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● From 3-D SAR Imaging to the Beamformer

● PolTomSAR imaging using 1D Specan techniques

● Advanced  PolTomSAR imaging  using Specan 

●  Polarimetric TomoSAR tomography

Full-Rank specan & and SKP  decomposition

● Spaceborne 3-D imaging using  correlation SAR 
tomography
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From 3-D 
Synthetic Aperture Imaging

To the Beamformer
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2-D SAR imaging

SAR imaging: coherent integration of a reflectivity density
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3-D SAR imaging

Additional aperture in elevation:
            2-D → 3-D focusing
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3-D SAR imaging
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Co-registration on a reference plane

Valid for 

After Compensation

Discretization
NN-interp.

Flat earth Elevation

3-D SAR imaging
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3-D Synthetic Aperture imaging 

Filter-like formulation for a given resolution cell

3-D Fourier imaging is equivalent 
to the Beamformer spectral analysis method

Coregistered
Resampled
Flattened 
SLC data

Steering vector

3-D SAR imaging
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PolTomSAR imaging 
using 

Monodimensional
Spectral Analysis Techniques
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Estimation of a single scatterer: InSAR way

Intuitive interpretation of Beamforming

Estimation of a single scatterer: linear filtering way

● Phase estimation → linear filtering & search

● Filter output: reflectivity

●         steering vector: Discrete Fourier Transform filter
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Estimation of several scatterers: MB InSAR way

Intuitive interpretation of Beamforming

Estimation of several scatterers: linear filtering way 

● Tomographic focusing: spectral estimation problem

● Estimation quality: depends on MB-inSAR configuration 
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Acquired signal (single scatterer)

Second order statistics

     

Tomographic imaging using specan
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Acquired signal (single scatterer) Linear filtering (fast)

Beamformer

     

Tomographic imaging using specan

● Unbiased:

● BF maximizes output SNR at z = z0   

● Use: 

       - compute

       - estimate parameters from the max
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Uniform baseline sampling

Fast

M times Slower

Tomographic imaging using specan

Spectral sampling:

Spectral bandwidth:

Ideal response
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Uniform baseline sampling

Spatial features of a tomogram

● rapid oscillations: resolution

● band-limited: sidelobes

● sampled spectrum : 
spatial ambiguities zamb

dz

M=6

Fast → resolution

Slow→ ambiguity

Tomographic imaging using specan
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M=6

M=12

Tomographic imaging using specan
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M=6

M=12

Rule of a thumb

Tomographic imaging using specan



1919

Beamformer features

● Excellent statistical accuracy

● Fourier resolution (depends on Dk)

● Cannot handle closely spaced scatterers

Capon's approach

● Also a linear filter (fast)

● Aims to minimize spatial 
perturbations & sidelobes

Capon's solution: constrained beamformer

Tomographic imaging using specan

Minimize output power, with unitary gain at the height of interest 
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● Capon: significantly improved resolution 

● Resolution improvement is a function of the Signal to Noise Ratio (SNR)

● For regular baselines, BF & Capon are equally affected by ambiguities

Tomographic imaging using specan
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● BF: strongly affected by ambiguities

● CAPON: unsynchronized ambiguities are considered as perturbations and 

filtered. Good resolution performance preserved

Irregular baseline sampling: logscale distribution

Tomographic imaging using specan
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Over speckle affected environments

●                      is a Random Variable (1 realization is not representative)

● Power Spectral Density: Intensity

● In practice

● BF: quite stable w.r.t L

● Capon may suffer from a poor covariance matrix conditioning

        Þ Diagonal Loading

Tomographic imaging using specan
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Tropical forest profile at P band with residual phase errors

z

z Capon

BF

Tomographic imaging using specan
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Critical configuration (3 images) in an urban environment at L band

BF CAPON MUSIC

- Strictly speaking, Capon's technique is not HR, but is very convenient
- MUSIC (and some other techniques) is HR 

Tomographic imaging using specan
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Forest height HH intensity
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Case study: BIOSAR 2 data



2929

1

2

3

4

5

6

654321

Case study: BIOSAR 2 data
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BF

Case study: BIOSAR 2 data
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CAPON: processing OK ?

Case study: BIOSAR 2 data
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Advanced 
PolTomSAR imaging 

Using Specan methods
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PolTomSAR analysis of complex environments
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PolTomSAR analysis of complex environments
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PolTomSAR analysis of complex environments
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PolTomSAR analysis of complex environments
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PolTomSAR analysis of complex environments
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PolTomSAR analysis of complex environments
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PolTomSAR analysis of complex environments
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PolTomSAR analysis of complex environments
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PolTomSAR analysis of complex environments
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3-D IMAGING OF AN URBAN AREA 3-D IMAGING OF AN URBAN AREA 
USING A MINIMAL POL-TOMSAR CONFIGURATIONUSING A MINIMAL POL-TOMSAR CONFIGURATION

3 PolSAR images
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Polarimetric SAR tomography over urban areasPolarimetric SAR tomography over urban areas
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Polarimetric SAR tomography over urban areasPolarimetric SAR tomography over urban areas
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Polarimetric SAR tomography over urban areasPolarimetric SAR tomography over urban areas
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Polarimetric SAR tomography over urban areasPolarimetric SAR tomography over urban areas
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Polarimetric SAR tomography over urban areasPolarimetric SAR tomography over urban areas
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Polarimetric SAR tomography over urban areasPolarimetric SAR tomography over urban areas



5050Huang, Y.; Ferro-Famil, L. & Reigber, A. "Under-Foliage Object Imaging Using SAR Tomography and Polarimetric 
Spectral Estimators", IEEE TGRS 2011

POL-TOMSAR IMAGING OF CONCEALED OBJECTSPOL-TOMSAR IMAGING OF CONCEALED OBJECTS
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POL-TOMSAR IMAGING OF CONCEALED OBJECTSPOL-TOMSAR IMAGING OF CONCEALED OBJECTS
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POL-TOMSAR IMAGING OF CONCEALED OBJECTSPOL-TOMSAR IMAGING OF CONCEALED OBJECTS
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POL-TOMSAR IMAGING OF CONCEALED OBJECTSPOL-TOMSAR IMAGING OF CONCEALED OBJECTS

Sparse (compressive) sensing solution

- a few wavelet components

- a few discrete contributions 
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POL-TOMSAR IMAGING OF CONCEALED OBJECTSPOL-TOMSAR IMAGING OF CONCEALED OBJECTS
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Tropical forest characterizationTropical forest characterization
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Tropical forest characterizationTropical forest characterization
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Tropical forest characterizationTropical forest characterization
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Tropical forest characterizationTropical forest characterization
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Tropical forest characterizationTropical forest characterization



6363

Analysis of natural volumes  
using Polarimetric SAR tomography

Full-Rank specan techniques
and

SKP algebraic decomposition 
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M Mixed scattering
mechanisms
→ full rank 
polarimetry

Intensity Rank 1 polarimetry (Pauli)

H



Full rank polarimetry
(x,r) k(x,r) T(x,r)

Need for full-rank Polarimetric SAR Tomography
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Need for full-rank Polarimetric SAR Tomography
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M PolSAR images

Full rank analysis strategies

o Full-rank P-Capon (LFF et al. 2012)

o SKP decomposition (Tebaldini  2009)
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Pol ch. 3

Combined 
spatial & polarimetric 

correlations
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• Separation of Polarimetric Properties 
=> Evaluation of the Ground to Volume Backscattered Power Ratio for each polarization

HV
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• Separation of Structural Properties 

=> Separated Tomographic Imaging of Ground-only and Volume-only Contributions

P-Band HH P-Band HV L-Band HH L-Band HV

Ground-volume decomposition implies:
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Physically valid solutions True Volume Coherence

True Ground Coherence

Region of physical validity for the ground and volume coherences in the interferometric pair 
formed between tracks 1 and 2 (Numerical simulation)

Coherence Locus – N  = 2

Single Baseline case :

The region of physical validity is formed by two 
branches, spanned by the parameters a, b 

The union of branches a, b results in the same region of 
physical validity as in PolInSAR

Branch b

Branch a

 General procedure for ground and volume decomposition

Approximate W by retaining the first two KPs of the SKP Decomposition

Choose the proper values of a, b :

1. Select values of a, b that give rise to (semi) positive definite Rg, Rv, Cg, Cv

→  physical validity of the solution

2. Optimize some criterion in order to pick a unique solution

SKP Decomposition
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Region of physical validity for the ground and volume coherences in the interferometric pair 
formed between tracks 1 and 2 (Numerical simulation)

Multi-Baseline case : the region of physical validity 
tends to shrink, depending on the number of available 
tracks 

True Volume Coherence

True Ground Coherence
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Coherence Locus – N  = 3

Physically valid solutions 

Branch b

Branch a

 General procedure for ground and volume decomposition

Approximate W by retaining the first two KPs of the SKP Decomposition

Choose the proper values of a, b :

1. Select values of a, b that give rise to (semi) positive definite Rg, Rv, Cg, Cv

 physical validity of the solution

2. Optimize some criterion in order to pick a unique solution

SKP Decomposition
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Multi-Baseline case : the region of physical validity 
tends to shrink, depending on the number of available 
tracks 
 The higher the number of tracks, the easier it is 

to pick the correct solution 

True Volume Coherence

True Ground Coherence
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

real part

im
ag

in
ar

y 
pa

rt

Coherence Locus – N  = 10

Physically valid solutions 

Branch b

Branch a

 General procedure for ground and volume decomposition

Approximate W by retaining the first two KPs of the SKP Decomposition

Choose the proper values of a, b :

1. Select values of a, b that give rise to (semi) positive definite Rg, Rv, Cg, Cv

→  physical validity of the solution

2. Optimize some criterion in order to pick a unique solution

SKP Decomposition

Region of physical validity for the ground and volume coherences in the interferometric pair 
formed between tracks 1 and 2 (Numerical simulation)
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Campaign BioSAR 2007 - ESA
System E-SAR - DLR

Period Spring 2007

Site Remningstorp, South 
Sweden

Scene Semi-boreal forest

Topography Flat

Tomographic 
tracks

9 – Fully Polarimetric

Carrier 
frequency

350 MHz

Slant range 
resolution

2 m

Azimuth 
resolution

1.6 m

Vertical 
resolution

10 m (near range) to 40 m  
        (far range)

 Case Studies
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Reflectivity (HH) – Average on 9 tracks
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Reflectivity (HH) – Average on 9 tracks
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slant range [m]

  LIDAR Terrain Height
  LIDAR Forest Height

The analyzed profile is almost totally forested, 
except for the dark areas

HH: 
Dominant phase center is ground locked 
Vegetation is barely visible

Similar conclusions for VV

HV:
Dominant phase center is ground locked
Vegetation is much more visible

Tomographic reconstruction 
of an azimuth cut:

 Case Studies
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> 90 %  of the information can 
be represented by the sum of 
just two KPs

Model validation:
?

Methodology: 
evaluation of the error between the sample covariance matrix 
and its best L2 approximation with K = {1,2,3,4} KPs

Remark: the best L2 approximation is obtained simply by 
taking the dominant K terms of the SKP decomposition
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 Case Studies
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Inner boundary solutions

  LIDAR Terrain Height
  LIDAR Forest Height

Significant contributions from 
the ground level. 
Volumetric scattering at the 
ground level
Consistent with:

• Backscattering from 
understorey or lower tree 
branches

• Multiple interactions of 
volumetric scatterers with 
the ground

Residual volume 
contributions visible 
above the ground 

Case Studies: BioSAR 2007
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Intermediate solutions

  LIDAR Terrain Height
  LIDAR Forest Height

Improved volume 
rejection

Volumetric contributions from 
the ground level are partly 
rejected

Backscattering contributions 
from the whole volume structure 
are emphasized

Case Studies: BioSAR 2007
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Intermediate solutions

  LIDAR Terrain Height
  LIDAR Forest Height

Improved volume 
rejection

Improved ground rejection

Backscattering contributions 
from the whole volume 
structure are emphasized

Case Studies: BioSAR 2007
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Intermediate solutions

  LIDAR Terrain Height
  LIDAR Forest Height

Improved volume 
rejection

Ground contributions rejected 

Contributions from the lower 
canopy are partly rejected

Backscattering contributions 
from the upper volume 
structure are emphasized

Case Studies: BioSAR 2007
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Case Studies: BioSAR 2007
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Outer boundary solutions

  LIDAR Terrain Height
  LIDAR Forest Height

Maximum volume 
rejection

Ground structure is 
maximally coherent

Ground and lower canopy 
contributions  are rejected 

Only upper canopy 
contributions are visible

Volume structure is maximally 
coherent

Volume top height is nearly invariant to the 
choice of the solution, therefore constituting a 
robust indicator of the volume structure 
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Tropical forest biomass estimation at P band (TropiSAR campaign)
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Assessment of Spaceborne SAR 
tomographic imaging of forests
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3-D imaging of natural environments from space3-D imaging of natural environments from space

Fighting against temporal decorrelationFighting against temporal decorrelation
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Fighting against temporal decorrelationFighting against temporal decorrelation

3-D imaging of natural environments from space3-D imaging of natural environments from space
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Test site and dataTest site and data
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Forest height HH intensity
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L band SW data set

DEM
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3-D imaging of natural environments from space3-D imaging of natural environments from space
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Bf = 100 MHz Bf = 40 MHz

No noticeable effects on coherence values even at near range

Full vs reduced resolution  processing

o  Quasi regular baselines (almost Toeplitz)
o  No noticeable temporal decorrelation
o  Theoretical vertical resolution # 10m
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Bf = 100 MHz Bf = 40 MHz

o  Comparable performance for terrain topography and tree height

Full vs reduced resolution  processing
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Full matrix vs coherence set processing
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TomoSAR: 3D Imaging
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SAR: 2D Imaging

o Power distribution in height direction
o Full-resolution CAPON
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Spaceborne TomoSAR: 3D ImagingSAOCOM: 2D Imaging

o Power distribution in height direction
o Spaceborne mode BEAMFORMER

Full matrix vs coherence set processing
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Full matrix vs coherence set processing
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Limitations of the interpolation approachLimitations of the interpolation approach

Principles of covariance matrix estimation through coherence interpolation

- For a negligible temporal decorrelation

- Regular interpolation from a set of known values 

- Covariance matrix (Toeplitz) reconstruction 
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- Regular interpolation from a set of known values:

- most sensible choice
- enforces Toeplitz symetry 
- does not guarantee semi-definite positiveness: 

 
- Interpolation relies on very strong assumptions

- small bandwidth
- baseband behavior 

- Problems may arise

- with irregular original spatial sampling 
- with imperfectly known scene related phase terms

may be negative

Limitations of the interpolation approachLimitations of the interpolation approach
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Sample Covariance Matrix  (SCM) vs Interp’d coherence vector

Airborne (High Res) case Spaceborne (Low Res) case 

Airborne (High Res) → Spaceborne (Low Res)

SCM →  Interpolated coherence vector   

OK

Limitations of the interpolation approachLimitations of the interpolation approach
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Enforced 
PSD

Enforced 
PSD

Non PSD intensity estimates 
(Spaceborne case)

PSD has to be enforced at low resolution

Limitations of the interpolation approachLimitations of the interpolation approach
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Irregular baseline sampling: 1 image missing

Unknown phase terms (imperfect DEM comp.)

- constant (small) shift in elevation: 0m to 15m 

- unknown DEM (gentle topography): 

Limitations of the interpolation approachLimitations of the interpolation approach
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Limitations of the interpolation approachLimitations of the interpolation approach

Interpretation of  coherence interpolation

- Naive linear interpolation

- Unknown elevation offset Dz

- Interpolation may be affected (wrong) for large Df values  
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Irregular sampling (1 image missing), unknown elevation shift Dz

Large Df values

- large DEM errors: Dz  
- large perp. Baselines: Dk

z
 (Near-range effect)

Limitations of the interpolation approachLimitations of the interpolation approach
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A robust solution: WV-based coherence synthesisA robust solution: WV-based coherence synthesis

Characteristics of covariance matrix synthesis based on reflectivity estimation

• No need to define a sampling strategy

• Naturally adapted to any reconstruction configuration (Toeplitz ...)

• Naturally PSD  

• Increased robustness w.r.t. irregular sampling and unknown phase terms  

• Discrete description: not well adapted to continuous reflectivity densities

• Sensible solution: use a set of (orthogonal) functions
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Irregular sampling (1 image missing), unknown elevation shift Dz
(Spaceborne case)

- Robust to unknown elevation shifts  
- Slight changes in the Dz=DEM case: modified search range 
(resolution), easily avoided 

A robust solution: WV-based coherence synthesisA robust solution: WV-based coherence synthesis
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Performance w.r.t. resolution
(I(z) vs. p(z) and Airborne vs. Spaceborne case)

- Robust to unknown elevation shifts  
- Spaceborne & Airborne p(z) extremely close

→ Deconvolution HR effect

A robust solution: WV-based coherence synthesisA robust solution: WV-based coherence synthesis
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Radiometric accuracy assessment
Biomass estimation using SAR tomography 

Blomberg et al. Forest Biomass Retrieval From L-Band SAR 
Using Tomographic Ground Backscatter Removal, GRSL 
2018
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Coh int
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Dz=10m

Wv est
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Dz=15m
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5 im 

Dz=15m

Airborne 
(HR)

2.64 % 14.03 % 4.25 % 8.74 % 4.91 % 25.84 % 4.69 %

Spaceborne
(LR)

9.89 % 42.35 % 9.75 % 31.27 % 11.23 % 84.30 % 11.58 %

A robust solution: WV-based coherence synthesisA robust solution: WV-based coherence synthesis
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