

http://rslab.gr

Outline Introduction EO products: Urban Surface Morphology Urban Surface Cover Urban Surface Albedo and Temperature EO-based Applications. Urban Planning Urban Environmental Security Urban Air Quality Urban Metabolism EO Trends and Synergies

Urban surface morphology

• Plan Area Fraction (λ_p) is computed by dividing building plan a rea (A_p) by total plan area (A_T) .

(Rurian et al. 2002)

Urban surface morphology

Building Frontal Area Index (λ_f) **.** The frontal area (A_{proj}) is the total area of the faces exposed to the oncoming wind.

Urban surface morphology

- Aerodynamic Roughness Parameters: displacement height (z_d) and roughness length (z₀).
- z_d can be conceptualized as the height of a surface formed by distributing the aggregate volume of roughness elements and their wake re-circulation cavities uniformly over the underlying surface.
- z₀ is directly related to the overall drag of the surface. It represents the distance above the displacement height plane at which the velocity goes to zero.

(Rurian et al. 2002

Urban surface morphology

$$\frac{z_d}{z_H} = 1 - \left\{ \frac{1 - \exp\left[-\left(c_{d1} 2\lambda_f\right)^{0.5}\right]}{\left(c_{d1} 2\lambda_f\right)^{0.5}} \right\}$$

$$\frac{z_o}{\overline{z_H}} = \left(1 - \frac{z_d}{\overline{z_H}}\right) \exp\left(-k\frac{U}{u_*} + \psi_k\right)$$

$$\frac{u_*}{U} = \min \left[\left(c_S + c_R \lambda_f \right)^{0.5}, \left(\frac{u_*}{U} \right)_{\text{max}} \right]$$

 $\mathbf{z_H}$ is the average building height, $\psi_{\mathbf{k}}$ is the roughness sublayer influence function, U and u* are the large-scale wind speed and the friction velocity, respectively, $\mathbf{c_S}$ and $\mathbf{c_R}$ are drag coefficients for the substrate surface at height $\mathbf{z_H}$ in the absence of roughness elements and of an isolated roughness element mounted on the surface, respectively, and $\mathbf{c_{d1}}$ is a free parameter and k is the von Kármán constant (0.4).

Suggested values: $\psi_k = 0.193$, $(u*/U)_{max} = 0.3$, $c_S = 0.003$, $c_R = 0.3$, and $c_{d1} = 7.5$.

Burian et al. 2002)

Urban surface cover

- Global Urban Footprint (GUF):
 - ✓ Worldwide inventory of human settlements, using one global coverage of SAR data with 3 m ground resolution collected by the satellites TerraSAR-X / TanDEM-X.
 - ✓ Analysis of 182.249 images (308 TB), processing and management of >20 million data sets.
 - ✓ Output is binary settlement mask with spatial resolution of 0.4" (12m) for scientific and commercial use.
 - ✓ Release of public domain GUF with ~2.8" (84m) spatial resolution for any non-profit use in 2016.

(Esch et al. 2015

Urban surface cover

- Global Human Settlement Layer (GHSL):
 - ✓ Fine-scale, global, open and free-access data
 - ✓ Any sensor input data and fully automated classification engine design
 - ✓ Land cover / use integration with environmental, socioeconomical and census data
 - ✓ Information supporting policies
 - > Information for action, policy
 - > Evidence-based policy support
 - ✓ Indicators for international frameworks
 - > Sendai (DRR), SDGs, Clima

saresi et al. 2015)

Surface temperature

$$\begin{split} L_i^{sat} &= \int_{\lambda_1}^{\lambda_2} f_i(\lambda) \varepsilon(\lambda) B(\lambda, T_S) \tau(\lambda) d\lambda + \int_{\lambda_1}^{\lambda_2} \int_{p=0}^{p_S} f_i(\lambda) B(\lambda, T_p) \frac{d\tau}{dp} d\lambda \, dp \\ &+ 1/2 \int_{\lambda_1}^{\lambda_2} \int_{\theta=0}^{\pi/2} \int_{\phi=0}^{2\pi} (1 - \varepsilon(\lambda)) f_i(\lambda) L^{\alpha}(\lambda, \theta, \phi) \tau(\lambda) \sin 2\theta \, d\lambda \, d\theta \, d\phi \end{split}$$

- λ wavelength; i channel; λ_1 , λ_2 lower/upper limits of spectral range;
- f_i normalized channel response function;
- θ zenith angle, φ azimuth angle;
- p pressure, p_s pressure at Earth's surface;
- $\tau(\lambda)$ spectral atmospheric transmissivity;
- $\epsilon(\lambda)$ surface spectral emissivity; T_s surface temperature;
- $L^{\infty}(\lambda, \theta, \phi)$ downwelling irradiance divided by π ;
- T_p mean air temperature at pressure level p.

• Emissivity based on fractional land cover: • Linear Spectral Mixture analysis • Constraint using mean absolute deviations • End members selection. • Emissivity assignment to each end member. • Emissivity estimation as: $\varepsilon = \sum_{k=1}^{n} \varepsilon_k \cdot f_k$

