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Basics of (atmospheric) remote sensing  
• Location of measurement is different from that of the instrument 

⇒ Information from atmosphere must be propagated to instrument by means of 
electromagnetic radiation 

⇒ Remote sensing requires ‘retrieval’ = derivation from the atmospheric 
information from the radiation characteristics measured by the instrument 

⇒ Most common instruments: spectrometers 
 

• Radiation comes from a natural source (sun, moon, stars, earth/atmosphere 
emission, …) directly, after reflection, or scatttering ⇔ passive remote sensing 

 or 

• Radiation comes from an artificial light source (lamp, laser, …) ⇔ active remote 
sensing 
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Basics of remote sensing (2) 
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Basics of remote sensing (3) 
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UV-VIS-NIR sounders TIR sounders 

sun Earth 

4 µm 

2500 cm-1 

Ab
so

rb
an

ce
 



Wavelength ranges in remote sensing 
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• UV some absorptions + profile information,  aerosols  
 
• VIS surface information (vegetation) 
 some absorptions 
 aerosol information 
 
• IR temperature information 
 cloud information 
 water / ice distinction 
 many absorptions / emissions 
 + profile information 

 
• MW clouds are transparent 
 ice / water contrast  
 surfaces 



Remote-sensing platforms 
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Ground, aircraft, balloon, rocket, satellite 



• (Near) Polar Orbit: 
→ orbits cross close to the pole 
→ global measurements are possible 
→ low earth orbit LEO (several 100 km) 
→ ascending and descending branch 

• Special case: sun-synchronous orbit: 
– overpass over given latitude always at the same local time, 

providing similar illumination 
– for sun-synchronous orbits: day and night branches 

• Geostationary Orbit: 
→ satellite has fixed position relative to the Earth 
→ parallel measurements in a limited area from low to 

middle latitudes 
→ 36 000 km flight altitude, equatorial orbit 

Satellite Orbits 
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http://marine.rutgers.edu/mrs/education/class/paul/orbits2.html 

Presenter
Presentation Notes
These are only most common orbits; other orbits are possible like Molinya orbit, LEO orbit at low inclination, etc.



Satellite observation geometries 
Nadir: 

 Backscattered solar radiation and/or emission 
measurements (also nighttime) 

 Good spatial coverage and resolution 
 Low vertical resolution 

Solar occultation: 

 Direct solar absorption 
 High vertical resolution 
 Low spatial resolution; low spatial coverage 

Limb:  
 Scattered light at the limb (UV-Vis)  
 Limb emission (IR) ⇒ also nighttime 
 High vertical resolution 
 Low spatial resolution; high spatial coverage 
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Atmospheric radiative transfer 
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Radiative transfer equation 
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Express the variation of the diffuse radiation in height z at one wavelength: 
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Fsol flux from the sun 
P weighted phase function for scattering 
A surface albedo 
B Planck radiation 
τ optical depth  

loss by extinction 

gain by multiple scattering 

gain by single scattering of solar 
radiation 

gain by reflection of 
 light from the surface  

gain by emission 



Retrieval: principle 
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Output 
Fitted spectrum 

Continua 
H2O, CO2 

CKD, MT_CKD 

X-Sections 
(Hitran) 

Synthetic spectrum 
Instrumental Line Shape 

Lines list 
(Hitran, Geisa) Forward RT Model 

Nadir,Limb 
Ground 

 
Model 

P,T profiles 
xa a priori vmr 

 

Fit 
e.g. OPTIMAL 
 ESTIMATION 

 

Spectra 
Measurement y  

Sa 

a priori covariance matrix 

Se 

Measurement error  
covariance matrix 

Laboratory spectroscopy 

Inversions 

Atmospheric chemistry 
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Principle of limb/occultation profiling 
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Ideal technique for the study 
of stratospheric composition 



Ozone profiles from 6 limb sensors 

15 

Monthly  zonal  mean  profiles  of  ozone  mixing  ratio  (ppmv), for  January  2008 

Stellar  
occultation 

Thermal IR UV-Vis limb 
scattering 

UV-Vis limb 
scattering 

Microwave Solar 
occult. 

V. Sofieva, FMI 



Sampling of limb sensors 
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Sofieva et al., Earth Syst. Sci. Data, 5, 349–363, 2013  

Global 
coverage in 
few months 

Global 
coverage in 
few days 



Data records from Limb-sounding satellite 
instruments between 1978 and 2010  
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Altius: new limb imaging concept 
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Limb scanning  2D limb imaging 

Recently 
approved 
as an ESA 
Earth 
Watch 
mission 
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https://www.imk-asf.kit.edu/english/1189.php 

The very cold conditions in Arctic winter 2010/2011 led to the first Northern Hemisphere ‘ozone hole’ 
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Polar Stratospheric Clouds (PSC) and  
Polar Mesospheric Clouds (NLC) 

Mesospheric ozone loss due to 
solar proton event (Oct 2003) 



Limb TIR UPPER-TROPOSPHERIC SOUNDINGS 
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Ethane (C2H6) from MIPAS 

Anthropogenic 
emissions 

ppbv 

Courtesy of G.Stiller, KIT 

Ethene (C2H4) from ACE-FTS 

Herbin et al., GRL, 2009 



Nadir geometry 
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Nadir geometry 
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Nadir geometry 
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Solar Backscatter UV (SBUV) 

• Retrieval of ozone profile information from 
measurements at several wavelengths 

• 12 wavelengths (250 – 340 nm) 
• spectral band with of the channels : 1.1 nm 
• horizontal resolution : 200 x 200 km2  
• vertical resolution : approx. 8 km 
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SBUV measurement principle 

• Because of the large ozone 
absorption the penetration depth 
depends on the wavelength 

• Comparison of measurements at 
different wavelengths provides 
profile information 
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Total Ozone Mapping Spectrometer (TOMS) 
• Global total ozone mapper 
• 6 wavelengths in the UV 
• good spatial resolution (50x50 km2) 
• global coverage in 1 day 
• Additional products (SO2, aerosols) 

 
 

The TOMS programme: 
Satellite Period  
Nimbus 7 Oct 78 – May 93  
Meteor3 Aug 91 – Dec 94 
Adeos Aug 96 – Jun 97  
Earth Probe Jul 96 – Dec 97  
  Dec 97 – Dec 2006  
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Global Ozone Monitoring Experiment (GOME) 
• First simultaneous measurements of complete spectrum 

from the UV to the near IR 
• good spectral resolution (0.2 – 0.4 nm) 
• use of DOAS to retrieve columns of a number of species 

(O3, NO2, OClO, BrO, HCHO, SO2, H2O) 
• use of UV wavelengths to retrieve ozone profiles (BUV 

technique) 
• global coverage in 3 days 

 
Operation on ERS-2:   
From April 1995 until July 2011 
Successors: 
SCIAMACHY ENVISAT (2002-2012) 
GOME-2 METOP (2006-now)  
OMI AURA (2004-now) … 
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Beer-lambert law applied to 
light transmission through a 
slab in the atmosphere 

𝐼𝐼 𝜆𝜆 = 𝑰𝑰𝟎𝟎(𝜆𝜆) ∙ 𝑒𝑒− ∑ 𝝈𝝈𝒊𝒊 𝜆𝜆 ∙𝑐𝑐𝑖𝑖∙𝐿𝐿 + 𝜺𝜺𝑹𝑹𝑹𝑹𝑹𝑹 𝜆𝜆 +𝜺𝜺𝑴𝑴𝑴𝑴𝑴𝑴 𝜆𝜆 ∙𝐿𝐿  

 Rayleigh scattering ~ λ-4 Mie Scattering ~ λ-(1…3) Trace gases 

Remove by high-pass filtering 
High frequency       Broadband band extinction 

𝐼𝐼 𝜆𝜆 = 𝑰𝑰𝟎𝟎(𝜆𝜆) ∙ 𝑒𝑒− ∑ 𝝈𝝈′𝑖𝑖 𝜆𝜆 ∙𝑐𝑐𝑖𝑖∙𝐿𝐿 + 𝝈𝝈𝒃𝒃𝒃𝒃 𝝀𝝀  + 𝜺𝜺𝑹𝑹𝑹𝑹𝑹𝑹 𝜆𝜆 +𝜺𝜺𝑴𝑴𝑴𝑴𝑴𝑴 𝜆𝜆 ∙𝐿𝐿  

DOAS  Frequency separation in the wavelength space 

DOAS Differential Optical Absorption Spectroscopy 



O3 transmission 

Polynomial 
3rd degree 

Differential spectrum 
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Exemple of frequency separation 



• UV-Vis cross-sections 
are independent of 
pressure and weakly 
dependent on 
temperature (can be 
linearised) 
 

• Molecules absorbing in 
UV-Vis are generally 
short-lived 

UV-Vis absorption cross-sections 



Nadir geometry 
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Air Mass Factor (AMF) 
The AMF is defined as the ratio of the trace gas slant optical density 
to the vertical one in the atmosphere: 
 
 
The AMF expresses the sensitivity of the measurement, and depends on a variety 
of parameters such as: 
• wavelength 
• geometry 
• vertical distribution of the species 
• clouds 
• aerosol loading 
• surface albedo 
 
 

v

sAMF
τ
λτ ,...),( Θ

=

Because of the optically thin approximation, the AMF 
depends weakly on the vertical column  the idea is 
that if all other dependences are known, the 
measured signal is proportional to the VC. 

𝐴𝐴𝐴𝐴𝐴𝐴 𝜆𝜆,𝜃𝜃 =
−log  𝐼𝐼− 𝜆𝜆,𝜃𝜃 𝐼𝐼+ 𝜆𝜆,𝜃𝜃⁄  

𝜎𝜎(𝜆𝜆) ⋅ 𝑉𝑉𝑉𝑉
 



AMF(z) dependences 



Surface albedo (or reflectivity) 
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440 nm 
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Surface albedo climatology (MODIS) 

440 nm 
July 

440 nm 
Dec. 



Cloud fractions 
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GOME-2 FRESCO+ (TEMIS) 

Clouds detected as bright targets above dark surfaces.  
Their altitude can be derived from depth of O2-A band absorption in the NIR. 



How do we get vertical resolution in nadir UV/vis 
observations? 
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Long-term ozone monitoring 
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ESA CCI 

A few highlights from GOME and successor missions 

OMI 
…. 
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GOME formaldehyde, July 1996  

Wagner and Platt, Satellite mapping of enhanced BrO 
concentrations in the troposphere,  Nature, 395, 1999, 
486-490 
 

Polar BrO « explosion events » 
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SCIAMACHY  mapping of 
carbon gases 
CO2 and CH4 
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Infrared  
Atmospheric  
Sounding 
Interferometer 
• advanced thermal IR 

sounder.  
• global measurements 2 

times per day (at 9h30 
and 21h30 local solar time) 

MetOp IASI 



Vertical profile information from TIR  
Altitude information can be 
derived from: 
1. Pressure broadening of absorption 

lines 
2. Temperature dependence of line 

strengths 

 
Vertical profile information up to 
~35 km max 
Details of retrievable profile 
information  depend on molecule, S/N, 
spectral resolution of instrument… 
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Examples of averaging kernels for ozone and CO 
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IASI, DOFS=3.5 
Ozone CO 

Averaging kernels 



Surface emissivity 
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Emissivity retrieved from satellite hyperspectral imagers (IASI) 
 



Thermal contrast (IASI) 
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Day                                                     Night 

Clerbaux et al, Atmos. Chem. Phys., 9, 6041–6054, 2009 

Thermal contrast is highest in the morning over land surfaces 



A few IASI highlights 
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CO concentrations due to fires observed 
last fall over Indonesia Mediterranean tropospheric ozone summer anomaly  

Safieddine et al., ACP, 14, 10119-10131, 2014 Courtesy M. George, LATMOS 



Volcanic SO2 plume detection 
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La Soufrière Hills 
(Montserrat) 



Overview of current and future nadir missions 
1995 2000 2005 2010 2015 2020 2025 2030 
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ERS-2 GOME 
ENVISAT SCIAMACHY 

METOP-A GOME-2/IASI 
METOP-B 

METOP-C 
NPP OMPS 

AURA OMI 

JPSS-1  OMPS 
JPSS-2  OMPS 

Sentinel-5 P 
S4/ MTG-S1 

S5+IASI-NG/ EPS-SG 
S4/ MTG-S2 

Copernicus 
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The Sentinel Missions 
for Copernicus Atmosphere Services 

GEOstationary (GEO) 
– Hourly revisit time over Europe 
– Mainly air quality 
– Diurnal cycle of tropospheric composition 
 Sentinel-4 (on MTG-S) 

Low Earth Orbit (LEO) 
– Daily revisit time global coverage 
– Climate, air quality, ozone & UV 
– Tropospheric & stratospheric composition   
 Sentinel-5 + IASI-NG (on MetOp-SG) 
 Sentinel-5 Precursor (dedicated platform) 

2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030
Sentinel-5p
Sentinel-4 - 1
Sentinel-5 - 1
Sentinel-4 - 2
Sentinel-5 - 2
Sentinel-5 - 3



Sentinel-5 Precursor - TROPOMI 
• TROPOspheric Monitoring Instrument on 

ESA Sentinel-5 Precursor (TROPOMI) 
• Pushbroom imager design similar to OMI, 

but with: 
 Improved spatial resolution (7x7 km2) 
 Improved S/N ratio 
 More spectral channels covering UV-

VIS-NIR-SWIR  Spectral bands: 270-
500 nm, 675-775 nm, 2305-2385 nm 

 
Launch:  November 2016 
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Summary / conclusion 
• Satellite observations of atmospheric composition in the UV/vis, NIR and 

thermal IR provide consistent global datasets for many species distributed 
between the surface and the mesosphere 

• The measurements are averaged horizontally and vertically which makes 
them difficult to interpret 

• Remote sensing in an indirect method that necessitates use of a priori 
information in the data retrieval which has an impact on the results 

• Visible and NIR measurements provide good sensitivity to the boundary 
layer, the thermal IR has intrinsic vertical information 
 

• The future of nadir missions is bright, but we are facing a limb-sensor gap 
for the continued monitoring of the stratospheric composition 
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Thank you for your attention! 
 

Questions? 
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