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Basics of (atmospheric) remote sensing

e Location of measurement is different from that of the instrument

—> Information from atmosphere must be propagated to instrument by means of
electromagnetic radiation

— Remote sensing requires ‘retrieval’ = derivation from the atmospheric
information from the radiation characteristics measured by the instrument

— Most common instruments: spectrometers

* Radiation comes from a natural source (sun, moon, stars, earth/atmosphere
emission, ...) directly, after reflection, or scatttering < passive remote sensing

or

* Radiation comes from an artificial light source (lamp, laser, ...) < active remote
sensing



Basics of remote sensing (2)
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Basics of remote sensing (3)
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Wavelength ranges in remote sensing
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Remote-sensing platforms
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Satellite Orbits

* (Near) Polar Orbit:
— orbits cross close to the pole
— global measurements are possible
— low earth orbit LEO (several 100 km)
— ascending and descending branch

* Special case: sun-synchronous orbit:

— overpass over given latitude always at the same local time,
providing similar illumination

— for sun-synchronous orbits: day and night branches

* Geostationary Orbit:
— satellite has fixed position relative to the Earth

— parallel measurements in a limited area from low to
middle latitudes

— 36 000 km flight altitude, equatorial orbit

http://marine.rutgers.edu/mrs/education/class/paul/orbits2.html


Presenter
Presentation Notes
These are only most common orbits; other orbits are possible like Molinya orbit, LEO orbit at low inclination, etc.


Satellite observation geometries

Nadir:

» Backscattered solar radiation and/or emission
measurements (also nighttime)

» Good spatial coverage and resolution
» Low vertical resolution

Solar occultation:

» Direct solar absorption

» High vertical resolution

» Low spatial resolution; low spatial coverage
Limb:

» Scattered light at the limb (UV-Vis)

» Limb emission (IR) = also nighttime

» High vertical resolution

» Low spatial resolution; high spatial coverage



Atmospheric radiative transfer
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Radiative transfer equation

Express the variation of the diffuse radiation in height z at one wavelength:
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Retrieval: principle
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Principle of limb/occultation profiling

Ideal technique for the study
of stratospheric composition



Ozone profiles from 6 limb sensors

Thermal IR UV-Vis limb

scattering
UV-Vis limb Microwave Solar
scattering occult.

V. Sofieva, FMI

Monthly zonal mean profiles of ozone mixing ratio (ppmv), for January 2008
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Still in operation

Data records from Limb-sounding satellite
instruments between 1978 and 2010
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Altius: new limb imaging concept

2D limb imaging

ALTIUS
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Watch
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Limb scanning
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The very cold conditions in Arctic winter 2010/2011 led to the first Northern Hemisphere ‘ozone hole’

https://www.imk-asf.kit.edu/english/1189.php



s Polar Stratospheric Clouds (PSC) and
Polar Mesospheric Clouds (NLC)

Mesospheric ozone loss due to
solar proton event (Oct 2003)



Limb TIR UPPER-TROPOSPHERIC SOUNDINGS
Ethene (C,H,) from ACE-FTS
Ethane (C,Hg) from MIPAS
ppbv

T

Anthropogenic
emissions

Courtesy of G.Stiller, KIT Herbin et al., GRL, 2009



Nadir geometry

Near infrared range
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Nadir geometry

Thermal infrared range
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Solar Backscatter UV (SBUV)

e Retrieval of ozone profile information from
measurements at several wavelengths

e 12 wavelengths (250 — 340 nm)

e spectral band with of the channels : 1.1 nm
e horizontal resolution : 200 x 200 km?

e vertical resolution : approx. 8 km
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SBUV measurement principle

Because of the large ozone
absorption the penetration depth
depends on the wavelength

Comparison of measurements at
different wavelengths provides
profile information

Pressure (mb)
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Total Ozone Mapping Spectrometer (TOMS)

e Global total ozone mapper

e 6 wavelengths in the UV

e good spatial resolution (50x50 km?)
e global coverage in 1 day

e Additional products (SO,, aerosols)

The TOMS programme:
Satellite Period

Nimbus 7 Oct 78 — May 93
Meteor3 Aug 91 — Dec 94
Adeos Aug 96 — Jun 97

Earth Probe Jul 96 — Dec 97
Dec 97 — Dec 2006



Global Ozone Monitoring Experiment (GOME)

e First simultaneous measurements of complete spectrum
from the UV to the near IR

e good spectral resolution (0.2 — 0.4 nm)

e use of DOAS to retrieve columns of a number of species
(O3, NO,, OCIO, BrO, HCHO, SO,, H,0)

e use of UV wavelengths to retrieve ozone profiles (BUV
technique)

e global coverage in 3 days

Operation on ERS-2:

From April 1995 until July 2011
Successors:

SCIAMACHY ENVISAT (2002-2012)
GOME-2 METOP (2006-now)

OMI AURA (2004-now) ...

28



Differential Optical Absorption Spectroscopy

Beer-lambert law applied to
light transmission through a
slab in the atmosphere
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Remove by high-pass filtering




Exemple of frequency separation
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UV-Vis absorption cross-sections

UV-Vis cross-sections

are independent of

pressure and weakly

dependent on /

temperature (can
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Nadir geometry




Air Mass Factor (AMF)

The AMF is defined as the ratio of the trace gas slant optical density

to the vertical one in the atmosphere:
AME — 7.(1,0,...)

Ty

The AMF expresses the sensitivity of the measurement, and depends on a variety

of parameters such as: —log{I=(1,0)/17(,0) }

e wavelength AMF (1, 0) =

 geometry o(A)-VC

e vertical distribution of the species

e clouds

« aerosol loading Because of the optically thin approximation, the AMF

depends weakly on the vertical column = the idea is
that if all other dependences are known, the
measured signal is proportional to the VC.

e surface albedo



AMF(z) dependences



Surface albedo (or reflectivity)
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Surface albedo climatology (MODIS)

440 nm
July
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Cloud fractlons

GOME 2 FRESCO+ (TEMIS) : -
-120 -60 0 60 120

Clouds detected as bright targets above dark surfaces.
Their altitude can be derived from depth of O,-A band absorption in the NIR.
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How do we get vertical resolution in nadir UV/vis
observations?



A few highlights from GOME and successor missions

Long-term ozone monitoring

oMI ESA CCI

=
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Polar BrO « explosion events »

GOME formaldehyde, July 1996

% Wagner and Platt, Satellite mapping of enhanced BrO
concentrations in the troposphere, Nature, 395, 1999,
486-490



Carbon dioxide SCIAMACHY (WFMDv1.0)/ENVISAT 2003 01

IUP/IFE, Univ. Bremen ____:::= DLR
L ESA
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carbon gases
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Methane SCIAMACHY (WFMDv1.0)/ENVISAT 2003 01

IUP/IFE, Univ. Bremen

Michael.Buchwitz@iup.physik.uni-bremen.de
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MetOp IASI

nfrared
tmospheric
ounding

nterferometer

 advanced thermal IR
sounder.
e global measurements 2

times per day (at 9h30
and 21h30 local solar time)
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Vertical profile information from TIR

Altitude information can be
derived from:

1. Pressure broadening of absorption
lines

2. Temperature dependence of line
strengths

Vertical profile information up to
~35 km max

Details of retrievable profile
information depend on molecule, S/N,
spectral resolution of instrument...



Examples of averaging kernels for ozone and CO

Ozone coO
IASI, DOFS=3.5

Averaging kernels
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Thermal contrast (IASI)

Day Night

Thermal contrast is highest in the morning over land surfaces

Clerbaux et al, Atmos. Chem. Phys., 9, 6041-6054, 2009



A few IASI highlights

CO concentrations due to fires observed
last fall over Indonesia Mediterranean tropospheric ozone summer anomaly

Courtesy M. George, LATMOS Safieddine et al., ACP, 14, 10119-10131, 2014



Volcanic SO, plume detection

La Soufriere Hills
(Montserrat)



Overview of current and future nadir missions

ERS-2 GOME :

ENVISAT SCIAMACHY |

AURA OMI

METOP-A GOME-2/IASI
METOP-B

i METOP-C
NPP OMPS

Dernicus

IESSEIYES Co
Sentinel-5 P

i [ SIMTG 4 WiTG-52 3

S5+IASI-NG/ EPS-SG
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The Sentinel Missions

for Copernicus Atmosphere Services

Low Earth Orbit (LEO)

GEOstationary (GEO
y ( ) — Daily revisit time global coverage

— Hourly revisit time over Europe

: : : — Climate, air quality, ozone & UV
— Mainly air quality

_ Diurnal cycle of tropospheric composition — Tropospheric & stratospheric composition

- Sentinel-4 (on MTG-S) = Sentinel-5 + IASI-NG (on MetOp-SG)

- Sentinel-5 Precursor (dedicated platform)

2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030
Sentinel-5p
Sentinel-4-1
Sentinel-5-1
Sentinel-4- 2
Sentinel-5- 2
Sentinel-5-3

European Space Agency



Sentinel-5 Precursor - TROPOMI

e TROPOspheric Monitoring Instrument on
ESA Sentinel-5 Precursor (TROPOMI)

* Pushbroom imager design similar to OMI,
but with:

» Improved spatial resolution (7x7 km?)
» Improved S/N ratio

» More spectral channels covering UV-
VIS-NIR-SWIR - Spectral bands: 270-
500 nm, 675-775 nm, 2305-2385 nm

Launch: November 2016



Summary / conclusion

Satellite observations of atmospheric composition in the UV/vis, NIR and
thermal IR provide consistent global datasets for many species distributed
between the surface and the mesosphere

The measurements are averaged horizontally and vertically which makes
them difficult to interpret

Remote sensing in an indirect method that necessitates use of a priori
information in the data retrieval which has an impact on the results

Visible and NIR measurements provide good sensitivity to the boundary
layer, the thermal IR has intrinsic vertical information

The future of nadir missions is bright, but we are facing a limb-sensor gap
for the continued monitoring of the stratospheric composition
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Thank you for your attention!

Questions?
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