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Why invert gravity gradients?

=> Different depth sensitivity of 
gradients can be exploited



Enhanced satellite gravity gradient 
imaging of Earth

(Crust1.0)



Enhanced satellite gravity gradient 
imaging of Earth

Shape index is a combination of minimum and maximum 
curvature:

indicates tectonic regimes with different crustal 
characteristics

(Crust1.0)



Non-uniqueness in gravity inversion

• Finding any density distribution that explains the
gravity field is trivially easy (sort of)

• Example
– Gravity measured at height h
– Put surface density distribution 𝜎𝜎(𝑥𝑥,𝑦𝑦) at height 0
– Use Fourier-Transform to get density

– This is basically filtering
• Meaningful density inversion requires constraints!

𝜎𝜎 𝑘𝑘𝑥𝑥 , 𝑘𝑘𝑦𝑦 =
𝑔𝑔 𝑘𝑘𝑥𝑥 ,𝑘𝑘𝑦𝑦

𝐺𝐺
𝑒𝑒

𝑘𝑘𝑥𝑥2+𝑘𝑘𝑦𝑦2 ℎ



Global crustal model Crust1.0

Moho depth from Crust1.0 
(Laske et al. 2013)

• De-facto standard for global crustal models
• Gives crustal layers and seismic velocities
• Based on results from active seismics

combined using expert knowledge
• Uses predefined geological domains



Active source seismology (continental scale)

Global crustal models are based
on compilations of

published interpretations!

Chemical 
Explosives [1]

Hydraulic
vibrations

Peaceful nuclear
Explosions [2]

Continental scale
Refraction and reflection profiles

Rowes 2009

Rowes 2009



Global crustal model Crust1.0

Moho depth from Crust1.0 
(Laske et al. 2013)

• De-facto standard for global crustal models
• Gives crustal layers and seismic velocities
• Based on results from active seismics

combined using expert knowledge
• Uses predefined geological domains

Global coverage of active source seismology



Kriging interpolation

• Range: 9.5° (approx. 1000 km)
• Nugget: 15 km²
• Sill: 100 km²

Semivariance:
Mean squared difference as
a function of separation

Meaning of parameters
• Nugget: Small-scale + 

measurement errors
• Range: Correlation distance
• Sill: Scale of variability

Kriging equation: 

�̂�𝑍∗ = 𝜇𝜇 + �
𝑖𝑖

𝜆𝜆𝑖𝑖(𝑍𝑍𝑖𝑖 − 𝜇𝜇)

• Known values 𝑍𝑍𝑖𝑖 = 𝑍𝑍 𝑥𝑥𝑖𝑖
• Unknown value 𝑍𝑍∗ = 𝑍𝑍(𝑥𝑥∗)
• Mean value 𝜇𝜇
• Weights 𝜆𝜆𝑖𝑖 depend on point

distances and semivariogram

Example: One known point



Global scale kriging – technical challenges

One semivariogram for entire
Earth insufficient!
• Separate oceanic and

continental domains
• Determine

semivariograms for point
clusters

Result of Agglomerative Clustering

Nugget

Sill

Range



Global crustal model from interpolation

Moho depth from Interpolation

• Alternative by interpolation of constraints using 
only seismic information (velocity, depth)

• No expert knowledge required

• Provides uncertainties based on data 
quality/coverage

Global coverage of active source seismology

South America
> 12 km

Africa
> 8 km

Indonesia
> 8 km

Polar 
regions

Median relative 
accuracy +/- 20 %



Comparison of global crustal models

Moho depth from Interpolation Moho depth from Crust1.0



Enhanced satellite gravity gradient 
imaging of Earth

Tectonic regularisation relies on 
clustering seismic data related to age 
groups

Lith. Mantle

Crust

Base lithosphere =>

Moho =>



Invert satellite gravity gradient for
lithospheric structure

-> 3 competing requirements

1. Fit the
satellite gravity
gradient data

2. Compatible
with global 

crustal model

3. Compatible
with isostatic 

balance

Crust

Lithospheric
mantle

Sub-
lithospheric

mantle
410 km

Moho

Crustal
density is
variable

Mantle 
lithosphere
density is variable

3200 kg m-3

LAB = 120 km

Possible issues
• Non-uniqueness/trade-

offs
• Unclear data accuracy

Use Bayesian approach
with Monte Carlo Markov

Chain 



Inversion strategy

Bayesian inversion using hierarchical Monte-
Carlo-Markov-Chain approach

?



Probabilistic inversion

• 𝒎𝒎: Moho, Crustal density, Mantle density
• 𝒅𝒅: Observed Gravity and Topography data
• 𝑮𝑮: Forward operator
• 𝝐𝝐: Stochastic misfit

𝑃𝑃 𝒎𝒎 𝒅𝒅 =
𝑃𝑃 𝒅𝒅 𝒎𝒎 𝑃𝑃 𝒎𝒎

𝑃𝑃 𝒅𝒅 ∝ 𝑃𝑃 𝒅𝒅 𝒎𝒎 𝑃𝑃 𝒎𝒎

𝒅𝒅 = 𝑮𝑮 𝒎𝒎 + 𝝐𝝐 (forward problem)

(Bayes
theorem)

𝑃𝑃 𝒎𝒎 : prior probability (based on seismic constraints)
𝑃𝑃(𝒅𝒅|𝒎𝒎): Likelihood (data fit)



Bayesian inversion

• Put all model parameters (Moho, LAB, crustal density, mantle density) at 
all grid cells in a vector 𝒎𝒎

• Put all observed data in a vector 𝒅𝒅
• Each model is assigned a prior probability (based on e.g. seismic 

constraints) 𝑃𝑃(𝒎𝒎)
• Each model is assigned a likelihood based on how good it fits the data 
𝑃𝑃(𝒅𝒅|𝒎𝒎)

• Bayes theorem gives posterior probability:

𝑃𝑃 𝒎𝒎 𝒅𝒅 =
𝑃𝑃 𝒅𝒅 𝒎𝒎 𝑃𝑃 𝒎𝒎

𝑃𝑃 𝒅𝒅 ∝ 𝑃𝑃 𝒅𝒅 𝒎𝒎 𝑃𝑃 𝒎𝒎



Bayes theorem

𝑃𝑃 𝒎𝒎 𝒅𝒅 ∝ 𝑃𝑃 𝒅𝒅 𝒎𝒎 𝑃𝑃 𝒎𝒎

Question: How good (likely) is a model m?

Data fit Prior information



The likelihood function
Random term 𝝐𝝐 might reflect
• measurement errors
• forward modelling errors
• unmodelled contributions

Typical assumptions for 𝝐𝝐

𝒅𝒅 = 𝑮𝑮 𝒎𝒎 + 𝝐𝝐

𝑃𝑃 𝒎𝒎,𝝈𝝈 𝒅𝒅 ∝ 𝑃𝑃 𝒅𝒅 𝒎𝒎,𝝈𝝈 𝑃𝑃 𝒎𝒎 𝑃𝑃(𝝈𝝈)

Independent Gaussian

Assumed variance
(often ad-hoc)

Proposed improvements

Correlated Gaussian
(gravity gradients)

Variable variance
(Hierarchical MCMC)



Probabilistic inversion

Use MCMC 
(Metropolis-Hastings 

algorithm) to find 
ensemble of solutions

𝒎𝒎𝒊𝒊

𝑃𝑃 𝒎𝒎,𝝈𝝈 𝒅𝒅 ∝
𝑃𝑃 𝒅𝒅 𝒎𝒎,𝝈𝝈 𝑃𝑃 𝒎𝒎 𝑃𝑃(𝝈𝝈)

𝒅𝒅 = 𝑮𝑮 𝒎𝒎 + 𝝐𝝐 Crust

Lithospheric
mantle

Sub-
lithospheric

mantle
410 km

Moho

LAB = 120 km

Each model:
N columns



Metropolis-Hastings
Goal: 

Generate samples from a 
probability distribution P(x) In our case P(x) is P(m|d)

Starting value 𝑥𝑥0
Add a random

pertubation p to get
𝑥𝑥1 = 𝑥𝑥0 + 𝑝𝑝

Is 𝑃𝑃(𝑥𝑥1) > 𝑃𝑃(𝑥𝑥0)?Accept 𝑥𝑥1 as new
value

Generate random number 𝑢𝑢
between 0 and 1

yes

no

Is 𝑢𝑢 < 𝑃𝑃 𝑥𝑥1
𝑃𝑃(𝑥𝑥0)

?

Result:
The sequence of
𝑥𝑥0, 𝑥𝑥1, … , are
representative
samples of 𝑃𝑃 𝑥𝑥 !

yes



Test area: Mid-Atlantic

Mid-Atlantic
ridge

Azores

Great Meteor
seamounts

Topography from ETOPO1
(Amante and Eakins 2009)

Downsampled to 1° resolution

Elevated
ridge
segment

Why Azores?
• Cooling trend in oceanic lithosphere
• Signature of hotspots



Input data for inversion

Equivalent topography
(Sediments corr.)

Satellite gravity gradients
@ 225 km height
(Topo+Sediments corr.)
„Bouguer anomaly“



Seismic constraints

Moho depth Crustal density

Density uncertaintyMoho uncertainty



Prediction based on inital data

Observed Topography Observed vertical gravity gradient

Predicted Topography Predicted vertical gravity gradient



Inversion after 2 million iterations

Converges to ~0.2 (km or E)

Convergence
𝑃𝑃 𝒎𝒎,𝜎𝜎 𝒅𝒅 ∝ 𝑃𝑃 𝒅𝒅 𝒎𝒎,𝝈𝝈 𝑃𝑃 𝒎𝒎 𝑃𝑃(𝝈𝝈)



Inversion results

Inversion result
Mean of last
500,000 models

Starting values

Data residuals (RMS):
Guu: 0.06 E
Topography: 100 m



Gradient data fit (mean model!)

Observed gradients

Modelled gradients

Residual gradients

North-
South 
trend

Component EE NE EU NN NU UU

St. Dev. 0.03 E 0.01 E 0.03 E 0.04 E 0.03 E 0.06 E



Topography and gradient data fit (mean model!)

Residual
St. Dev: 0.09 km

Residual gradients

North-
South 
trend

Component EE NE EU NN NU UU

St. Dev. 0.03 E 0.01 E 0.03 E 0.04 E 0.03 E 0.06 E



Spatial characteristics of gravity gradients

Semivariogram analysis of satellite free-
air gravity gradients

𝛾𝛾 ℎ = Average squared difference between points at a separation ℎ

Plateau value 
corresponds to 
variance
-> Agrees with 
theoretical 
expectation

Distance where saturation reached = correlation 
distance 

• Use analytical covariance function

𝐶𝐶 ℎ = C0 exp(−
ℎ
𝜌𝜌

)

• Determine covariance matrix between all 
pairs of point

Σ𝑖𝑖𝑖𝑖 = 𝐶𝐶(ℎ𝑖𝑖𝑖𝑖)

• Use multivariate normal distribution as
misfit function

New misfit function

𝒑𝒑 𝒎𝒎 𝒅𝒅 ∝ 𝜮𝜮 −𝟏𝟏𝟐𝟐𝒆𝒆−
𝟏𝟏
𝟐𝟐 𝒅𝒅−𝑮𝑮 𝒎𝒎

𝑻𝑻
𝜮𝜮−𝟏𝟏(𝒅𝒅−𝑮𝑮 𝒎𝒎 )



Capabilities and limitations

+ Expected
lithospheric signal
has been resolved

- Limited resolution in 
crust

+ Reasonable data fit

+ More observations are easy to
include

- Numerically inefficient

+ More prior information is easy to add
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Application to global inversion

Joint inversion of satellite data 
and other geophysical 
information can provide a 
global reference/background 
model for applications from 
geodynamics to exploration

Can be used to evaluate 
seismic tomography and 
possibly reconcile observations
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Initial Model

LITHO 1.0
The LITHO1.0 model is a 1° tessellated model of
the crust and uppermost mantle of the earth,
extending into the upper mantle to include the
lithospheric lid and underlying asthenosphere.



Inversion set-up



Initial Model



Fitting of Observations 



Estimating of Parameters
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Application to global inversion

Similarities to 
tomography models
-> comparison can 
provide temperature and 
composition
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Summary

Satellite gravity data provide complementary information

Probabilistic inversion can exploit large suite of models 
• Constraints can be implemented, e.g. seismic 

depths, data inter-dependencies
• But uncertainties should be included in inversion

Inversion results in density structure of the crust and 
upper mantle -> reflects temperature

Comparison of gravity inversion and seismic tomography 
can provide temperature and composition on a-> 
Application to Antarctica

www.3dearth.uni-kiel.de
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