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Lecture content

1. What a C model has to do
2. Types of C models
3. Interfacing data to models: concepts 

and examples
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A Systems Approach Implies Models
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Timescale of models

Change in emphasis from prediction out to 2100 to regional & 
decadal prediction

Implications: 
1. For century scale prediction, asymptotic behaviour matters, not 

initial conditions 
2. For decadal prediction, initial conditions are critical. This changes 

totally the relation between models and data and the needs of 
models for data, and makes EO data an essential part of the 
process.
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Terms:

• Above Ground Biomass (AGB)

• Above Ground Biomass (BGB)

• Litter

• Soil Carbon (Organic Matter: SOM)

• Leaves

• Fine Roots

The Role of Vegetation & Soils in the C Balance
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Generic model of carbon flows through an 
ecosystem
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Carbon flux models

• ESM carbon flux models developed mainly to investigate 
the response of the land and ocean to climate change.

• Intended to be predictive, hence parameterised rather 
than data-driven.

• Designed for a data-poor environment.
• Land models extended to allow full climate-land surface 

coupling so that climate-carbon cycle feedbacks can be 
taken into account.
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Should carbon models worry only about 
fluxes?

Weaknesses of these models:
1. Not constrained by data 
2. Behaviour is entirely 

controlled by internal 
parameters and climate

3. Focus on C fluxes, not C 
pools
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Why C pools matter: C residence time is a key variable

The importance of getting the pools right becomes manifestly 
clear from a key finding of Friend et al. (PNAS 2014):

Carbon residence time dominates uncertainty in terrestrial 
vegetation responses to future climate and atmospheric CO2.
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Residence time is a simple consequence of the 
generic model

Make the reasonable 
assumption that the loss 
rate from a pool is 
proportional to the size of 
the pool, i.e.

L = C/τ
where τ is the residence 
(turnover) time. Then the 
equilibrium size of the 
pool is τP, where P is the 
mean input into the pool.
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Estimating residence time

For the biomass pool, B, then in steady state,
B = τBPB

where  PB is mean production of biomass = NPP. 

So we would expect:  biomass ∝ NPP

If the fraction of NPP allocated to above-ground 
biomass (AGB) is constant and known (= fB) we would 
then expect 

AGB ∝ fB NPP

Then C residence time = AGB/(fB NPP)
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Carbon turnover rate (NPP/biomass)

Modelled

“Observed” =
NPP (MODIS)/ 
biomass (Envisat)

Relative difference

Thurner et al. 2017
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Models disagree sharply on biomass 
distribution …….

Biomass estimates from 3 state-of-the-
art Dynamic Vegetation Models

Carbon cycle models need to be evaluated 
against independent biomass maps
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Other 
inputs

How can data affect a carbon flux model?

Parameters
Climate

Sn Sn+1Model

Processes Testing

Feedback?
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EO interactions with a Land Surface Model

Parameters

LSM

Climate

Soils

Sn Sn+

1

Processes

Observable

Land 
cover
Forest 
age

Phenology
Snow water
Burnt area

Testing:
Radiance
fAPAR

Possible feedback

Fire emissions
fAPAR
LAI
Snow cover

Basic spatial 
scale of the LSM 
is the climate 
grid-cell scale
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CASA: a Light Use Efficiency Model

Light Use Efficiency:

GPP = ε x PAR x fAPAR

ε = εmax x ft x fw
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•Driving the models with different land cover
data sets causes the NBP to differ by up to
30%.
•Water fluxes remained largely unchanged.

Trees Herbaceous Bare Ground

Eurasia

N. America

Key
Messages:
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Initialising models using biomass data

NEP simulated by ORCHIDEE-FM with (b) and without 
(a) input age maps reconstructed from biomass data 
(Bellassen 2012)
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The Date of budburst derived from 
minimum NDWI (VGT sensor, 2000)

Day of year



Start of budburst

T0

∑
days

min(0, T – T0) > Threshold, budburst occurs.
The sum is the red area. Optimise over the 2 parameters, Threshold 
and T0 (minimum effective temperature).

When

The spring warming budburst algorithm



Spatial variation of model-data fit

The picture can't be displayed.

The picture can't be displayed.



Comparison of ground data with calibrated model



Effects of bias on NPP

1 day earlier BB => NPP 
increases by 10.1 gC m-2 y-1

(~2.2%)
Growing season ~100 days

Without adaptation, 5o C increase
=>BB occurs 16 days earlier
=> 34% increase in NPP.

Biases in NDVI can be up to 15
days due to snow effects =>
errors in NPP of 32%



Spatial pattern of burn 2001

Fraction of area burnt per pixel



Spatial pattern of burn 2004

Fraction of area burnt per pixel



Burnt Area and Emissions

Fire Emissions (TgC yr-1), 50º- 75º 
N

Burnt Area (Mha yr-1), 50º- 75º N



CARDAMOM DALEC: 
a terrestrial ecosystem carbon cycle analysis 

p(x|c) ∝ p(c|x) p(x)
Parameter probability p(x|c) at each pixel 

derived using a Metropolis-Hastings MCMC 
algorithm

Biometric Data Constraints

DALEC model

Drivers: 
ERA-interim 1° x 1°
resolution 8-day 
time-step 2001-2010

Dynamic & 
ecological, data 
independent 
constraints.

Posterior DALEC 
Parameter 
Probability
1° x 1° Pixel Scale
Parameter, Flux & 
carbon pool 
estimates

MODIS LAI 
time series Pan-Tropical 

Biomass

HWSD Soil Organic 
C

Saatchi et al. 2011

Hiederer & Köchy, 2012

Bloom et al., 2013, in 
prep.

C state likelihood 
function = observation 
likelihood & parameter 
priors
No spin-up
No PFTs
No Steady state



Mean monthly NEE at 1°
x 1°

2001-2010: global 
terrestrial carbon cycle 
analysis.

Bloom & Williams, in prep.
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Global patterns, seasonal cycles, residence times
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Global Carbon Data Assimilation System
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