

→ EARTH OBSERVATION SUMMER SCHOOL

Earth System Monitoring & Modelling

30 July–10 August 2018 | ESA–ESRIN | Frascati (Rome) Italy

Linking Solid Earth and Cryosphere in Antarctica

Jörg Ebbing

ESA UNCLASSIFIED - For Official Use

Linking Solid Earth and Cryosphere in Antarctica

Jörg Ebbing, Kiel

Johannes Bouman, BKG, Frankfurt Folker Pappa, Kiel Fausto Ferraccioli, BAS Valentina Barletta, DTU Space Giovanni Macelloni, IAP

Jörg Ebbing | ESRIN | 10/08/2018 | Slide 2

ESA UNCLASSIFIED - For Official Use

□ II ▶ II ■ + II ■ ⊆ □ II II □ □ H ▲ II II □ II □ II

Ice dynamics with GOCE and GRACE

European Space Agency

+

The recent ice history in West Antarctica

Only low upper mantle viscosity can explain the extremely large uplift rates in the Amundsen Sea Sector

This means present-day signal has a 'memory' of only a few hundred years

ESA UNCLASSIFIED - For Official Use

Jörg Ebbing | ESRIN | 10/08/2018 | Slide 4

We use an history model for the last 12 years derived from repeat altimetry (by Ben Smith)

+ from 1900 up to 2002 we assume 1/4 of the present day melting rate - H1

Our assumption is based on ice history based on Mouginot, J., E. Rignot, and B. Scheuchl (2014) GRL

ESA UNCLASSIFIED - For Official Use

Jörg Ebbing | ESRIN | 10/08/2018 | Slide 5

Ice-sheet dynamics

In West Antarctica (**b**), subglacial water results from basal melt in the interior and in the ice-stream tributaries. Beneath the ice streams, water is stored in subglacial lakes that periodically drain downstream into the surrounding ocean. Regions of **elevated geothermal heat** can produce increased subglacial water.

- Important are temperature conditions at bottom and surface of ice sheet
- Elevated geothermal heat reason for rapid acceleration?

ESA UNCLASSIFIED - For Official Use

Jörg Ebbing | ESRIN | 10/08/2018 | Slide 6

Elevated geothermal heat?

Antarctica without the ice and in depth

How is the structure of the Antarctic continent?

How hot is Antarctica?

How does the Solid Earth affect the Cryosphere?

ESA UNCLASSIFIED - For Official Use

Jörg Ebbing | ESRIN | 10/08/2018 | Slide 8

Antarctica gravity after GOCE ...

Crustal thickness of Antarctica

Accuracy of seismic estimates

Christian-Albrechts-Universität zu Kiel

Up to 10km discrepancy in Moho depth. \rightarrow Shallow (~30km) or deep (~40km) Moho?

Lithospheric modelling: methodology

LitMod3D = LIThospheric MODelling in a 3D geometry:

combined geophysical-petrological forward modelling of the lithosphere and the sublithospheric mantle in finite difference.

- . heat equation
- . isostasy
- seismic body wave velocities
- rock properties as functions of temperature, pressure and composition

Perple_X: thermodynamic modelling of stable mineral phases for mantle compositions in the CFMAS system (CaO, FeO, MgO, Al_2O_3 , SiO_2)

LitMod3D: J. Fullea et al., 'LitMod3D: An Interactive 3-D Software to Model the Thermal, Compositional, Density, Rheological and Seismological Structure of the Lithosphere and Sublithospheric Upper Mantle', Geochemistry, Geophysics, Geosystems 10, no. 8 (2009).

Perple_X: J. A. D. Connolly, 'Computation of Phase Equilibria by Linear Programming: A Tool for Geodynamic Modeling and Its Application to Subduction Zone Decarbonation', Earth and Planetary Science Letters 236, no. 1 (2005): 524–541.

Lithospheric modelling: methodology

Sensitivity to Moho depth estimates

CAU

Sensitivity to Moho depth estimates

Sensitivity to Moho depth estimates

Validation against the gravity field

Christian-Albrechts-Universität zu Kiel

Both seismic based crustal thickness models do not fit the gravity field

- Models wrong?
- Contributions from crust or sub-crustal part?

Extension to full 3D lithospheric model over Antarctica using GOCE gravity gradients

Lithospheric modelling: set-up

Model dimensions: $6620 \text{ km} \times 6620 \text{ km} \times 400 \text{ km} \mid 50 \text{ km} \times 50 \text{ km} \times 2 \text{ km}$ cell size.

Vertically layered crust:

Туре	Bulk density [kg/m³]	Therm. Expans. [K ⁻¹]	Compressibilit y [GPa ⁻¹]	Heat prod. [µW/m³]	Therm. cond. [W/mK]
Upper crust	2670	1.0 e-6	1 e-10	1.0	2.35
Middle crust	2750	1.0 e-6	1 e-10	0.4	2.25
Lower crust	2800	1.0 e-6	8 e-11	0.4	2.0
Oceanic crust	2950	0	0	0.1	3.0

Lithospheric mantle domains:

<u>East Antarctica</u>: Proterozoic composition,
<u>West Antarctica</u>: Phanerozoic composition,
<u>Rift systems</u>: primitive upper mantle composition,
<u>Oceanic</u>: vertical harzburgite / lherzolithe layering.

AU

Grikurov & Leychenkov (2012)

Lithospheric modelling: data

Initial geometry of main lithospheric layers from:

- . BEDMAP2 dataset: ice thickness, bedrock topography,
- . multiple sources for offshore sediments,
- · seismological models.

Lithospheric modelling: results

High misfit from initial model geometry

Model 1:

 homogeneous crust, rough mantle domains

Model 2:

 refined crustal domains, Archaean lith. mantle blocks to improve gradient fit, shifted Moho & LAB to fit isostasy.

Model 3:

 based on Model 2, released isostatic equilibrium, shifted Moho & LAB to fit gravity gradients.

ESA UNCLASSIFIED - For Official Use

Lithospheric modelling: results

Models 2 & 3

6000

4000

2000

0

5

ESA UNCLASSIFIED - For Official Use

Jörg Ebbing | ESRIN | 10/08/2018 | Slide 24

+

Lithospheric modelling: results

Gravity gradients

0.2 -0.1 0.0 0.1 0.

Lithospheric modelling: Temperature

= ## .

ESA UNCLASSIFIED - For Official Use

Surface heat flow w/o Archaean mantle

+

Jörg Ebbing | ESRIN | 10/08/2018 | Slide 26

Comparison of heat flow models

How to reconcile heat-flow models?

Analysis of uncertainties in Solid Earth models and feedback to Ice temperatures

<u>Aims</u>

- 0. Joint analysis with seismological models
- Curie depth estimates based on (0) and combination with aeromagnetic data and crustal heat-production
- 2. Reconciliation of Solid Earth models and ice temperature profiles
- 3. Implications for ice-sheet modelling

Jörg Ebbing | ESRIN | 10/08/2018 | Slide 29

ESA UNCLASSIFIED - For Official Use

Temperature Profile from Glaciological models

Ts = Surface Temperature G = Geothermal Heat Flux, M = Accumulation ; H =

ESA UNCLASSIFIED - For Official Use

Jörg Ebbing | ESRIN | 10/08/2018 | Slide 30

Ice temperature from CryoSMOS study

250

245

240

235

230 225

ESA UNCLASSIFIED - For Official Use

Products available at: https://www.catds.fr/Products /Available-products-from-CEC-SM/CryoSMOS-project

Jörg Ebbing | ESRIN | 10/08/2018 | Slide 31

Geothermal heatflow from CryoSMOS

Input

Output

ESA UNCLASSIFIED - For Official Use

Jörg Ebbing | ESRIN | 10/08/2018 | Slide 32

+

Magnetic heat-flow estimates based on centroid method

8

Surface heat flux | Martos et al. (2017) mW/m² 120 ъ. - 100 , 6 80 60 40

-180°

ESA UNCLASSIFIED - For Official Use

Jörg Ebbing | ESRIN | 10/08/2018 | Slide 33

Magnetic heat-flow estimates based on centroid method

ESA UNCLASSIFIED - For Official Use

Jörg Ebbing | ESRIN | 10/08/2018 | Slide 34

Comparison of heat flow models

Model validation by Bayesian inversion

- Put all model parameters (**Moho**, **LAB**, **Curie depth**) at all grid cells in a vector *m*
- Put all observed data in a vector **d**
- Each model is assigned a **prior probability** *P*(*m*)
- Each model is assigned a **likelihood** based on how good it fits the data P(d|m)
- Bayes theorem gives posterior probability:

$$P(\boldsymbol{m}|\boldsymbol{d}) = \frac{P(\boldsymbol{d}|\boldsymbol{m})P(\boldsymbol{m})}{P(\boldsymbol{d})} \propto P(\boldsymbol{d}|\boldsymbol{m})P(\boldsymbol{m})$$

Curie isotherm

ESA UNCLASSIFIED - For Official Use

Jörg Ebbing | ESRIN | 10/08/2018 | Slide 36

Inversion results

ESA UNCLASSIFIED - For Official Use

Jörg Ebbing | ESRIN | 10/08/2018 | Slide 37

+

Inversion results

ESA UNCLASSIFIED - For Official Use

Jörg Ebbing | ESRIN | 10/08/2018 | Slide 38

+

_ II ▶ :: ■ + II ■ := _ II II = := := := M II = :: := := !

Correlation between variables from input and output

Results seem reasonable But: some random correlations between parameters

esa

Too strong influence by magnetic heat-flow estimates?

Jörg Ebbing | ESRIN | 10/08/2018 | Slide 39

Solid Earth structure of Antarctica is despite recent efforts still not well known

Satellite data can help to fill gaps in data coverageGOCE is useful for lithospheric modellingProvides background heat-flow

Better estimates of geothermal heat-flow are needed to understand Solid Earth-Cryosphere coupling

> Possibilities by Probabilistic inversion to detangle differences between geophysical methods in estimating heat-flow

ESA UNCLASSIFIED - For Official Use

Jörg Ebbing | ESRIN | 10/08/2018 | Slide 40

| = ■ ▶ = = + ■ + ■ = ≔ = ■ ■ ■ = = = = ■ ■ ■ ■ = = = ■ ₩ ↓

ESA UNCLASSIFIED - For Official Use

Jörg Ebbing | ESRIN | 10/08/2018 | Slide 41

•

__ 88 km = + 88 **=** ½ ≤ 88 88 **=** 58 km = 58 **=** 58 **•** 58 km = 58 km