

→ EARTH OBSERVATION SUMMER SCHOOL

Earth System Monitoring & Modelling

30 July–10 August 2018 | ESA–ESRIN | Frascati (Rome) Italy

OCEAN CIRCULATION II

Marie-Hélène RIO

ESA UNCLASSIFIED - For Official Use

Space and in-situ data synergy for a better retrieval of the ocean circulation

Complementarity of space and in-situ observations

ESA UNCLASSIFIED - For Official Use

thor | ESRIN | 18/10/2016 | Slide 2

+

Space and in-situ Observation network

TOPEX, JASON

ERS, ENVISAT, CRYOSAT, SENTINEL-3

Sea Surface Height

ENVISAT, Sentinel-1

ASCAT, QuickScat

Wind speed

SAR doppler velocity

ENVISAT, Sentinel-3

Sea Surface Temperature

Space data

GOCE, GRACE

Geoid

In-situ data

SVP drifting buoys

Surface/sub-surface velocities

ESA UNCLASSIFIED - For Official Use

Argo floats

Temperature, salinity profiles

Space and in-situ data synergy for a better retrieval of the ocean circulation

Geostrophic currents from Altimetry, space Gravity, in-situ measurements of T,S, surface drifter velocities

Ekman currents from in-situ drifting buoy velocities, altimetry, wind

SST/SSH synergy for higher resolution surface currents

ESA UNCLASSIFIED - For Official Use

Space and in-situ data synergy for a better retrieval of the ocean circulation

Geostrophic currents from Altimetry, space Gravity, in-situ measurements of T,S, surface drifter velocities

Ekman currents from in-situ drifting buoy velocities, altimetry, wind

SST/SSH synergy for higher resolution surface currents

ESA UNCLASSIFIED - For Official Use

Space gravity AND Altimetry synergy for ocean current retrieval

Computation of the « geodetic » MDT

MDT=MSS -GEOID

ESA UNCLASSIFIED - For Official Use

Author | ESRIN | 18/10/2016 | Slide 7

•

Mean Sea Surface estimation: 25 YEARS IMPROVEMENTS

Geoid estimation: 25 YEARS IMPROVEMENTS

Satellite-only geoid models

Model	Year	Max DO	Data
GRIM4S4	1995	70	Geodetic satellites
GRIM5S1	1999	99	Geodetic satellites
CHAMP3S	2003	140	33 months of CHAMP
GGM02S/ EIGEN3S	2005	150	2 years of GRACE
ITG- GRACE2010s	2010	180	7 years of GRACE
GOCE	2009- 2013	200- 250	2 months (R1) 6 months (R2) 1 year (R3) Full mission (R5)

RMS differences (in cm) between geoid models and GOCE-DIR-R5 filtered at 100km (on oceans)

Author | ESRIN | 18/10/2016 | Slide 9

ESA UNCLASSIFIED - For Official Use

Improvements Cumulative Errors XGMvsTIM

period: 2 improvement w.r.t. rl5 solution

UNIVERSITÄT BONN

Courtesy from Jan Martin Brockman University of Bonn

solid: empirical from difference to EGM_TIM_RLO5, dashed: formal from covariance matrix

Mean Dynamic Topography from a high resolution (1/12°) ocean numerical model

de 11

Agency

MDT GLORYS 1/12

2009

ESA UI

Space Agency

Slide 17

Beyond GOCE resolution: Synergy with space-borne and in-situ data

MDT spatial scales are expected to be lower than 100 km.

First baroclinic Rossby radius of deformation length scale at which the geostrophic balance will become important

ESA UNCLASSIFIED - For Official Use

- In order to go beyond GOCE resolution, synergy with other observations is needed
- Global Ocean

Drifting buoy velocities: One velocity measurement every 6 hours along the buoy trajectory => 2,16 km in 10 cm/s currents, 21.6 km in 1 m/s currents

Regionally

HF radar system (coastal) Typical resolution: 1-10 km, hourly SAR Doppler radial velocities Typical resolution: 4-8 km, every 2-4 days

Author | ESRIN | 18/10/2016 | Slide 22

Beyond GOCE resolution: Synergy with in-situ data

The CNES-CLS13 MDT

Beyond GOCE resolution: Synergy with in-situ data

original SVP drifter

$$U_{buoy} = U_{geost} + U_{ekman} + U_{tides} + U_{inertial} + U_{stokes} + U_{ageost_hf}$$

>Modelization of Ekman/Stokes currents >Low pass filtering

Number of Argo floats (T/S profiles and surface velocities)

Dynamic Height relative to a reference depth Pref -> baroclinic component of the geostrophic current

➢Processing is needed to add the missing barotropic and deep baroclinic component

Author | ESRIN | 18/10/2016 | Slide 24

Computation of mean heights and mean geostrophic velocities

At each position r and time t for which an oceanographic in-situ measurement is available: dynamic height h (r,t) or surface velocity u(r,t),v(r,t)

- the in-situ data is processed to match the physical content of the altimetric measurement.
- the altimetric height/velocity anomaly is interpolated to the position/date of the in-situ data.
- the altimetric anomaly is subtracted from the in-situ height/velocity

$$\overline{\mathbf{h}}_{\mathbf{P}} = \mathbf{h}_{\text{insitu}} - \mathbf{h'}_{\mathbf{P}}$$
 $\overline{\mathbf{u}}_{\mathbf{P}} = \mathbf{u}_{\text{insitu}} - \mathbf{u'}_{\mathbf{P}}$ $\overline{\mathbf{v}}_{\mathbf{P}} = \mathbf{v}_{\text{insitu}} - \mathbf{v'}_{\mathbf{P}}$

ESA UNCLASSIFIED - For Official Use

Author | ESRIN | 18/10/2016 | Slide 25

· = ■ ► = = + ■ + ■ = ≔ = ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

The CNES-CLS13 MDT (Rio et al, 2014)

First Guess = MSS – Geoid OPTIMALLY FILTERED

Synthetic Mean Zonal Velocity (1/4° box means)

Synthetic Mean Heights (1/4° box means)

Synthetic Mean Meridional Velocity (1/4° box means)

The CNES-CLS13 MDT

The GOCE only MDT (First Guess)

The GOCE only MDT (First Guess)

The CNES-CLS13 MDT

Refinement in the Agulhas current using SAR Doppler velocities

- radial velocities from the ENVISAT ASAR images acquired over the Agulhas Current region (lon/lat coordinates [13°, 36°], [-45°, -23°]) from 2007 to 2012 and processed on a systematic basis by (Collard et al., 2008; Johannessen et al., 2008)
- The 2 components velocity vectors are reconstructed using the altimeter-derived current direction information:

 V_a^{SAR} and V_d^{SAR} SAR-derived range velocities in ascending and descending passes.

 β_a and β_d angle between the SAR range direction and the altimeter-derived current direction for ascending and descending passes.

$${\stackrel{*}{V}}_{a} = \frac{V_{a}^{SAR}}{\cos(\beta_{a})} \qquad {\stackrel{*}{V}}_{d} = \frac{V_{d}^{SAR}}{\cos(\beta_{d})}$$

Author | ESRIN | 18/10/2016 | Slide 31

Refinement in the Agulhas current using SAR Doppler velocities

- radial velocities from the ENVISAT ASAR images acquired over the Agulhas Current region (lon/lat coordinates [13°, 36°], [-45°, -23°]) from 2007 to 2012 and processed on a systematic basis by (Collard et al., 2008; Johannessen et al., 2008)
- The 2 components velocity vectors are reconstructed using the altimeter-derived current direction information.

The Geostrophic current May, 5th 2016

Space and in-situ data synergy for a better retrieval of the ocean circulation

Geostrophic currents from Altimetry, space Gravity, in-situ measurements of T,S, surface drifter velocities

> Ekman currents from in-situ drifting buoy velocities, altimetry, wind

SST/SSH synergy for higher resolution surface currents

ESA UNCLASSIFIED - For Official Use

The wind-driven Ekman+Stokes currents

Wind-driven Ekman

The wind-driven Ekman+Stokes currents

The wind-driven Ekman+Stokes currents

Northern Hemisphere: solid line Southern Hemisphere: dashed line Surface: circles 15m depth: triangles

In Summer stratification increases => De decreases $\beta = \frac{\pi \sqrt{2}}{\rho f D_{-}} e^{\frac{\pi}{D_{E}}z} \text{ increases}$

 $\left|\theta\right| = \left(\frac{\pi}{4} + \frac{15}{D_{e}}\right)$ increases

Author | ESRIN | 18/10/2016 | Slide 37

ESA UNCLASSIFIED - For Official Use

The wind drivenEkman+Stokes current May, 5th 2016

The Globcurrent products (<u>http://www.globcurrent</u>.org)

Now accessible via the Copernicus Marine Service (CMEMS) http://www/copernicus.cmems.eu)

Simplified decomposition of Ocean Surface Currents (OSC)

_ II 🛌 ## ## II 💻 🚝 __ II II __ __ ## 🛶 📴 II __ ## ## ## 🗰

The Geostrophic current May, 5th 2016

The wind drivenEkman+Stokes current May, 5th 2016

Ocean Surface Current from Gravity+Altimetry+Wing CSa

Validation of the GlobCurrent Om currents: Comparison to independent data

 \checkmark Comparison to Argo surface velocities for the year 2015 (Not used for the MDT calculation nor the Ekman model estimation)

✓The Mercator-Ocean surface velocities

first level (0.5m) from the $1/4^{\circ}$ GLORYS2V4 reanalysis (with assimilation)

Number of Argo float data

*Unfiltered

Year 2015: 105349 (100379) velocities*	RMS (cm/s) Bracket: lat >3		
	U	V	
DRIFTER	27.6 (26.4)	22.8 (22.6)	
DRIFTER-GC Geostrophic	20.2 (19.1)	18.2 (17.7)	
DRIFTER-GC Geostrophic + Ekman	17.0 (15.8)	16.6 (16.0)	
DRIFTER-Mercator (1/4°)	19.3 (18.6)	18.7 (18.6)	

ESA UNCLASSIFIED - For Official Use

velocities: contain Geos, Ekman, Stokes, inertial oscillations, tidal current...

Author | ESRIN | 18/10/2016 | Slide 43

Validation of the GlobCurrent Om currents: Comparison to independent data

✓ Comparison to SVP drogued velocities for the year 2015 (Not used for the MDT calculation nor the Ekman model estimation)

The Mercator-Ocean surface velocities

 ninth level (13.99m) from the 1/4° GLORYS2V4 reanalysis
 The OSCAR (Ocean Surface Current Analysis Real-Time)
 NOAA product (see K. Dohan's talk on Thursday)
 Geostrophic currents based on AVISO data (with the old CNES-CLS09 MDT)

- Ekman current using variable eddy viscosity and NCEP winds -5 days mean, $1/3^{\circ}$ -averaged value over the top 30 m of the solution

Year 2015: 722657 (695020) velocities *	RMS (cm/s) Bracket: lat >3		
	U	V	
DRIFTER	23.0	18.8	
DRIFTER-GC Geostrophic	14.8 (13.6)	14.2 (13.6)	
DRIFTER-GC Geostrophic + Ekman	13.7 (12.5)	13.4 (12.8)	
DRIFTER-OSCAR	14.1 (13.4)	13.8 (13.0)	
DRIFTER-Mercator (1/4°)	15.9 (15.3)	15.2 (15.2)	

ESA UNCLASSIFIED - For Official Use

Number of SVP data

*Unfiltered velocities: contain Geos, Ekman, Stokes, inertial oscillations, tidal current...

Author | ESRIN | 18/10/2016 | Slide 44

· _ II 🕨 == + II == 🔚 _ II II == = = II == 🖬 == 💵 II == II 💥 🛀

Space and in-situ data synergy for a better retrieval of the ocean circulation

Geostrophic currents from Altimetry, space Gravity, in-situ measurements of T,S, surface drifter velocities

Ekman currents from in-situ drifting buoy velocities, altimetry, wind

SST/SSH synergy for higher resolution surface currents

ESA UNCLASSIFIED - For Official Use

SSH/SST synergy for higher resolution surface currents

Sentinel-3 data on July, 28th 2016

SRAL and SLSTR

January, 1st 2004 Microwave SST product Altimeter geostrophic velocities

ESA UNCLASSIFIED - For Official Use

Author | ESRIN | 18/10/2016 | Slide 46

Effective Surface Quasi Geostrophy (E-SQG) Method CSA

Under favourable environmental conditions, the streamfunction ψ from which geostrophic velocities are derived, can be calculated from surface density values:

Lapeyre et al, 2006; Klein et al., 2008

Inversion of the Quasi Geostrophic Potentiel Vorticity conservation equation in the horizontal Fourier transform domain (valid for space scales of 10-200km)

N_{eff} is the effective Brunt-Vaisala frequency (constant stratification assumed)

 $a'N_{eff}^{-1}$ is a free parameter that needs to be set up to account both interior PV and the partial compensation of salinity and temperature.

 $\hat{\psi}(\vec{k}) = F_T(k)\hat{T}_s(\vec{k}),$

 $F_{T}(k)$ is the transfer fonction is to be determined using independent observations.

ESA UNCLASSIFIED - For Official Use

Author | ESRIN | 18/10/2016 | Slide 47

Effective Surface Quasi Geostrophy (E-SQG) Method

esa

Isern-Fontanet et al. [2014]: the geostrophic streamfunction at the ocean surface is proportional to the SSH (η).

$$\psi(\mathbf{x}) = \frac{g}{f_0} \,\eta(\mathbf{x}).$$

So that the transfer fonction can write:

 $F_T(k) = \frac{g}{f_0} \frac{\langle |\hat{\eta}| \rangle_k}{\langle |\hat{T}_s| \rangle_k},$

Combination of the phase of SST measurements and the amplitude of SSH measurements.

ESA UNCLASSIFIED - For Official Use

= II 🛌 == + II == 🚝 == II II == == 🖽 🛶 🚺 II == == II 💥 🖕 🖕

« Optical flow » methods: inversion of a tracer conservation equation

Require the velocity field (u,v) to obey the tracer concentration c evolution equation and inverse it for the velocity vector:

$$\frac{\partial c}{\partial t} + u \frac{\partial c}{\partial x} + v \frac{\partial c}{\partial y} = F(x, y, t)$$

c represents the concentration of any tracer as Sea Surface Temperature, Sea Surface Salinity, Chl-a concentration,

F(x,y,t) represents the source and sink terms

Challenge: only **along-gradient velocity** information can be retrieved from the tracer distribution at subsequent times in **strong gradients areas**.

Synergy : Following an approach proposed by Piterbarg et al (2009), the method is used on successive SST images using the altimeter geostrophic velocities as background so as to obtain an optimized 'blended' velocity (u_{opt} , v_{opt}). *Rio et al*, 2016, 2018 ESA UNCLASSIFIED - For Official Use

METHOD

Global implementation over 2014-2016

DATA USED

 Background velocities: CMEMS L4 altimeter gridded geostrophic velocity products: « twosat » (2 satellites configuration) - resolution ~250 km « allsat » (5 satellites configuraton) - resolution ~100km

 Sea Surface temperature: L4 OI (100km, 4 days) daily maps from REMSS MW: microwave sensors only - resolution ¼° MW_IR: microwave and infrared sensors - resolution ~9 km

- Three years (2014-2016) of global combined « twosat » SSH + MW SST and « allsat » SSH + MW-IR SST has been produced.
- Validation dataset: Drifting buoy velocities, SVP 15m drogued, 6 hourly resolution along the buoy trajectory

ESA UNCLASSIFIED - For Official Use

Author | ESRIN | 18/10/2016 | Slide 51

· = ■ ▶ = = + ■ + ■ = ≝ = ■ ■ ■ = = = = ■ ■ ■ ■ ■ = = = ■

Global implementation over 2014-2016

VALIDATION 2014-2016

ESA UNCLASSIFIED - For Official Use

Alti « twosat »

Alti « allsat »

« allsat » velocities closer to in-situ velocities than « twosat » velocities everywhere

Rio and Santoleri, 2018

Author | ESRIN | 18/10/2016 | Slide 53

3

5 6

3

VALIDATION 2014-2016

Alti « twosat » Alti « twosat » + SST MW Alti « allsat »

« allsat » velocities closer to in-situ velocities than « twosat » velocities everywhere

Strong improvement for the meridional component of the velocity in areas where SST gradients greater then 10^{-50} /m

« twosat »+ MW SST better than « allsat »

Author | ESRIN | 18/10/2016 | Slide 54

VALIDATION 2014-2016

Alti « twosat » Alti « twosat » + SST MW Alti « allsat » Alti « allsat »+SST MWIR

« allsat » velocities closer to in-situ velocities than « twosat » velocities everywhere

Strong improvement for the meridional component of the velocity in areas where SST gradients greater then 10⁻⁵°/m

« twosat »+ MW SST better than « allsat »

 Further improvement with « allsat »+MWIR SST (also on the zonal component)

Author | ESRIN | 18/10/2016 | Slide 55

SSH/SST merging for ocean circulation estimation

- Promising combination results are obtained
- The quality of the merged velocities strongly depends on the quality of the SST product
- The spatio-temporal resolution of the merged product is the spatio temporal resolution of the SST product
- > Today: MW 25 km, daily, all weather
- IR on geostationary satellites: few km, hourly, cloud sensitive
- Tomorrow? CIMR (Copernicus Imaging Microwave Radiometer) Phase A/B1 Sub-daily measurements of SST at 15km, all weather

Strong impact for global ocean currents retrieval from SSH/SST merging

ESA UNCLASSIFIED - For Official Use

Author | ESRIN | 18/10/2016 | Slide 63

Thanks!

ESA UNCLASSIFIED - For Official Use

Author | ESRIN | 18/10/2016 | Slide 64

+

###