

→ EARTH OBSERVATION SUMMER SCHOOL

Earth System Monitoring & Modelling

30 July–10 August 2018 | ESA–ESRIN | Frascati (Rome) Italy

Joint inversion of satellite and other geophysical data

Jörg Ebbing

ESA UNCLASSIFIED - For Official Use

European Space Agency

Joint inversion of satellite and other geophysical data

Jörg Ebbing Department of Geosciences Kiel University

Wolfgang Szwillus, Peter Haas - Kiel

Juan Carlos Afonso, Farshad Salajegheh - Macquarie - Sydney

ESA UNCLASSIFIED - For Official Use

Jörg Ebbing | ESRIN | 09/08/2018 | Slide 2

Why invert gravity gradients?

Christian-Albrechts-Universität zu Kiel

=> Different depth sensitivity of gradients can be exploited

Enhanced satellite gravity gradient imaging of Earth

Enhanced satellite gravity gradient imaging of Earth

Christian-Albrechts-Universität zu Kiel

a) Shape Index

b) Tectonic regularisation

Shape index is a combination of minimum and maximum curvature: indicates tectonic regimes with different crustal characteristics

$$S_i = \frac{2}{\pi} \arctan\left(\frac{G_{zz}}{\sqrt{(G_{xx} - G_{yy})^2 + 4G_{xy}^2}}\right)$$

Non-uniqueness in gravity inversion

- Finding any density distribution that explains the gravity field is **trivially easy** (sort of)
- Example
 - Gravity measured at height h
 - Put surface density distribution $\sigma(x, y)$ at height 0
 - Use Fourier-Transform to get density

$$\sigma(k_x, k_y) = \frac{g(k_x, k_y)}{G} e^{\sqrt{k_x^2 + k_y^2} h}$$

- This is basically filtering
- Meaningful density inversion requires **constraints**!

Global crustal model Crust1.0

60 55 [km]

50

20 15 10 depth

Moho (

Christian-Albrechts-Universität zu Kiel

Moho depth from Crust1.0 (Laske et al. 2013)

- De-facto standard for global crustal models ۰
- Gives crustal layers and seismic velocities ٠
- Based on results from active seismics • combined using expert knowledge
- Uses predefined geological domains

Active source seismology (continental scale)

Global crustal model Crust1.0

65

depth

35 oqo 30 qo

25 20

15 10 CAU

Christian-Albrechts-Universität zu Kiel

Moho depth from Crust1.0 (Laske et al. 2013)

- De-facto standard for global crustal models
- Gives crustal layers and seismic velocities
- Based on results from active seismics combined using expert knowledge
- Uses predefined geological domains

Kriging interpolation

Semivariance: Mean squared difference as a function of separation

- Range: 9.5° (approx. 1000 km)
- Nugget: 15 km²
- Sill: 100 km²

Meaning of parameters

- Nugget: Small-scale + measurement errors
- Range: Correlation distance
- Sill: Scale of variability

Kriging equation:

$$\hat{Z}^* = \mu + \sum_i \lambda_i (Z_i - \mu)$$

- Known values $Z_i = Z(x_i)$
- Unknown value $Z^* = Z(x^*)$
- Mean value μ
- Weights λ_i depend on point distances and semivariogram

Global scale kriging – technical challenges

One semivariogram for entire Earth insufficient!

- Separate oceanic and continental domains
- Determine semivariograms for point clusters

Result of Agglomerative Clustering

Global crustal model from interpolation

CAU

Christian-Albrechts-Universität zu Kiel

Moho depth from Interpolation

Global coverage of active source seismology

- Alternative by interpolation of constraints using only seismic information (velocity, depth)
- No expert knowledge required
- Provides uncertainties based on data quality/coverage

Median relative accuracy +/- 20 %

Comparison of global crustal models

CAU

Christian-Albrechts-Universität zu Kiel

Moho depth from Interpolation

Moho depth from Crust1.0

Difference Crust1.0 - Interpolation

Enhanced satellite gravity gradient imaging of Earth

CAU

Proterozoic 2.5-1 Ga

Temperature

Thickness

Composition

Velocities

Densities

Phanerozoic < 1 Ga

warm

thin

fertile

low

high

Christian-Albrechts-Universität zu Kiel

Archean > 2.5 Ga

Cold

Thick

Depleted

high

Low

b) Tectonic regularisation

Tectonic regularisation relies on clustering seismic data related to age groups

Christian-Albrechts-Universität zu Kiel

Bayesian inversion using hierarchical Monte-Carlo-Markov-Chain approach

Probabilistic inversion

Christian-Albrechts-Universität zu Kiel

$$oldsymbol{d} = oldsymbol{G}(oldsymbol{m}) + oldsymbol{\epsilon}$$
 (forward problem)

- *m*: Moho, Crustal density, Mantle density
- d: Observed Gravity and Topography data
- G: Forward operator
- ϵ : Stochastic misfit

$$P(\boldsymbol{m}|\boldsymbol{d}) = \frac{P(\boldsymbol{d}|\boldsymbol{m})P(\boldsymbol{m})}{P(\boldsymbol{d})} \propto P(\boldsymbol{d}|\boldsymbol{m})P(\boldsymbol{m}) \quad \text{(Bayes theorem)}$$

 $P(\mathbf{m})$: prior probability (based on seismic constraints) $P(\mathbf{d}|\mathbf{m})$: Likelihood (data fit)

Bayesian inversion

- Put all model parameters (Moho, LAB, crustal density, mantle density) at all grid cells in a vector m
- Put all observed data in a vector *d*
- Each model is assigned a **prior probability** (based on e.g. seismic constraints) P(m)
- Each model is assigned a **likelihood** based on how good it fits the data P(d|m)
- Bayes theorem gives posterior probability:

$$P(\boldsymbol{m}|\boldsymbol{d}) = \frac{P(\boldsymbol{d}|\boldsymbol{m})P(\boldsymbol{m})}{P(\boldsymbol{d})} \propto P(\boldsymbol{d}|\boldsymbol{m})P(\boldsymbol{m})$$

Bayes theorem

Christian-Albrechts-Universität zu Kiel

Question: How good (likely) is a model

The likelihood function

Christian-Albrechts-Universität zu Kiel

$$d = G(m) + \epsilon$$

Random term ϵ might reflect

- measurement errors
- forward modelling errors
- unmodelled contributions

 $P(\boldsymbol{m}, \boldsymbol{\sigma} | \boldsymbol{d}) \propto P(\boldsymbol{d} | \boldsymbol{m}, \boldsymbol{\sigma}) P(\boldsymbol{m}) P(\boldsymbol{\sigma})$

Probabilistic inversion

CAU

$$d = G(m) + \epsilon$$

$$P(m, \sigma | d) \propto$$

$$P(m, \sigma) P(m) P(\sigma)$$

$$P(d | m, \sigma) P(m) P(\sigma)$$

$$Use MCMC$$

$$(Metropolis-Hastings algorithm) to find ensemble of solutions m_i

$$Iuse MCMC$$

$$Iuse$$$$

Metropolis-Hastings

Goal: Generate samples from a probability distribution P(x)

In our case P(**x**) is P(**m**|**d**)

Result: The sequence of $x_0, x_1, ..., are$ representative samples of P(x)!

Test area: Mid-Atlantic

Christian-Albrechts-Universität zu Kiel

Why Azores?

- Cooling trend in oceanic lithosphere
- Signature of hotspots

Input data for inversion

CAU

Christian-Albrechts-Universität zu Kiel

Equivalent topography (Sediments corr.)

Satellite gravity gradients @ 225 km height (Topo+Sediments corr.) "Bouguer anomaly"

45°N

40°N

35°N

Seismic constraints

25°W

Prediction based on inital data

Christian-Albrechts-Universität zu Kiel

Observed Topography

Predicted Topography

Observed vertical gravity gradient

Predicted vertical gravity gradient

Inversion after 2 million iterations

Christian-Albrechts-Universität zu Kiel

Converges to ~0.2 (km or E)

Inversion results

Gradient data fit (mean model!)

Topography and gradient data fit (mean model!)

Christian-Albrechts-Universität zu Kiel

CAU

Spatial characteristics of gravity gradients

Semivariogram analysis of satellite freeair gravity gradients

Distance where saturation reached = correlation distance

New misfit function

- Use analytical covariance function $C(h) = C_0 \exp(-\frac{h}{o})$
- Determine covariance matrix between all pairs of point

$$\Sigma_{ij} = C(h_{ij})$$

• Use multivariate normal distribution as misfit function

 $p(m|d) \propto |\Sigma|^{-rac{1}{2}} e^{-rac{1}{2} \left(d-G(m)
ight)^T \Sigma^{-1} \left(d-G(m)
ight)}$

Capabilities and limitations

Application to global inversion

Joint inversion of satellite data and other geophysical information can provide a global reference/background model for applications from geodynamics to exploration

Can be used to evaluate seismic tomography and possibly reconcile observations

ESA UNCLASSIFIED - For Official Use

European Space Agency

Initial Model

LITHO 1.0

The LITHO1.0 model is a 1° tessellated model of the crust and uppermost mantle of the earth, extending into the upper mantle to include the lithospheric lid and underlying asthenosphere.

ESA UNCLASSIFIED - For Official Use

Jörg Ebbing | ESRIN | 09/08/2018 | Slide 36

European Space Agency

Inversion set-up

2	MG3
	Macquarie's Geophysics and Geodynamics Group

a .,	a	۰.		a	a	a ,,	a "		-1.	a	a	a	a	a	a
1				a	a ,,	a _P	a "			a	a	a	a	a	8 ₁₁
a	8 a	۰.		а.,	а,			а_	a	a	а.,	a	a	a	a
а "	a	۰.		а,	а.			а _	a	a	a	a	a	a	а.,
a _n	a .,	a,	а,			a ,,	a .,	а.,	a	a ,	a	a	a.,,,	a	1
a,	a	a,	а.,			a ".	а.,	ø .,	a	a _m	a				
a .,		а,	a .,	a _	a .,	a "	а "	a _	a.,,			a	a ".	a .,,	a .,
а.,		a,	а.,		a	a.,.	a "	а.,	a			a	il	a	a,
а.,	a .,			а "				a	a ,,	a	a	۰.		а ₁₀	а,
a.	at 10			а "	a _			a "	a	a "	a ,,			ä	a,
a.,,		а,	, a "	a	a ,	a "	a			a "	a .,	a.,,	a	a	a ₁₀
а.,	#Le	а,	, a	a "	a	a	a			a	a	n	ii	a	a
a	a	а,	а.,	н.,		a "	a	a	a	a ,,,	a			a	a
a.,,	ä.					a ,.	a "	a	a "	a "	a .,			a	a.,
a	a			a	A	a.,,	R	8	a	A	18			a	a
											T Day				

Initial MOHO

Initial Crust Density

Initial Asthenosphere Density

Initial LAB

Fitting of Observations

CAU

Estimating of Parameters

CAU

Christian-Albrechts-Universität zu Kiel

3445

3440

3435

3420

3415

3550

3500

3400

20

-20

-40

-80

-100

-120

"E

-60 \$

Έ

꽃 3450

3430 E

3425

Application to global inversion

Similarities to tomography models -> comparison can provide temperature and composition

ESA UNCLASSIFIED - For Official Use

Jörg Ebbing | ESRIN | 09/08/2018 | Slide 41

European Space Agency

Summary

Satellite gravity data provide complementary information

Probabilistic inversion can exploit large suite of models

- Constraints can be implemented, e.g. seismic depths, data inter-dependencies
- But uncertainties should be included in inversion

Inversion results in density structure of the crust and upper mantle -> reflects temperature

Comparison of gravity inversion and seismic tomography can provide temperature and composition on a-> Application to Antarctica

Magnetic field

www.3dearth.uni-kiel.de

Jörg Ebbing | ESRIN | 09/08/2018 | Slide 42

ESA UNCLASSIFIED - For Official Use

European Space Agency