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PolSAR-App
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POLSAR-App in PolSARpro – Biomass Edition

ENTRY SCREEN MAIN WINDOW
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Educational package

POLSAR-App in PolSARpro – Biomass Edition
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ESA - PolSARap Project

Proposed showcases : 
 Agriculture 
 Cryosphere
 Forest 
 Ocean 
 Urban 

POLSAR-App in PolSARpro – Biomass Edition



7
Examples : Agriculture & Cryosphere

POLSAR-App in PolSARpro – Biomass Edition
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Roadmap: methodologies covered here

Change detection

Target detection

Time series
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Notations

 A scattering vector is derived from the complex scattering matrix
backscattered by targets in the scene.  

 A scattering mechanism or projection vector is an idealised unitary 
complex vector pointing at the direction of a potential target in the scene.

 Given the covariance matrix we can use the projection vector to evaluate 
how much power a specific scattering mechanism has. 
 This is done by using quadratic forms . 
 is real positive because is Hermitian positive semi-definite
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Ocean: Target detection

Ocean: Target detection
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Backscattering from the sea: 2 scale model

 A well established model considers the sea surface as superposition of short-wave
(capillary) oscillations and long-wave (swell) oscillations

https://www.sarusersmanual.com/ManualPD
F/NOAASARManual_CH02_pg025-080.pdf
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Backscattering from the sea: Bragg model

 A regular periodic structure (i.e. wave) allows a coherent superposition of 
reflections from the faces and therefore constructive or destructive interference

 1 water wave produces a strong 
response at 1 frequency and 
incidence angle 

 Since we have a mix of 
wavelengths/directions there are 
several frequencies that will be 
exited.

 If you have no waves, no 
frequencies are exited

https://www.sarusersmanual.com/ManualPD
F/NOAASARManual_CH02_pg025-080.pdf



1313
© A. Marino 2021

How PolSAR sees ships

Particles and Dipoles 
scattering

Surface scattering

Oriented Multiple reflections

 The vessel presents a 
combination of 
scattering 
mechanisms.

 The strongest 
contribution is often 
expected to be the 
double reflection 
between the sea 
surface and the hull or 
reflections with the 
surfaces of the bridge
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Ships in RADARSAT-2

 This is a RADARSAT-2 quad-pol 
acquisition near Portsmouth, 
UK, 2011

 Are ships single or partial 
targets?

Canadian Space Agency 
and MDA® 2011
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Ships in RADARSAT-2

 This is a RADARSAT-2 quad-pol 
acquisition near Portsmouth, 
UK, 2011

 Are ships single or partial 
targets?

 In phenomenologically, it 
depends on the size of the 
vessel and how many pixels 
contains. 

 Physically, they are generally a 
collection of single targets.

Canadian Space Agency 
and MDA® 2011
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Ocean: Target detection

Target detection theory
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Target detection

The idea is to identify 
“something different” 

inside an image 
(as in the game Spot the 

Sith).
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Detection Theory

 If we want to make a detector we need to set a threshold.

 Once we set a threshold, we can define the probability
 that we can detect the ship: Probability of Detection Pd;
 that we detect a region without a ship: Probability of False Alarm Pf.

 We these probability we can build a Error Matrix

Kay, S. M.
Fundamentals of Statistical Signal Processing
Prentice Hall, Upper Saddle River, US, 1993
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Single pol detectors
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The area under 
this curve is ௙
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Cell Averaging – Constant False Alarm Rate (CA-CFAR): 

 These detectors generally set 
an adaptive threshold on the 
intensity image  

 CA-CFAR uses a training area 
to identify the distribution of 
the clutter and set a threshold 
base don the probability of 
false alarms

It can be derived 
analytically
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Guard windows

Test window: 
pixels used for testing

Training window: 
pixels used for training

Guard window: 
pixels not used
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Ocean: Target detection

Pol-SAR target detectors
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A) Cloude-Pottier Entropy
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Unitary matrix

 It has been shown that the sea has a low entropy because is it rather polarised (it is all a surface)
 Notice, the sea is distributed but single, which is not a very common property

 Ships are a collection of single targets and therefore their entropy is high
 On a averaging window they show a “confused” polarimetric behaviour (although each of the 

pixels may be “single”)
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A) Cloude-Pottier Entropy

We can define a probability of each eigenvalue:
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We can calculate the Entropy: 
of the scattering process

Cloude, S. R. & Pottier, E.
An Entropy Based Classification Scheme for Land Applications of Polarimetric SAR
IEEE Transactions on Geoscience and Remote Sensing, 1997, 35, 68-78
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B) Polarimetric Notch Filter

 In this detector we isolate the power contribution coming from the sea along one dimension and 
look at the perpendicular subspace, which we define as the target subspace.

 In order to work with partial targets we first build a partial feature target starting from the 
covariance matrix

Trace([C] )

You can also express this using quadratic forms
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B) Polarimetric Notch Filter

2* ˆ
Sea

T
Sea ttP  ttP T

tot  *
SeatotT PPP 

Marino, A. A Notch Filter for Ship Detection With Polarimetric SAR Data IEEE Journal of Selected Topics in Applied Earth  
Observations and Remote Sensing, 2013, 6, 1219 - 1232

 These vectors are included in 
the perturbation filter 
coherence, omitting the power 
from the target.
 More info on this later 
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C) Polarimetric Match Filter

We can optimize it using a Lagrange constrained optimization:

 We try to optimise the contrast between the sea clutter and the target to detect 

 Novak PMF is based on the Generalised Rayleigh Quotient proposed by Fisher:

Novak, L.; Burl, M. & Irving, W.W., Optimal Polarimetric Processing for Enhanced Target 
Detection, IEEE Transactions on Aerospace and Electronic Systems, 1993, 29, 234-244
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D) Multilook Polarimetric Whitening Filter

=

 We want to whiten the stochastic process, i.e. we remove the structure of the covariance 
matrix, so that the vector generated by that process will be Gaussian White (i.e. each of the 
complex components of the processed scattering vector has the same unitary variance). 

 This comes from the idea of Novak, who was trying to obtain an image with the lowest 
possible speckle

Novak, L.; Burl, M. & Irving, W.W., Optimal Polarimetric Processing for Enhanced Target 
Detection, IEEE Transactions on Aerospace and Electronic Systems, 1993, 29, 234-244
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D) Multilook Polarimetric Whitening Filter

Guoqing Liu; Shunji Huang; A. Torre; F. Rubertone, The multilook polarimetric whitening filter (MPWF) for 
intensity speckle reduction in polarimetric SAR images, IEEE Transactions on Geoscience and Remote 
Sensing, 36(3) 1998.

 Then it was proposed to “whiten” the test pixels by the covariance matrix of the training 
pixels.

 If we have homogeneous clutter, the output will be a unitary vector, otherwise if the structure 
of the target covariance matrix is rather orthogonal to the clutter ௖ we have that the 
orthogonal components will be amplified by producing a vector with a much larger magnitude

 Including some average makes the output more robust



2929
© A. Marino 2021

E) Reflection Symmetry

 The reflection symmetry in a pixel dictates that the left and right parts of the target are 
the same. This generally translates into a lack of overall orientations in a target.

 For a stochastic process, we want that in average this property is valid over the whole 
pixels in the averaging cell. 

 Phenomenologically, reflection symmetry leads to a null correlation between the co- and 
cross-polarisation channels.

 The sea is an horizontal surface and it is reflection symmetric, while ships and other complex 
targets at see are not expected to have reflection symmetry 

Nunziata, F.; Migliaccio, M. & Brown, C., Reflection symmetry for polarimetric 
observation of man-made metallic targets at sea, IEEE Journal of Oceanic 
Engineering, 2012, 37, 384-394
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Tokio Bay, Japan
ALOS-PalSAR
©JAXA 2009

Results on data: PolSAR-App

 In PolSAR-App several polarimetric 
detectors were tested over ALOS 
quad-pol acquisitions near Tokyo.

 Validation data where present with 
AIS and ground radars



3131
© A. Marino 2021

Ship detection: ALOS-2 quad-pol data

Pauli RGB HV intensity
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Ship detection: ALOS-2 quad-pol data
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Ship detection
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Ocean: Target detection

Forestry, urban: Change detection
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Change detection with PolSAR

 If we perform repeated visits on areas, we can also observe changes to that area.
 Now we have more polarimetric acquisitions:

First 
polarimetric 
acquisition

Second 
polarimetric 
acquisition
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Change detection with PolSAR

 Change detectors using the interferometric phase are often referred to as Coherent detectors

 Change detectors based only on the covariance matrix [C] are called Incoherent detectors

Coherent:
InSAR

PolInSAR
Incoherent:

PolSAR

First 
polarimetric 
acquisition

Second 
polarimetric 
acquisition

Change 
Detectors
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Spot the difference

 These detectors often boil down to identify what changed from one image to the 
other (as in the game Spot the Difference).
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Random Variables: reminder (1)

A Random Variable (r.v.) is a variable whose value is subject to statistical variation.

Refreshing your memory:
Example: a r.v. is the result of throwing a dace. For each throw it can assume 6 different 
possible values (1 to 6). Each time we throw there is no way to know what is coming out 
(unless your dace is loaded!!!).

Definitions: 
 Realisation (or observed value): each single result of throwing the dace
 Probability Density Function, pdf: a function that describes the statistical behaviour

of a r.v.
 Mean value (or expected value): the central tendency of a r.v.
 Variance: a measure of how the observed values are spread out around the expected 

value
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Random Variables: reminder (2)

( )Xf x ( ) 1Xf x dx





[ ] ( )XE x xf x dx



  2[ ] ( [ ]) ( )XVAR x x E x f x dx




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Ideal Mathematical World 

x: Random Variable
: pdf

Pdf has unitary area (the are 
distribution of probability 
therefore the sum to 1)

Expected value Variance

Mean value estimator
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Real World: In the real world, we do not have infinite realisations of 
our r.v. and we need to perform some estimation over a limited 
(finite) number of samples. 

Variance estimator
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Random Variables and SAR

?
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Random Variables and SAR

 The interaction between the incident wave and the targets has a strong component of 
randomness.

 In the same resolution cell there is a LARGE number of scatterers (as a “role of thumb”, 
the wave interacts strongly with objects with dimensions bigger or comparable with the 
wavelength).

 The resolution cells are of the order of meter(s). The wavelength is of the order of 
(tens of) centimeters --> many scatterers in the same resolution cell!!

 So… what is the problem having a lot of scatteres interacting together?
 For the linearity of Maxwell equations, the wave is the superimposition of the waves 

coming from each single scatterer. 

 Can you see where the problem is?
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Why statistical variation (explained)?

Def. Speckle = The coherent sum (interference) of scatterer returns in the 
same resolution cell

It makes image interpretation and retrieval of parameters very complex
One observable
(superimposition of 
many scatterers)

N unknown

Re(E)

Im(E)Imagine this is a single resolution cell 
with (x,y) coordinates in the image

 
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1

,
N x y
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

 
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 ,

1

,
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i
i

E x y E

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Random path in 
the complex 

plane
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Putting it into math: pdf

The single pixel is one random realisation of a random variable. 

The pdf of the complex SAR pixel is modelled 
as a Circular Symmetric Complex Gaussian

The pdf of the magnitude is Rayleigh

The pdf of the phase is Uniform

The pdf of the intensity (or power, or energy) 
is Exponential

 
 ,

1

,
N x y

i
i

E x y E


 
Mean

Standard 
Deviation

Mean
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Details on pdf‘s
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Rayleigh distribution:
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Details on pdf‘s

Uniform distribution:
 1
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Pdf derivation

 FROM Complex Gaussian distribution TO Rayleigh and Uniform distributions

 It is possible to derive the Rayleigh, Uniform and Exponential distribution 
starting from complex Gaussian pixels:

1. Change of coordinates Cartesian to Polar 
2. Theorem of transformation of random variable 2->2 (Cartesian to Polar 

coordinates).
3. Integration to go from joint to single pdf (to remove one of the 

variables from the joint pdf)



4848
© A. Marino 2021

Talking about noise

 Since the speckle makes the image interpretation harder, some people talk of it as 
Noise. 

 In particular, it can be demonstrated that given the intensity of a SAR image, we 
can write it as:

where I0 is the expected value (actual value) of the intensity. σ is an exponential 
random variable with unitary mean. Since we multiply the actual value by a random 
variable, the noise is defined “multiplicative”.

 In actual fact, the speckle is linked to the very same nature of radar backscattering 
and therefore it should not be defined as noise… i.e. the noise itself is our signal :)  
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What about the classic additive noise????

 Of course we also have some additive noise due to circuitry and antennas

 The pdf of the additive white (thermal) noise is Circular Symmetric Complex 
Normal

 A Signal to Noise Ratio can be calculated as:

 As long as the SNR is high, we can neglect the effect of the thermal noise on the 
characterisation of the SAR images. But when the backscattering is very low and close 
to the noise floor (noise level of the instrument) then the additive noise should be 
taken into account in our polarimetric analysis

2

2

E
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Examples of noise on photo

Original

Additive
SNR=2

Additive
SNR=10

Multiplicative
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Why averaging helps?

Advantages: 
 It helps to reduce the statistical variation around a defined mean value.

 If performed properly it will not affect the mean value (which is what we want to 
retrieve)

Disadvantages: 
 if the pixels you average belongs to different targets (e.g. forest and a road in the 

forest) than the results is not very meaningful

 It may reduce the resolution because many pixels are used to obtain a single 
value, although if done with adaptive algorithm it may still preserve the resolution 
for point targets and edges
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Can we average the complex pixels (Gaussian pdf)? 
NOOOOO!

We want to reduce the speckle… i.e. the statistical variation

The return from the j pixel is a Circular Symmetric Complex Normal

Will we reduce the variance by averaging several complex pixels?

The resulting random variable is still a complex Normal

If homogeneous

NOOOOO!
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We average intensity: Gamma distribution
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The more we average the 
more the variance is 
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pdf for covariance matrix

Wishart distribution (Covariance matrix):

೛
೙

షభ

௣
௣ ௣ିଵ /ଶ

௣

௝ୀଵ

If we assume Circular Complex Gaussian pixels the the covariance matrix is a Wishart
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Assumptions necessary for variance reduction

 The pixels averaged together has to be independent and come from the same 
distribution (independent and identically distributed iid). 

 If more distributions are put together (e.g. we mix a road with forest) what comes out 
is neither one or another and can have a VARIANCE even higher than the original 
individual distribution.

 An example of dealing with heterogeneous targets are the texture pdf. 

 When you average a textured area its variance does not reduce as the number of 
independent looks.
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Texture: K distribution
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 There are several distribution that can 
model the texture variations in the 
images.

 A complete treatment is outside the 
purpose of this presentation, here I show 
one of the models often used for the sea.  
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 The L we see in the pdf equation is the Equivalent Number of Looks ENL. 
 Pixels are not fully independent due to processes in image formation. Therefore, if you 

average 10 pixels your ENL is much lower than 10. 
 There are tools for estimating the ENL, the simplest is based on the assumption of 

having an homogeneous area with fully developed speckle, i.e. the averaged 
intensity is a Gamma distribution. 

 For a Gamma we know that and

 Therefore, we the estimator for ENL is 

Independent looks??

 
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Lee, J. S. & Pottier, E., Polarimetric radar imaging: from basics to applications, 
CRC Press, Taylor & Francis Group, 2009
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Corregistration

 One issue in change detection, is that the two images have to overlap perfectly.
 Each pixel of each image has to be located at the same geographical point. If this 

is not true, we may detect changes just because we are looking at different areas.

 The process of making two images overlap is often called Co-registration. 
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Single-pol change detection: incoherent

If img1 is one image acquired before the change (archive image) and img2  is acquired after, 
we can use a “change detector”.

Change detector: an algorithm that detects “changes” between two images acquired at 
different moments in time. 

Two very easy detectors can be devised considering the difference or the ratio of the 
intensities

The difference can also be normalised as

2 2
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A) Wishart Change detector

We can approach the change detection as an hypothesis testing assuming the statistics 
of the covariance matrix are a Wishart distribution

p: number of polarimetric channels used
n: ENL for first acquisition
m: ENL for second acquisition
ଵଵ : asymptotic covariance matrix of first acquisition
ଶଶ : asymptotic covariance matrix of second acquisition

We can calculate the Likelihood Ratio test:

Conradsen, K.; Nielsen, A. A.; Schou, J. & Skriver, H., A Test Statistic in the Complex Wishart Distribution and Its 
Application to Change Detection in Polarimetric SAR Data, IEEE Trans. on Geos. & Rem. Sen., 2003, 41
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B) Geometrical Perturbation Filter

 In order to work with partial target we first build a partial feature target starting from 
the covariance matrix

 In the data we can look for coherence between the target to be detected and a 
perturbed version of this. 
 If the coherence is high, it means that the target is present in the scene (because 

the projection of the pixels over that target and the perturbed one are correlated to 
each other).  

 If the coherence is low, we are looking at a part of the polarimetric space where 
there is no actual target.

Trace([C] ) ଵ
ଶ

ଶ
ଶ

ଷ
ଶ

ଵ
∗

ଶ ଵ
∗

ଷ ଶ
∗

ଷ
்

: target to detect

: perturbed target



6262
© A. Marino 2021

B) Geometrical Perturbation Filter

Trace([C] ) ଵ
ଶ

ଶ
ଶ

ଷ
ଶ

ଵ
∗

ଶ ଵ
∗

ଷ ଶ
∗

ଷ
்

: target to detect

: perturbed target
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B) Geometrical Perturbation Filter
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B) Geometrical Perturbation Filter: change detector
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 We want to detect the target ଵ inside the second acquisition ଶ

Marino, A.; Cloude, S. R. & Lopez-Sanchez, J. M., A New Polarimetric Change Detector in Radar Imagery
IEEE Transactions on Gescience and Remote Sensing, 2013, 51, 2986 - 3000



6565
© A. Marino 2021

ALOS quad pol

RGB1

Data courtesy of Dr. Hao Chen 
and Dr. David Goodenough, 

Canadian Forestry Service 
(CFS), Victoria, BC

JAXA©

RGB2   5/   Wishart 0.9GPF 
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C) Optimisations: power ratio

 Stemming from the idea of the PMF we can apply the filter to detect changes:

 Given two matrices [T11] and [T22] it is always possible to write

 Where [A] is a transformation matrix

 Since [T11] and [T22] are Hermitian, their inverse are Hermitian as well.

 The search space of this optimisation is the adjoint of the transformation that modify 
the partial target between the first and second acquisition
 This transformation is unique, but it is not strictly a partial target.

11 22[ ] [ ][ ]T A T

2
1

11 2[ ] [ ][ ]A T T 

 11 22
1 1

2 1
*

2 1

*
[ ] [ ][ ] [ ] [ ]

TTA T T T T  

Marino, A. & Hajnsek, I., A Change Detector Based on an Optimization With Polarimetric 
SAR Imagery, IEEE Transactions on Geoscience and Remote Sensing, 2014, 52, 4781-4798
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d) Optimisations: power difference

 The power difference of scattering mechanisms (SM) composing two partial targets at two 
instant in time can be expressed as

   2 11
*

2
*T TT T   

 We are interested in the change matrix [Tc]=[T22]-[T11] 

 [Tc] has upper and lower triangular parts symmetric, it is Normal, but it is not positive 
semi-definite, so it is not Hermitian

 It represents the combination of SMs with positive or negative power. This is because a SM that 
reduce its power will be seen as having a negative power.

Marino, A., & Alonso-Gonzalez, A. An optimization of the difference of covariance matrices for 
PolSAR change detection, IGARSS 2017.
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d) Optimisations: signal models

Before After

Additive model: when a change is 
produced by adding or subtraction a target. 

Change detectors are generally obtained 
considering differences. 

Before After

Multiplicative model: when a change is 
produced by transforming the target. If we 
still assume linearity this transformation is 

done multiplying by a matrix.
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ALOS quad-pol: Morecambe Bay

1 April 2007 17 May 2007

Tidal area,
Morecambe Bay, UK

2007 JAXA©
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c) Morecambe Bay: mult. RGB composite

 The value of the RGB is 
modulated by the eigenvalue 
as in a Pauli basis RGB image

 The colour do NOT seems to 
correspond to excepted SM

 The detector is able to identify 
changes as for erosion 

     
11

1
22 TT
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d) Morecambe Bay: additive RGB composite

71

 The value of the RGB is 
modulated by the eigenvalue 
as in a Pauli basis RGB image

 The colour do seems to 
correspond to excepted SM 
(e.g. changes in power of 
surface scattering over the 
sea, or volume over the 
agricultural fields)
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Ocean: Target detection

Agriculture: Time series
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Using time information
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 Imagine we only have a single snapshot to look at the scene… 
 It is sometimes hard to know what is going on there. 
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Using time information
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 Imagine we only have a single snapshot to look at the scene… 
 It is something hard to know what is going on there.
 But if we add the temporal information ambiguities are much easier to disentangle
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PolSAR-App experiment

 This is particularly beneficial for monitoring very dynamic systems as agriculture
 One “direct” way is to prepare time series of polarimetric parameters/observables and 

look at how they evolve in time
 In PolSAR-App a test was done using RADARSAT-2 AgriSAR2009 images
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Time series

 Different fields can 
show different trends

 Here we want to see if 
the trend can be used 
to classify the 
phenological stage

 In this case we look at 
cereals that are 
particularly different to 
separate from each 
other
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Classification

 We can feed these 
trends to adaptive 
filters and machine 
learning methods to 
perform supervised 
classification.

 This allows to identify 
in which phenological 
stage the crop is.
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Comparison

 The table show useful 
polarimetric observables for 
monitoring the phenological 
stage 

 A comparison was also done 
with different polarimetric 
mode showing that full poll 
could improve the classification 
in some conditions. 



7979
© A. Marino 2021

Ocean: Target detection

Thank you very much for your attention.

Senior Lecturer in Earth observation, 
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