Sentinel-2

Contents lists available at ScienceDirect Remote Sensing of Environment

journal homepage: www.elsevier.com/locate/rse

Understanding the temporal behavior of crops using Sentinel-1 and Sentinel-2-like data for agricultural applications

Amanda Veloso *.¹, Stéphane Mermoz, Alexandre Bouvet, Thuy Le Toan, Milena Planells, Jean-François Dejoux, Eric Ceschia (CESRIO, Université de Toulouse, CNES/CNRS/IRD/UPS, Toulouse, France

> Radar image Sentinel-1

-

*

CESBIO EUROPEAN SPACE AGENCY

Contents

- **1. Introduction to SAR remote sensing**
- 2. Statistical properties of SAR images
- 3. Physical content of SAR data
- 4. Application to agriculture
- 5. Application to forests –Biomass estimation

How do the radars see the trees ?

Interaction mechanisms in a forest

Scatterers contribution

Leaves, Needles

Primary Branches

Secondary branches

Higher order branches

Trunk

Direct Crown scattering
 Direct trunk-ground
 Trunk scattering

4) Multiple trunk-ground

5) Attenuated ground

6) Direct ground scattering

Interactions mechanisms in a forest – C-band

Leaves, Needles

1) Direct Crown scattering

5) Attenuated ground6) Direct ground scattering

Scattering mechanisms simulated by a R.T. model

→ THE EUROPEAN SPACE AGENCY

Change in dominant mechanism

Varzea Dry

SAR image (L-HH)

Varzea Wet Seasor

Forest structure- Boreal vs Tropical rain forest

THE EUROPEAN SPACE AGENCY

Dielectric constant of wood material

Fig. 1 ε' (a) and ε'' (b) versus gravimetric moisture content for spruce, pine and beech for E_{field} parallel to fiber direction and frequency of 1.26 GHz

Francois Demontoux, Wood Sci Technol, DOI 10.1007/s00226-017-0935-4, 2017

Fig. 2 ε' (a) and ε'' (b) versus gravimetric moisture content for spruce, pine and beech for E_{field} perpendicular to fiber direction and frequency of 1.26 GHz. Linear behavior of permittivity versus MCg is indicated by *straight lines* which are shown before (*plain*) and after (*dashed*) the fiber saturation point for beech data, indicating changes of slopes for ε' (a) and ε'' (b)

Dielectric constant of living wood

Fig. 7. Plots of VPD, Re(e_x), and Im(e_x) at four heights in the trunk of Tree A for DOY 192 and DOY 193. VPD is plotted with the zero reference placed at the top of the graph. No rain occurred during this period. Significant rainfall had last occurred on DOY 185. Dielectric constant was monitored at P band. VPD (mbar/bar) is the measured vapor pressure deficit (in mbar) normalized to standard atmospheric conditions at sea level (1015 mbar) (1 mbar/bar is equivalent to 1 Pa/kPa) [23].

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 40, NO. 9, SEPTEMBER 20022063

Diurnal and Spatial Variation of Xylem DielectricConstant in Norway Spruce (Picea abies[L.] Karst.)as Related to Microclimate, Xylem Sap Flow, andXylem Chemistry, Kyle C. McDonald,, Reiner Zimmermann, and John S. Kimball

The TropiSCAT campaign

510

→ THE E

A ground-based radar observing a tropical forest

- Located in French Guyana same site as TropiSAR
- Team members from ONERA, CNES, CESBIO, POLIMI
- 20 antennas installed on top of the Guyaflux tower (55 m)
- Fully polarimetric (HH, HV, VH and VV)
- Vertical resolution capabilities
- One image every 15 minutes over a time span of one year

⇒Access to the vertical structure of temporal decorrelation

Diurnal variation of Radar center of mass

TropiScat 'centre of mass'

The center of mass is going down, from 7am , with minimum at 13-15 pm and up again to original height at 22-23 h The amplitude is about 1.5 m inside the forest.

Average of 10 dry days (without rain) during the period from 8 to 31 December 2011

Diurnal cycle of radar intensity

BIC

Tour Guyaflux Equipe Guyafor

74

Borealscat at Remningstorp, Sweden

Research infrastructure:

- A 50-m high radar tower in a hemi-boreal forest site in southern Sweden.
- Acquires tomographic P/L/C-band radar data
- On-site weather station and moisture sensors: dendrometers, sap flow, and soil moisture
- More details at <u>www.borealscat.se</u>

Mature spruce stand

L. Ulander, A. Monteilh, 2020

Antenna

arrays

Backscatter variability caused by freeze/thaw in boreal forest

190

Backscatter Jun 2017- Jun 2019: Canopy, Ground and Full forest HHJul 2017 Oct 2017 Jan 2018 Apr 2018 Jul 2018 Oct 2018 Jan 2018 Apr 2019 VV backscatter Jul 2018 Jul 2017 Oct 2017 Jan 2018 Apr 2018 Oct 2018 Jan 2019 Apr 2019 VH backscatter Jul 2017 Oct 2017 Jan 2018 Apr 2018 Jul 2018 Oct 2018 Jan 2019 Apr 2019 Oct 2017 Jul 2018 Jan 2019 Apr 2019 Jul 2017 Jan 2018 Apr 2018 Oct 2018

ander. IL

Monthly range of canopy backscatter

Backscatter varies 2-4 dB during summer, whereas much larger variability during winter (freeze/thaw).

L. Ulander, A. Monteilh, 2020

Biomass is an ECV (Essential Climate Variable) of the ESA CCI (Climate Change Initiative)

 Biomass consists of approximately
50% carbon

2. Forests account for 70-90% of the terrestrial above-ground biomass, and the majority are located in the tropics

3. The forest biomass stocks and their change remain poorly quantified

Biomass = dry weight of woody matter (in tons/ha)

Forests are a major carbon sinks, but can be C sources

Carbon sinks

Carbon sources

International Conventions and National Determination on the forests aim at:

- Increase C sequestration
- Reduce the emissions

 \rightarrow need to quantify C losses and gains for the carbon cycle

78

SAR intensity increases with biomass

E EUROPEAN SPACE AGENCY

CESBIO

SAR intensity increases with biomass

Figure 5.22 Sensitivity of radar backscatter measurement at L-band and P-band frequencies and HV polarization to forest AGB over sites distributed in boreal, temperate, and tropical ecosystems (Shugart et al. 2010).

Scattering mechanisms simulated by a R.T. model

Crucial point: for biomass inversion to perform well, data must be processed to retain only the volume component of the forest canopy

SAR measurement modes-BIOMASS

Generates images of different forest layers from multi-orbit SAR images

Tomography to understand scattering mechanisms

contributions to the radar signal through 3D reconstruction of forest backscatter. Tomogram from BioSAR 2 - P-Band - HV 60 Lidar Canopy 50 Height [m] Boreal torest 4400 4600 4800 5000 5200 5400 5600 slant range [m] Relative backscattered power 0.5 0

> Tomogram from TropiSAR - P-Band - HV 60 Lidar Canopy 50 40 Height [m] 30 20 10 -10 4600 4800 5000 5200 5400 5600 5800 slant range [m] Relative backscattered power 0.5 0

Provides the most complete description of all

Tropical forest

Scattering mechanisms in tropical forests

*

86

Tomography to understand scattering mechanisms

Isolate the layer not containing ground scattering

.. Whose biomass related to AGB

Using Troll model (from Chave, 1999)

MINH, Dinh Ho Tong, LE TOAN, Thuy, ROCCA, Fabio, *et al.* Relating P-band synthetic aperture radar tomography to tropical forest biomass. *IEEE Transactions on Geoscience and Remote Sensing*, 2013, vol. 52, no 2, p. 967-979.

Tebaldini, S., Minh, D. H. T., d'Alessandro, M. M., Villard, L., Le Toan, T., & Chave, J. (2019). The status of technologies to measure forest biomass and structural properties: State of the art in SAR tomography of tropical forests. *Surveys in Geophysics*, *40*(4), 779-801.

→ THE EUROPEAN SPACE AGENCY

esa

La biomasse des forêts tropicales (≥ 500 t/l mesurable par le SAR bande P de Biomass

→ THE EUROPEAN SPACE AGENCY

Tomography techniques allow AGB up to 500t/ha

Cross-continental robustness and transferability of tropical forest biomass estimation by SAR tomography LPS, 2018

Yen-Nhi Ngo^{a,1}, Dinh Ho Tong Minh^{a,1,2}, Doyle McKey^b, Ludovic Villard^e, Stefano Tebaldini^d, Mauro Mariotti d'Alessandro^d, Jérôme Chave^e, Clément Albinet^f, Klaus Scipal^s, and Thuy Le Toan^e

Fig. 3. Results for TomoSAR biomass retrieval based on cross-validations: comparison of retrieved AGB and in-situ AGB. (a) training and validation samples from the same study site. (b) training samples from Africa and validation samples from South America. (c) training samples from South America and validation samples from Africa.

Isolating the volume by ground cancellation

→ THE EUROPEAN SPACE AGENCY

Biomass estimation

- Strong evidence that the volume layer 25-35 m above the ground in tropical forest is strongly correlated with the total AGB.
- 2. Development of methods for ground cancellation using **tomography or Pol-InSAR** to isolate volume scattering.
- 3. Development of an approach to solve the volume scattering equation that minimizes the need for reference data.

Summary

1. An introduction on radar remote sensing has been given, with focus on agriculture and forests.

2. It is essential to understand the statistical properties of SAR images, and the physical content of the SAR data, to interpret and to analyse the images, and to develop retrieval and mapping algorithms.

3. Lectures and training on advanced SAR polarimetry, Pol-InSAR and TomoSAR will be provided in the following sessions.