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Bayes theorem

p(x | y) = p(x)p(y | x)
p(y)

=
p(x)p(y | x)∫
p(x)p(y | x)dx
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Particle filter basics

Write the prior pdf as a sum of delta functions

p(x) =
M∑
i=1

wiδ(x− xi) (1)

Take a pointwise evaluation of the likelihood p(y | x).
Arrive at a new delta function representation of the posterior

p(x | y) =
M∑
i=1

ωiδ(x− xi) (2)

such that
ωi = p(y | xi)wi (3)
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The point of particle filters
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Filter degeneracy

2 simple definitions:

ωj = 1 for some j ∈ {1, . . . ,M} (4)

or
xi = xj for all i, j ∈ {1, . . . ,M} (5)

Thus

p(x) =

M∑
i=1

wiδ(x− xi) = δ(x− xj) (6)

Which means

p(x | y) = p(x)p(y | x)∫
p(x)p(y | x)dx

=
δ(x− xj)p(y | x)∫
δ(x− xj)p(y | x)dx

= δ(x−xj)

(7)
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Filter degeneracy in pictures
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Filter degeneracy in pictures

Prior and likelihood
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Filter degeneracy in pictures

Posterior
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Filter degeneracy in pictures

Posterior
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Proposal densities

p(x | y) = p(x)p(y | x)q(x, y, z)
p(y)q(x, y, z)

Write the proposal pdf as a sum of delta functions

q(x, y, z) =

M∑
i=1

wiδ(x− xi) (8)

Arrive at a new delta function representation of the posterior

p(x | y) =
M∑
i=1

ωiδ(x− xi) (9)

such that

ωi =
wip(xi)p(y | xi)

q(xi, y, z)
(10)
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Parameter estimation
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Filter degeneracy, a simple example

Suppose we have a model with only a single variable:

x = T (11)

where T is the temperature in this room, and evolves with
Newton’s law of cooling:

dx

dt
= −K(x− xr) (12)

Suppose we have Ny thermometers, independent, each that makes
Gaussian errors with zero mean and variance σ2

r .
Take the measurements, and they all agree that the temperature is
300K.
Start with an initial prior ensemble, evolve for a few days and look
at two different ensemble members.

x1 = 300 + σr x2 = 300− 2σr (13)

ESA EO Summer School 2016 Phil Browne Data assimilation practicals



Filter degeneracy, a simple example

Suppose we have a model with only a single variable:

x = T (11)

where T is the temperature in this room, and evolves with
Newton’s law of cooling:

dx

dt
= −K(x− xr) (12)

Suppose we have Ny thermometers, independent, each that makes
Gaussian errors with zero mean and variance σ2

r .

Take the measurements, and they all agree that the temperature is
300K.
Start with an initial prior ensemble, evolve for a few days and look
at two different ensemble members.

x1 = 300 + σr x2 = 300− 2σr (13)

ESA EO Summer School 2016 Phil Browne Data assimilation practicals



Filter degeneracy, a simple example

Suppose we have a model with only a single variable:

x = T (11)

where T is the temperature in this room, and evolves with
Newton’s law of cooling:

dx

dt
= −K(x− xr) (12)

Suppose we have Ny thermometers, independent, each that makes
Gaussian errors with zero mean and variance σ2

r .
Take the measurements, and they all agree that the temperature is
300K.

Start with an initial prior ensemble, evolve for a few days and look
at two different ensemble members.

x1 = 300 + σr x2 = 300− 2σr (13)

ESA EO Summer School 2016 Phil Browne Data assimilation practicals



Filter degeneracy, a simple example

Suppose we have a model with only a single variable:

x = T (11)

where T is the temperature in this room, and evolves with
Newton’s law of cooling:

dx

dt
= −K(x− xr) (12)

Suppose we have Ny thermometers, independent, each that makes
Gaussian errors with zero mean and variance σ2

r .
Take the measurements, and they all agree that the temperature is
300K.
Start with an initial prior ensemble, evolve for a few days and look
at two different ensemble members.

x1 = 300 + σr x2 = 300− 2σr (13)

ESA EO Summer School 2016 Phil Browne Data assimilation practicals



Filter degeneracy, a simple example

Gaussian likelihood:

ωi = p(y | xi) = exp

[
−1

2
(y −H(xi))

TR−1(y −H(xi))

]
(14)

ω1

ω2
=

exp
[
−1

2(y −H(x1))
TR−1(y −H(x1))

]
exp

[
−1

2(y −H(x2))TR−1(y −H(x2))
] =

exp
[
−1

2σrNyσ
−2
r σr

]
exp

[
−1

22σrNyσ
−2
r 2σr

]
ω1

ω2
=

exp
[
−1

2Ny

]
exp [−2Ny]

= exp

[
3

2
Ny

]
(15)
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Parameter estimation via state augmentation

Let’s use the Lorenz 63 example:

dx

dt
= σ(y − x)

dy

dt
= x(r − z)− y

dz

dt
= xy − bz

State estimation

x =

xy
z
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Parameter estimation via state augmentation

Let’s use the Lorenz 63 example:

dx

dt
= σ(y − x)

dy

dt
= x(r − z)− y

dz

dt
= xy − bz

State estimation Joint state and parameter estimation

x =

xy
z

 x =



x
y
z
σ
r
b
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Parameter estimation using the EnKF

What model should we use?

xk+1 = f(xk)

State estimation Joint state and parameter estimation

xk+1

yk+1

zk+1

 = f

xkyk
zk




xk+1

yk+1

zk+1

σk+1

rk+1

bk+1

 =


f

xkyk
zk


σk

+ εσ

rk

+ εr

bk

+ εb
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