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Caveat emptor!

I have biases. I try not to make them too obvious, but...

I have a strong bias towards the land surface

I have a strong bias towards optical EO

However! you can have this discussion for other components of the
Earth System, and other remote sensing domains!
Acknowledgments: Nicola Pounder, the rest of the UCL team, ESA
& NCEO
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What do you want out of EO data?

EO has the potential to provide monitoring capabilities:
Lots of things: Carbon and water fluxes, land use, . . .
Globally, but at fine spatial detail
All the time, and for long time periods

But there’s some effort to go from “EO data”⇒ “product”
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An example: What you want

Figure: Global GPP (Global Primary Productivity) Source
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http://dx.doi.org/10.1029/2010GB003996


An example: What you get

Figure: RGB composite ETM+7 Source
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http://earth.esa.int/services/pg/samples/landsat7_tm.jpg


The dichotomy...

Application requirements

Vegetation productivity [kg]

Biomass [kg]

Burned biomass [kg]

Evapotranspiration [W ·m−2]

EO measurements

Reflectance

Brigthness temperature

Radiance[W ·sr−1·m−2·Hz−1]

Backscatter[σ0]

Fundamental challenge⇒ EO data is an indirect measurement!

⇒ EO data need Interpretation
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The virtual constellation concept

Monitoring a process of interest with a single sensor is typically difficult

Sensors are built as a compromise with different users, so design
typically optimal only for a few applications.

Continuous monitoring hampered by clouds, orbits, . . .

Different sensors have different sensitivity to different parameters

Different sensors also have different “nuisance” processes to worry
about

So we need a framework to consistently interpret observations from
different sensors.
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Two “schools” for EO interpretation

Empirical/Inductive Usually based on correlations between obs &
“ground truth” measurements.

Physical/Deductive (Usually) based on physical models that describe eg
radiation-soil-canopy interactions.

Bottom line

Empirical approach 7 are easy, but hardly robust.
Really hard to extend to multi-sensor schemes

Physical-approach 3 encompasses our knowledge about physics,
sensor characteristics, etc.

7 Usually requires loads of ancillary data
3 But you can also stand on the shoulders of giants!
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The forward problem

A model H describes the effect of the land surface in the
measurements (~R)

Typically, model based on radiative transfer theory
e.g. the amount of vegetation changes⇒ reflectance changes
We define the state vector ~x as a set of land surface parameters that
describe the land surface

Mathematically
~x H−→ ~R

i.e. if state vector is known, then we can predict observations

Usually, we have observations and want to know the state!
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The inverse problem

The inverse problem is what we’re interested in

A statistical model that describes the observations could be

~R = H(~x) + ν

ν is additive random noise (assume Gaussian N(0,Cobs)

So a solution is a state vector that results in a prediction that goes
through the observations, or∣∣∣∣∣∣H(~x) − ~R

∣∣∣∣∣∣2 6 ν
If ν > 0, then we have infinite solutions
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An example

The setup

Landsat TM
spectral/angular
sampling

Green canopy. LAI
4.2

e.g. lush & green
wheat crop

Noise:
typical/optimistic
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An ill-posed problem

1 Invert RT model for MERIS observations of a field

2 Predict surf refl for MODIS observations of same field
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Probability

Can’t avoid ill posedness, so embrace it!!

Assume we no longer have discrete parameters, but parameter
distributions.

The param distribution encompasses our current belief in the value
of the parameter.

10 5 0 5 10

Our problem is now how to express p(~x|~R), the probability of the state ~x
conditioned on the observations, ~R.
⇒ Use Bayes’ Rule!
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An S2/MSI posterior pdf
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A priori distribution

Any prior knowledge is feasible!

The challenge is the ability to encode it in a pdf

Typically, we might have some idea of e.g. parameter boundaries,
or typical values

However, we should also consider models as priors

After all, a model gives a prediction of the observations
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A bit about models

Statistical A “black box” “harvested” from observations as an
input/output map ping

Process-based A combination of mechanistic descriptions of processes
and their int eractions.

In practice, most practical models are a pragmatic blend of both types.

Model type Statistical Process-based
Pros Easy. Uncertainty formalism Wider range of validity
Cons Limited validity Missing processes
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Some of the problems with “models”

Parameters may be based on a few studies

Drivers (meteo data) may have large uncertainties

The model might have missing or incorrect descriptions of
processes that are important

The interfacing between processes might be poor (eg
spatial/temporal scales etc)

7 It’s hard to quantify how much uncertainty goes into each of these
boxes.

In the view of all the above, we should have methods allow some
moderation of the influence of models!
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A variational DA framework: eoldas ng

Remember variational DA?
Assumptions:

Gaussian statistics
Linear (or weakly non-linear) models

Problem is minimisation of a cost function

Quite efficient using gradient descent methods

A framework for EO data interpretation⇒ eoldas ng
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Weak constraint assimilation

Define a cost function J(~x) to minimise:

J(~x) = Jprior (~x) + Jobs(~x) + Jmodel(~x) (1)

Prior Penalisation for departure of the model state from its a priori
distribution.

Jprior (~x) =
1
2
[~x − ~xprior ]

T C−1
prior [~x − ~xprior ] (2)

Observation Penalisation associated with differences between the
observed (~R) and predicted magnitudes (e.g. reflectances) using
the observation operator H

Jobs(~x) =
1
2
[~R −H(~x)]T C−1

obs[
~R −H(~x)] (3)

Dynamic model Penalisation for departure of the model state from that
predicted by an underlying process model M

Jmodel(~x) =
1
2
[~x −M(~x)]T C−1

model [~x −M(~x)] (4)
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Regularisation (penalise non-smooth solutions)

Lots of history in image processing (⇒ Markov Random Fields)
Assume evolution of a parameter is smooth, but enforce weakly

e.g. first order difference are zero mean gaussian distributed
Width of distribution⇒ Degree of belief in smoothness

Can also use other models (e.g. double logistic for LAI...) weakly
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The dynamic model

Jmodel  
1
2
[∆~x]T C−1

model [∆~x], ∆ =


1 −1 0 · · · 0
0 1 −1 · · · 0
...

...
...

. . . 0
0 0 0 · · · −1

 (5)

But... what’s the value for Cmodel?

Use generalised cross validation to find out it’s value
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Shortcomings of using physical models

Radiative Transfer models as observation operators issues:
1 Speedof RT models
2 Requirement of e.g. adjoint code
3 Large problems (e.g. lots of pixels) require lots of iterations of

minimise

Partial solution: Gaussian Process emulators

Very fast approximations to the full model
Good for non-linear models
Easy to train (typically 100 model runs)
Easy to calculate first and second order derivatives
Provide an estimate of approximation uncertainty
Able to work with single band or full spectrum
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Emulation (I): PROSPECT+SAIL

Figure: Gómez-Dans et al., (2016), Rem Sens
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Emulation (II): 6S+PROSPECT+SAIL

Figure: Gómez-Dans et al., (2016), Rem Sens
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Emulation (III): PROSPECT+SAIL, Gradient

Figure: Gómez-Dans et al., (2016), Rem Sens
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How does all this work together?

Let’s consider how the vegetation evolves over a year in a maize field in
Illinois.

We will use MODIS daily surface reflectance

We will interpret the MODIS data using the PROSAIL RT model

We will use emulators to access its gradient etc.

We will assume that parameters change smoothly (regularisation),
so our model is

LAItomorrow = LAItoday + ν

We will also add some non-polemic prior distributions as priors
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An example using MODIS data: Bondville
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Putting it all together: “Sentinel” example

Sentinel2 + S3/SLSTR + ProbaV time series

Using PROSAIL RT model through emulators

Using temporal regularisation

Solution using gradient descent

Solved using eoldas ng package
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The data
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How does the cost function look like?
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Windowed inversion: invert all observations in 8 days
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Putting it all together: “Sentinel” example

Figure: Gómez-Dans et al., (2016), Rem Sens
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Multi-sensor capabilities

Collaboration with Sina Truckenbrodt (Uni Jena, Germany)

Gebesee agricultural site in Thüringen (Germany). Part of
FLUXNET

Winter wheat field
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Mix’n’match of
optical sensors

Typical pattern for a
cloudy area

A reasonable first
test case
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Just solving for LAI...

Only attempting LAI
+ regularisation

Pattern is sensible
up to DoY ∼170

DoY > 170→
canopy senescence,
not yet taken into
account
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Can we explain the LAI trajectory?

The reflectance due to the canopy is to do with vegetation optical
depth (VOD)
Broadly, VOD controlled by

the amount of leaf area (LAI) and
the optical properties of the leaves

LAI and leaf optical properties compensate each other

Posterior covariance matrix, parameters would be anticorrelated
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Effective parameters

In the previous example, we made assumptions about our problem (we
assumed the leaves were healthy and green)

If the assumptions in the model aren’t met, the parameters are
wrong

Remember, we are estimating the a posteriori distribution: p(~x |~R, I)

I above means “any other bit of information we have used”

This includes assumptions about vegetation structure (e.g.
clumping)

So the parameters can become “effective”

In some applications, you can have an effective parameter and still
be useful.
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Final remarks

Physical models allow one to explain a lot of the processes that give
rise to the obesrvations

These processes and the parameters that control them are usually
what you want for applications

The inverse problem results in a non-unique solution due to the limit
in information content in the observations
A Bayesian framework (DA) allows you to:

Supplement the observations with prior information (distributions,
models, . . . )
Blend different observational streams consistently
Get a grasp on uncertainty

Beware of assumptions in your models! Do they meet reality?

Today’s practical hopefully demonstrates this!
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