

Earth System Monitoring & Modelling

Remote sensing of atmospheric composition

(with a focus on tropospheric and stratospheric trace gases)

Michel Van Roozendael

Royal Belgian Institute for Space Aeronomy (BIRA-IASB)

Earth System Monitoring & Modelling

Content

- Basics of remote-sensing of atmospheric gases
- Observations platforms
- Spectral ranges
- Radiative transport and retrieval methods
- Limb and occultation techniques
- Nadir sensing of the tropospheric composition using UV-Vis and TIR observations (GOME and IASI)
- Future missions

Earth System Monitoring & Modelling

Basics of (atmospheric) remote sensing

- Location of measurement is different from that of the instrument
 - ⇒ Information from atmosphere must be propagated to instrument by means of electromagnetic radiation
 - Remote sensing requires 'retrieval' = derivation from the atmospheric information from the radiation characteristics measured by the instrument
 - \Rightarrow Most common instruments: spectrometers

or

Radiation comes from an artificial light source (lamp, laser, ...) ⇔ active remote sensing

Earth System Monitoring & Modelling

Basics of remote sensing (2)

Earth System Monitoring & Modelling

Earth System Monitoring & Modelling

Wavelength ranges in remote sensing

- UV some absorptions + profile information, aerosols
- VIS surface information (vegetation) some absorptions aerosol information
- IR temperature information cloud information water / ice distinction many absorptions / emissions + profile information
- MW clouds are transparent ice / water contrast surfaces

Earth System Monitoring & Modelling

Remote-sensing platforms

Ground, aircraft, balloon, rocket, satellite

Satellite Orbits

(Near) Polar Orbit:

- ightarrow orbits cross close to the pole
- ightarrow global measurements are possible
- \rightarrow low earth orbit LEO (several 100 km)
- ightarrow ascending and descending branch

- Special case: sun-synchronous orbit:
 - overpass over given latitude always at the same local time, providing similar illumination
 - for sun-synchronous orbits: day and night branches

- **Geostationary Orbit:**
 - \rightarrow satellite has fixed position relative to the Earth
 - → parallel measurements in a limited area from low to middle latitudes
 - ightarrow 36 000 km flight altitude, equatorial orbit

http://marine.rutgers.edu/mrs/education/class/paul/orbits2.html

Earth System Monitoring & Modelling

Satellite observation geometries

Nadir:

- Backscattered solar radiation and/or emission measurements (also nighttime)
- Good spatial coverage and resolution
- Low vertical resolution

Solar occultation:

- Direct solar absorption
- High vertical resolution
- Low spatial resolution; low spatial coverage

<u>Limb:</u>

- Scattered light at the limb (UV-Vis)
- \succ Limb emission (IR) \Rightarrow also nighttime
- High vertical resolution
- Low spatial resolution; high spatial coverage

Earth System Monitoring & Modelling

Radiative transfer equation

Express the variation of the diffuse radiation in height *z* at one wavelength:

- A surface albedo
- B Planck radiation
- τ optical depth

Earth System Monitoring & Modelling

Earth System Monitoring & Modelling

Principle of limb/occultation profiling

Earth System Monitoring & Modelling

Ozone profiles from 6 limb sensors

Monthly zonal mean profiles of ozone mixing ratio (ppmv), for January 2008

Earth System Monitoring & Modelling

Sampling of limb sensors

Earth System Monitoring & Modelling

Data records from Limb-sounding satellite instruments between 1978 and 2010

Earth System Monitoring & Modelling

Altius: new limb imaging concept

Earth System Monitoring & Modelling

The very cold conditions in Arctic winter 2010/2011 led to the first Northern Hemisphere 'ozone hole'

https://www.imk-asf.kit.edu/english/1189.php

Earth System Monitoring & Modelling

1–12 August 2016 | ESA-ESRIN | Frascati (Rome), Italy

seom

Earth System Monitoring & Modelling

Limb TIR UPPER-TROPOSPHERIC SOUNDINGS

ppbv 20 18 0.B 16 14 0.5 12 0.4 10 8 0,2 6 -90 -80 -70 -60 -50 -40 -50 -20 -10 0 10 20 30 40 50 70 80 90 latitude [deg] Anthropogenic emissions

Ethane (C_2H_6) from MIPAS

Ethene (C_2H_4) from ACE-FTS

Courtesy of G.Stiller, KIT

Earth System Monitoring & Modelling

Earth System Monitoring & Modelling

Earth System Monitoring & Modelling

Nadir geometry Thermal infrared range

Earth System Monitoring & Modelling

Solar Backscatter UV (SBUV)

- Retrieval of ozone profile information from measurements at several wavelengths
- 12 wavelengths (250 340 nm)
- spectral band with of the channels : 1.1 nm
- horizontal resolution : 200 x 200 km²
- vertical resolution : approx. 8 km

Earth Incident Flux

Grating

∑ Depolarizer Photometer Chopper Wheel

Solar Incident Flux

Earth System Monitoring & Modelling

SBUV measurement principle

- Because of the large ozone absorption the penetration depth depends on the wavelength
- Comparison of measurements at different wavelengths provides profile information

Earth System Monitoring & Modelling

Total Ozone Mapping Spectrometer (TOMS)

- Global total ozone mapper
- 6 wavelengths in the UV
- good spatial resolution (50x50 km²)
- global coverage in 1 day
- Additional products (SO₂, aerosols)

The TOMS programme:

Satellite	Period								
Nimbus 7	Oct 78 – May 93								
Meteor3	Aug 91 – Dec 94								
Adeos	Aug 96 – Jun 97								
Earth Probe	Jul 96 – Dec 97								

Dec 97 – Dec 2006

Earth System Monitoring & Modelling

Global Ozone Monitoring Experiment (GOME)

- First simultaneous measurements of complete spectrum from the UV to the near IR
- good spectral resolution (0.2 0.4 nm)
- use of DOAS to retrieve columns of a number of species (O₃, NO₂, OCIO, BrO, HCHO, SO₂, H₂O)
- use of UV wavelengths to retrieve ozone profiles (BUV technique)

global coverage in 3 days

Operation on ERS-2:

From April 1995 until July 2011

Successors:

SCIAMACHY ENVISAT (2002-2012) GOME-2 METOP (2006-now) OMI AURA (2004-now) ...

Differential Optical Absorption Spectroscopy

Beer-lambert law applied to light transmission through a slab in the atmosphere

$$I(\lambda) = I_0(\lambda) \cdot e^{-\left[\sum_{i} \sigma_i(\lambda) \cdot c_i \cdot L + \left(\sum_{i} \alpha_i(\lambda) + \sum_{i} (\lambda) + \sum_{i} (\lambda)\right) \cdot L\right]}$$

Trace gases Rayleigh scattering ~ λ^{-4} Mie Scattering ~ $\lambda^{-(1...3)}$

DOAS
$$\rightarrow$$
 Frequency separation in the wavelength space
 $I(\lambda) = I_0(\lambda) \cdot e^{-[\sum \sigma'_i(\lambda) \cdot c_i \cdot L + (\sigma_{bi}(\lambda) + \varepsilon_{Ray}(\lambda) + \varepsilon_{Mie}(\lambda)) \cdot L]}$
High frequency Broadband band extinction
Remove by high-pass filtering

Earth System Monitoring & Modelling

Exemple of frequency separation

esa

Earth System Monitoring & Modelling

UV-Vis absorption cross-sections

Earth System Monitoring & Modelling

Seom 1–12 August 2016 | ESA-ESRIN | Frascati (Rome), Italy

esa

Earth System Monitoring & Modelling

Air Mass Factor (AMF)

The AMF is defined as the ratio of the trace gas slant optical density to the vertical one in the atmosphere: $AMF = \frac{\tau_s(\lambda, \Theta, \dots)}{$

The AMF expresses the sensitivity of the measurement, and depends on a variety of parameters such as: $AMF(\lambda,\theta) = \frac{-\log\{I^{-}(\lambda,\theta)/I^{+}(\lambda,\theta)\}}{\sigma(\lambda) \cdot VC}$

- wavelength
- geometry
- vertical distribution of the species
- clouds
- aerosol loading
- surface albedo

Because of the optically thin approximation, the AMF depends weakly on the vertical column \rightarrow the idea is that if all other dependences are known, the measured signal is proportional to the VC.

Earth System Monitoring & Modelling

AMF(z) dependences

Earth System Monitoring & Modelling

Surface albedo (or reflectivity)

Earth System Monitoring & Modelling

Surface albedo climatology (MODIS)

Earth System Monitoring & Modelling

Cloud fractions

Clouds detected as bright targets above dark surfaces. Their altitude can be derived from depth of O_2 -A band absorption in the NIR.

Earth System Monitoring & Modelling

How do we get vertical resolution in nadir UV/vis

observations?

Basic problem:

Nadir measurements contain stratospheric and tropospheric absorptions and in many cases no intrinsic vertical information

Earth System Monitoring & Modelling

A few highlights from GOME and successor missions

Long-term ozone monitoring

esa

→ EARTH OBSERVATION SUMMER SCHOOL

Earth System Monitoring & Modelling

GOME formaldehyde, July 1996

Polar BrO « explosion events »

Wagner and Platt, Satellite mapping of enhanced BrO concentrations in the troposphere, *Nature*, **395**, 1999, 486-490

Earth System Monitoring & Modelling

Carbon dioxide SCIAMACHY(WFMDv1.0)/ENVISAT 2003 01

SCIAMACHY \rightarrow mapping of carbon gases CO_2 and CH_4

Methane SCIAMACHY(WFMDv1.0)/ENVISAT 2003 01

Earth System Monitoring & Modelling

Earth System Monitoring & Modelling

Vertical profile information from TIR

Altitude information can be derived from:

- 1. Pressure broadening of absorption lines
- 2. Temperature dependence of line strengths

Vertical profile information up to ~35 km max

Details of retrievable profile information depend on molecule, S/N, spectral resolution of instrument...

Earth System Monitoring & Modelling

Examples of averaging kernels for ozone and CO

Earth System Monitoring & Modelling

Surface emissivity

Emissivity retrieved from satellite hyperspectral imagers (IASI)

Land Surf Emis at 750 (1/cm); 2008.06 Monthly Mean at 0.5-deg. Scale

Earth System Monitoring & Modelling

Thermal contrast (IASI)

Thermal contrast is highest in the morning over land surfaces

Clerbaux et al, Atmos. Chem. Phys., 9, 6041-6054, 2009

Earth System Monitoring & Modelling

A few IASI highlights

Mediterranean tropospheric ozone summer anomaly

Safieddine et al., ACP, 14, 10119-10131, 2014

Courtesy M. George, LATMOS

Earth System Monitoring & Modelling

Volcanic SO₂ plume detection

SO₂ vertical column [DU] OMI - KNMI/FMI/BIRA-IASB/NASA

20 May 2006 - 8 June 2006 SACS

Earth System Monitoring & Modelling

Overview of current and future nadir missions

The Sentinel Missions for Copernicus Atmosphere Services

GEOstationary (GEO)

- Hourly revisit time over Europe
- Mainly air quality
- Diurnal cycle of tropospheric composition
- \rightarrow SentineI-4 (on MTG-S)

Low Earth Orbit (LEO)

- Daily revisit time global coverage
- Climate, air quality, ozone & UV
- Tropospheric & stratospheric composition
- \rightarrow Sentinel-5 + IASI-NG (on MetOp-SG)
- \rightarrow Sentinel-5 Precursor (dedicated platform)

	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	
Sentinel-5p																	
Sentinel-4 - 1																	
Sentinel-5 - 1																	
Sentinel-4 - 2																	
Sentinel-5 - 2																	
Sentinel-5 - 3																	

European Space Agency

Earth System Monitoring & Modelling

Sentinel-5 Precursor - TROPOMI

- TROPOspheric Monitoring Instrument on ESA Sentinel-5 Precursor (TROPOMI)
- Pushbroom imager design similar to OMI, but with:
 - Improved spatial resolution (7x7 km²)
 - Improved S/N ratio
 - ➢ More spectral channels covering UV-VIS-NIR-SWIR → Spectral bands: 270-500 nm, 675-775 nm, 2305-2385 nm

Launch: November 2016

sentinel-5p

esa

Earth System Monitoring & Modelling

Summary / conclusion

- Satellite observations of atmospheric composition in the UV/vis, NIR and thermal IR provide consistent global datasets for many species distributed between the surface and the mesosphere
- The measurements are averaged horizontally and vertically which makes them difficult to interpret
- Remote sensing in an indirect method that necessitates use of a priori information in the data retrieval which has an impact on the results
- Visible and NIR measurements provide good sensitivity to the boundary layer, the thermal IR has intrinsic vertical information
- The future of nadir missions is bright, but we are facing a limb-sensor gap for the continued monitoring of the stratospheric composition

Earth System Monitoring & Modelling

Thank you for your attention!

Questions?