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Introduction

This document outlines the steps that will be taken in the practicals of Monitoring Vegetation in a Changing
Climate of the ESA land training course 2017 (D4P1b). The objectives of this session are to familiarize
students with the R programming language (https://www.r-project.org/) particularly in the context of
analyzing spatialized scientific datasets used in climate science.

The advantages of R include its strength as a comprehensive statistical and graphical tool developed by
statisticians and researchers, which is free and open source software, with no license restrictions, it is
cross-platform and have a large community of users. A special focus will be given to some packages within
what is now known as the tidyverse. Quoting from the dedicated website (https://www.tidyverse.org/):
“The tidyverse is an opinionated collection of R packages designed for data science. All packages share an
underlying philosophy and common APIs.” This suite of packages is sometimes considered as a specific
R dialect. It will be particularly useful to manipulate data (dplyr package) and to visualize it (ggplot2
package).

To do so we will be using the open source RStudio software, an integrated development environment (IDE)
for R https://www.rstudio.com/. The first step is to open RStudio. In the console, we can type commands
that are executed by R. As an example, type these lines:
a <- 2+2
b <- 5
a * b
x <- c(2,a,b)
y <- seq(1,5,2)
x + y

Packages

R works by calling packages, which can be installed directly from the console and later loaded to the current R
session. One that will be used in this practical is the ncdf4 package, useful to read and manipulate NetCDF
files. The following lines show how install it:
install.packages('ncdf4')

and load it:
require(ncdf4)

## Loading required package: ncdf4

The following packages also need to be installed.
install.packages(c('tidyverse','rgdal','raster','scales','RColorBrewer'))
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Quick introduction to dataframes

A versatile way to store data in R is using data.frames. These are essentially tables with data in them. A
good way to keep data tidy in data.frames, following precepts of the tidyverse, is too keep each variable is
in its own column, and each observation, or case, is in its own row.

R comes with some examples of data built into it, such as the CO2 dataset. To get a quick view of the data,
use the the head command:
head(CO2)

## Plant Type Treatment conc uptake
## 1 Qn1 Quebec nonchilled 95 16.0
## 2 Qn1 Quebec nonchilled 175 30.4
## 3 Qn1 Quebec nonchilled 250 34.8
## 4 Qn1 Quebec nonchilled 350 37.2
## 5 Qn1 Quebec nonchilled 500 35.3
## 6 Qn1 Quebec nonchilled 675 39.2

To known more about how the dataset is structured, try the following command.
str(CO2)

## Classes 'nfnGroupedData', 'nfGroupedData', 'groupedData' and 'data.frame': 84 obs. of 5 variables:
## $ Plant : Ord.factor w/ 12 levels "Qn1"<"Qn2"<"Qn3"<..: 1 1 1 1 1 1 1 2 2 2 ...
## $ Type : Factor w/ 2 levels "Quebec","Mississippi": 1 1 1 1 1 1 1 1 1 1 ...
## $ Treatment: Factor w/ 2 levels "nonchilled","chilled": 1 1 1 1 1 1 1 1 1 1 ...
## $ conc : num 95 175 250 350 500 675 1000 95 175 250 ...
## $ uptake : num 16 30.4 34.8 37.2 35.3 39.2 39.7 13.6 27.3 37.1 ...
## - attr(*, "formula")=Class 'formula' language uptake ~ conc | Plant
## .. ..- attr(*, ".Environment")=<environment: R_EmptyEnv>
## - attr(*, "outer")=Class 'formula' language ~Treatment * Type
## .. ..- attr(*, ".Environment")=<environment: R_EmptyEnv>
## - attr(*, "labels")=List of 2
## ..$ x: chr "Ambient carbon dioxide concentration"
## ..$ y: chr "CO2 uptake rate"
## - attr(*, "units")=List of 2
## ..$ x: chr "(uL/L)"
## ..$ y: chr "(umol/m^2 s)"

ggplot2

The package called ggplot2 allows to visualize the data in data.frames. It follows a logic called the grammar
of graphics. Start by loading the package.
require(ggplot2)

## Loading required package: ggplot2

A basic principle is that variables of the dataframe must be explicitly mapped unto elements of the plots,
known as aesthetics. This has to be done for every geometry, or object that needs to be plotted. As an
example, the conc and uptake fields in CO2 are here mapped to the x and y axis, while another axis colour
is used to separate the information in the field Plant.
ggplot(CO2)+geom_line(aes(x=conc,y=uptake,colour=Plant))
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With ggplot2 it is easy to analyze data with different facets, here for instance to bring out the extra
information contained in the remaining fields of the dataframe (Type and Treatment).
ggplot(CO2)+

geom_line(aes(x=conc,y=uptake,colour=Plant))+
facet_grid(Type~Treatment)
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Hopefully, more of the possibilities offered in ggplot2 will become evident in the examples we will construct
later on.

dplyr

The dplyr package is very useful to manipulate data in the data.frames. This will be used all along this
tutorial. It is an essential part of the tidyverse. This package allows to nest a series of operations using the
pipe operator %>%. This will become clearer later on.

The RStudio team has prepared a series of cheat sheets, among which there is one for dplyr and one for
ggplot2, all available here: https://www.rstudio.com/resources/cheatsheets/.

Importing data

The first major step in this tutorial is to the necessary data. The exercise will focus two indicators of
vegetation, namely NDVI and SIF. NDVI in a mathematical index calculated based on reflectance in the
NIR and RED sections of the spectrum. The normalized difference of these bands (known as NDVI) is a
good proxy for vegetation greenness. SIF stands for sun-induced fluorescence. It is a faint signal that can be
derived from hyperspectral data and that is apparently strongly related to gross primary productivity (GPP)
of vegetation.

SIF is potentially a very valuable signal but it is difficult to obtain since no dedicated sensor currently
exists. The ESA Earth Explorer mission FLEX will be able to provide this signal but it is still being
built. To have a single instrument with both SIF and NDVI, we use the dataset prepared by NASA
from the GOME-2 instrument on-board of the MetOp-A instrument and available in this website: https:
//avdc.gsfc.nasa.gov/pub/data/satellite/MetOp/GOME_F/v27/MetOp-A/level3/.
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The necessary images have been placed in a dedicated folder for this exercise. Find out where the data is on
your machine and save the path as follows:
wpath <- '/Volumes/GREG/Work/Teaching/ESA_LTC_2017/Practical/DATA/'
setwd(wpath)

We will start by loading a single image defined by the following details.
time <- '20070601'
longname <- 'ret_f_nr5_nsvd12_v26_waves734_nolog.grid_SIF_v27'
fname <- paste(longname,time,'31.nc',sep='_')

Using the ncdf4 package we can open the file and print the information that this command gives us.
require(ncdf4)
nc <- nc_open(filename = paste0(wpath,fname))
print(nc)

## File /Volumes/GregDrive/Work/Teaching/ESA_LTC_2017/Practical/DATA/ret_f_nr5_nsvd12_v26_waves734_nolog.grid_SIF_v27_20070601_31.nc (NC_FORMAT_CLASSIC):
##
## 9 variables (excluding dimension variables):
## float SIF[longitude,latitude]
## Title: SIF
## Units: mW/m^2/nm/sr
## Version: 1
## float SIF_daily_average[longitude,latitude]
## Title: SIF daily averaged based on clearsky PAR proxy
## Units: mW/m^2/nm/sr
## Version: 1
## float SIF_std[longitude,latitude]
## Title: SIF standard deviation
## Units: mW/m^2/nm/sr
## Version: 1
## float Par_normalized_SIF[longitude,latitude]
## Title: PAR_normalized-F F/cos(SZA) where F in mW/m^2/nm/sr at 737 nm
## Units: none
## Version: 1
## float Par_normalized_SIF_std[longitude,latitude]
## Title: PAR_normalized F standard deviation
## Units: none
## Version: 1
## float NDVI[longitude,latitude]
## Title: NDVI (not Rayleigh corrected)
## Units: none
## Version: 1
## float NDVI_std[longitude,latitude]
## Title: NDVI standard deviation
## Units: none
## Version: 1
## float cos(SZA)[longitude,latitude]
## Title: Cosine of solar zenith angle
## Units: none
## Version: 1
## float Counts[longitude,latitude]
## Title: Number of observations
## Units: none
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## Version: 1
##
## 2 dimensions:
## longitude Size:720
## Longitude: Longitude in degrees E
## Units: Degrees E
## latitude Size:360
## Latitude: Latitude in degrees N
## Units: Degrees N

We are interested in the variables SIF and NDVI. How do we access them? One easy way to so if the data is
spatialized is directly with the raster package.
require(raster)

## Loading required package: raster

## Loading required package: sp

##
## Attaching package: 'raster'

## The following object is masked from 'package:ggplot2':
##
## calc
r <- raster(paste0(wpath,fname),varname='SIF')

A raster object includes information of its spatial resolution and coordinate system, which can be accessed by
just calling the object:
r

## class : RasterLayer
## dimensions : 360, 720, 259200 (nrow, ncol, ncell)
## resolution : 0.5, 0.5 (x, y)
## extent : -180, 180, -90, 90 (xmin, xmax, ymin, ymax)
## coord. ref. : +proj=longlat +datum=WGS84 +ellps=WGS84 +towgs84=0,0,0
## data source : /Volumes/GregDrive/Work/Teaching/ESA_LTC_2017/Practical/DATA/ret_f_nr5_nsvd12_v26_waves734_nolog.grid_SIF_v27_20070601_31.nc
## names : SIF
## zvar : SIF

It can easily be plotted using the base R plots:
plot(r)
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Using this raster format is very useful for spatial data. But here we want to extract the data directly from
the netcdf and place it into a table. So we proceed using the ncvar_get command as follows:
sif <- ncvar_get(nc,varid = 'SIF',start = c(1,1),count = c(-1,-1))
ndvi <- ncvar_get(nc,varid = 'NDVI')
lon <- ncvar_get(nc,varid = 'longitude')
lat <- ncvar_get(nc,varid = 'latitude')

And now we place them in a data.frame:
df0 <- data.frame(lon=rep(lon,times=length(lat)),

lat=rep(lat,each=length(lon)),
sif=as.vector(sif),ndvi=as.vector(ndvi))

str(df0)
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## 'data.frame': 259200 obs. of 4 variables:
## $ lon : num -180 -179 -179 -178 -178 ...
## $ lat : num 89.8 89.8 89.8 89.8 89.8 ...
## $ sif : num -999 -999 -999 -999 -999 -999 -999 -999 -999 -999 ...
## $ ndvi: num -999 -999 -999 -999 -999 -999 -999 -999 -999 -999 ...

Apparently we need to filter out unwanted data. Some are set as -999. But first we will isolate the terrestrial
part of the world by constructing a water mask from a land cover dataset.

We here use another netcdf describing continuously the presences of land cover types. It comes from the ESA
CCI land cover product (viewable and downloadable here: http://maps.elie.ucl.ac.be/CCI/viewer/). The
netcdf was generated using their dedicated User Tool and contains fractions of land covers, including one for
water.
fname <-paste0(wpath,'ESACCI-LC-L4-LCCS-Map-300m-P1Y-aggregated-0.050000Deg-2010-v2.0.7.nc')
PFT <- nc_open(filename = fname)

Here we will open it using the raster package.
r.05 <- raster(fname,varname='WAT')
r.05

## class : RasterLayer
## dimensions : 3600, 7200, 25920000 (nrow, ncol, ncell)
## resolution : 0.05, 0.05 (x, y)
## extent : -180, 180, -90, 90 (xmin, xmax, ymin, ymax)
## coord. ref. : +proj=longlat +datum=WGS84 +ellps=WGS84 +towgs84=0,0,0
## data source : /Volumes/GregDrive/Work/Teaching/ESA_LTC_2017/Practical/DATA/ESACCI-LC-L4-LCCS-Map-300m-P1Y-aggregated-0.050000Deg-2010-v2.0.7.nc
## names : WAT
## zvar : WAT

so that we can easily aggregate it from its 0.05 decimal degree spatial resolution to the 0.5 in the SIF and
NDVI dataset.
r.50 <- aggregate(r.05,fact=10)
plot(r.50)
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We set the
no data values NA into 0 and built a new data.frame.
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r.50[is.na(r.50)] <- 0
dfW <- data.frame(lat=rep(-seq(-89.75,89.75,0.5),each=ncol(r.50)),

lon=rep(seq(-179.75,179.75,0.5),times=nrow(r.50)),
wat=as.vector(r.50))

To join the two dataframes, we will use a practical join functionality of the dplyr package.
require(dplyr)

## Loading required package: dplyr

##
## Attaching package: 'dplyr'

## The following objects are masked from 'package:raster':
##
## intersect, select, union

## The following objects are masked from 'package:stats':
##
## filter, lag

## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
df1 <- left_join(df0, dfW, by = c("lon", "lat"))
head(df1)

## lon lat sif ndvi wat
## 1 -179.75 89.75 -999 -999 1
## 2 -179.25 89.75 -999 -999 1
## 3 -178.75 89.75 -999 -999 1
## 4 -178.25 89.75 -999 -999 1
## 5 -177.75 89.75 -999 -999 1
## 6 -177.25 89.75 -999 -999 1

We can then filter out values set to -999 in the GOME-2 data and including more than 20% of water.
df2 <- filter(df1,sif!=-999,wat<0.2)
head(df2)

## lon lat sif ndvi wat
## 1 -75.25 82.75 -0.18288906 -0.026392393 0.1920500
## 2 -74.75 82.75 0.05060377 -0.012912206 0.1142066
## 3 -72.25 82.75 -0.33275706 -0.012454201 0.1392164
## 4 -70.75 82.75 0.07926224 0.008922078 0.1861559
## 5 -70.25 82.75 0.11424994 -0.026155502 0.1018513
## 6 -69.75 82.75 -0.29370731 -0.011980801 0.1983110

And now we plot the data with ggplot2
ggplot(df2) +

geom_raster(aes(x=lon,y=lat,fill=sif))
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Another way to visualize the data is to use boxplots over a latitudinal gradient:
ggplot(df2) +

geom_boxplot(aes(x=lat,y=sif,group=lat))+
coord_flip()
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This plots shows how the higher values of SIF are in the tropics and the mid-latidudes of the Northern
hemisphere, where it we expect higher GPP due to the presence of more productive ecosystems.

We still can add info on the date (even if for the moment we only have one moment in time)
df2$year=as.numeric(substr(time,1,4))
df2$month=month.abb[as.numeric(substr(time,5,6))]
head(df2)

## lon lat sif ndvi wat year month
## 1 -75.25 82.75 -0.18288906 -0.026392393 0.1920500 2007 Jun
## 2 -74.75 82.75 0.05060377 -0.012912206 0.1142066 2007 Jun
## 3 -72.25 82.75 -0.33275706 -0.012454201 0.1392164 2007 Jun
## 4 -70.75 82.75 0.07926224 0.008922078 0.1861559 2007 Jun
## 5 -70.25 82.75 0.11424994 -0.026155502 0.1018513 2007 Jun
## 6 -69.75 82.75 -0.29370731 -0.011980801 0.1983110 2007 Jun

And now we extent these operations to the entire dataset. To do so we start by defining a function in which
every step is taken:
get_data <- function(fname){

nc <- nc_open(filename = fname)

sif <- ncvar_get(nc,varid = 'SIF',start = c(1,1),count = c(-1,-1))
ndvi <- ncvar_get(nc,varid = 'NDVI')
lon <- ncvar_get(nc,varid = 'longitude')
lat <- ncvar_get(nc,varid = 'latitude')

time <- substr(x = basename(fname), start = 50, stop=57)
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nc_close(nc)

df0 <- data.frame(lon=rep(lon,times=length(lat)),
lat=rep(lat,each=length(lon)),
sif=as.vector(sif),
ndvi=as.vector(ndvi),
year=as.numeric(substr(time,1,4)),
month=month.abb[as.numeric(substr(time,5,6))])

df1 <- left_join(df0, dfW, by = c("lon", "lat")) %>%
filter(sif!=-999,wat<0.2) %>%
select(-wat)

}

And then we can apply this function on all files in the folder.
lf <- list.files(path=wpath,pattern=longname,full.names = T)
dfLIST <- lapply(X = lf,FUN = get_data)
df <- do.call(rbind,dfLIST)

Explore data in the temporal dimension

First let us explore the data from a time series over single point. Using the filter function we can quickly
extract the data by specifying the coordinates.
dfsub <- filter(df,lat==47.75, lon==19.25)

This is the plot for ndvi:
ggplot(dfsub)+geom_line(aes(x=month, y=ndvi, group=year,colour=year))
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And this is the plot for sif:
ggplot(dfsub)+geom_line(aes(x=month, y=sif, group=year,colour=year))
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A
first glance at the two plots already shows how these two indicators have a different shape. Indeed, they are
not responding to the same physiological processes. NDVI reacts to how green the leaves are, while SIF is
supposed to respond more directly to how productive these leaves are.

For some purposes it may be interesting to visualize this data in a sequence and next to each other (i.e. with
NDIV and SIF overlapping). First, we need a continuous date field, so lets build one.
dfsub$date <- as.Date(paste(dfsub$year,dfsub$month,15), format="%Y %b %d")

Now we can plot both time series on on top of the other using two different line geometries:
ggplot(dfsub)+

geom_line(aes(x=date, y=sif))+
geom_line(aes(x=date, y=ndvi), colour='red')
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However, NDVI and SIF are not in the same units, which explains the diffeences in amplitude. To compare
these two signals in relative terms we can standardize them, that is, to remove their mean and divide by
their standard deviation.
dfsub1 <- dfsub %>%

mutate(z_sif=(sif-mean(sif,na.rm=T))/sd(sif,na.rm=T),
z_ndvi=(ndvi-mean(ndvi,na.rm=T))/sd(ndvi,na.rm=T))

Now we can actaully gather the values in the same column using the following function:
require(tidyr)

## Loading required package: tidyr

##
## Attaching package: 'tidyr'

## The following object is masked from 'package:raster':
##
## extract
dfsub2 <- gather(dfsub1,type,value,8:9)

And plot using the colour aestheric to separate both signals:
ggplot(dfsub2)+

geom_line(aes(x=date, y=value, colour=type))
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We can now attack the entire dataset and try to build seasonal plots for the mean, max and min values of
each signal.
df1 <- df %>%

mutate(data=as.Date(paste(year,month,15), format="%Y %b %d")) %>%
mutate(z_sif=(sif-mean(sif,na.rm=T))/sd(sif,na.rm=T),

z_ndvi=(ndvi-mean(ndvi,na.rm=T))/sd(ndvi,na.rm=T))

dfSum <- df1 %>%
gather(type,value,8:9) %>%
group_by(month,lat,lon,type) %>%
summarize(mean_clim = mean(value,na.rm=T),

max_clim = max(value,na.rm=T),
min_clim = min(value,na.rm=T))

To help visualization we will define bin/intervals in the latitude scale:
brks.LAT <- seq(-90,90, by=10)
dfSum$int.LAT <- cut(dfSum$lat, brks.LAT, labels=brks.LAT[-1] - diff(brks.LAT)/2)

require(scales)

## Loading required package: scales
ggplot(dfSum) +

geom_raster(aes(x=month,y=int.LAT,fill=mean_clim))+
facet_wrap(~type) +
scale_fill_continuous(limits=c(-2,2), oob=squish)
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The mean standardized signal is quite similar, but how about the max and the min:
ggplot(dfSum) +

geom_raster(aes(x=month,y=int.LAT,fill=max_clim))+
facet_wrap(~type) +
scale_fill_continuous(limits=c(-2,2), oob=squish)
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ggplot(dfSum) +
geom_raster(aes(x=month,y=int.LAT,fill=min_clim))+
facet_wrap(~type) +
scale_fill_continuous(limits=c(-2,2), oob=squish)
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Mapping temporal correlation and agreeement

Another technique to explore the two datasets involves mapping the temporal correlation, or Pearson coefficient
of correlation (ρ), between both time series at each pixel. This can be easily calculated as follows:
dfSpCorr <- df %>%

group_by(lat,lon) %>%
summarize(corr=cor(sif,ndvi))

And the resulting plot is:
require(RColorBrewer)

## Loading required package: RColorBrewer
col.pal=brewer.pal(11,'RdBu')
ggplot(dfSpCorr) +

geom_raster(aes(x=lon,y=lat,fill=corr)) +
scale_fill_gradientn(bquote(rho),limits=c(-1,1), colours = col.pal, oob=squish)

19



−50

0

50

−100 0 100

lon

la
t

−1.0

−0.5

0.0

0.5

1.0

ρ

We can see in this map that many areas have high correlation between both time series. These areas are
typically those with vegetated landscapes, as should be expected, as there greenness and GPP should be
related. Areas of negative correlation exist in deserts.

Correlation conveniently ignores any bias between the two signals and hence the difference in units is irrelevant.
Sometimes it is necessary to measure agreement of datasets, that is, having an idea beyond correlation if
there are no additive or multiplicative bias in the data.

In order to assess the agreement between dataset Y and dataset X, we can use an index of agreement (λ)
that varies from 0, indicating no agreement to 1 full agreement. It has the advantage of being directly related
to rho, but it additionally indicates if there is a bias (either additive or multiplicative). For more info, see
the paper Duveiller et al. 2016. It is defined as:

λ = 1−
n−1 ∑n

i=1(Xi − Yi)2

σ2
X + σ2

Y + (X̄ + Ȳ )2 + κ

where κ = 0 if ρ > 0 and κ = 2|
∑n

i=1(X − X̄)(Y − Ȳ )| otherwise. The logic between this is index is that
the numerator represents the root mean squared deviation (RMSD) and the denominator is the maximal
deviation the dataset can take. In a way, it combines the info of the bias, the RMSD and ρ in a single metric.
This index of agreement also has the advantage of being symmetric (i.e. X or Y are exchangeable in the
definition above, which in turns means neither is a priori considered as more of a reference that the other).

First let us write a function for λ:
Lambda <- function(x,y) {

if(length(x)<=1){return(NA)}
Xm <- mean(x)
Ym <- mean(y)
n <- length(x)
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K <- sign(cor(x,y)<0) * 2*abs(sum((x-Xm)*(y-Ym)))
N <- sum((x-y)^2)
D <- sum((x-Xm)^2) + sum((y-Ym)^2) + n*(Xm - Ym)^2 + K
Index <- 1 - N/D
return(Index)

}

And we can calculate it for all time series of both the standardized and raw signals.
dfSpCorr1 <- df1 %>%

group_by(lat,lon) %>%
summarize(IoAg=Lambda(sif,ndvi),

IoAg_z=Lambda(z_sif,z_ndvi),
corr_z=cor(z_sif,z_ndvi))

The following plot shows how the agreement of the raw (unstandardized) signals, plotted in the same colour
scale as the correlation. The following values are much lower because the units of SIF and NDIV are still
different.
ggplot(dfSpCorr1) +

geom_raster(aes(x=lon,y=lat,fill=IoAg)) +
scale_fill_gradientn(bquote(lambda),limits=c(-1,1), colours = col.pal, oob=squish)
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After standardization, the agreement increases:
ggplot(dfSpCorr1) +

geom_raster(aes(x=lon,y=lat,fill=IoAg_z)) +
scale_fill_gradientn(bquote(lambda),limits=c(-1,1), colours = col.pal, oob=squish)
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But it is different from the correlation, as shown in this difference plot:
ggplot(dfSpCorr1) +

geom_raster(aes(x=lon,y=lat,fill=IoAg_z-corr_z)) +
scale_fill_gradientn(bquote(paste(Delta,lambda)),limits=c(-0.5,0.5), colours = col.pal, oob=squish)
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Summarizing data in climate space

In climate science, it is often helpful to visualize data beyond the standard Cartesian space in what is known
as climate space. This space is defined using climate variables in the y and x axes instead of latitude and
longitude. Some useful variables are mean temperature and accumulated precipitation.

To plot our data in climate space we will use climate data from the CRU. It can be obtained here:http:
//dx.doi.org/10.5072/edf8febfdaad48abb2cbaf7d7e846a86. For this example we will only use mean data over
the 2001 to 2010 period (even if these are not exactly synchronous with the GOME-2 data).
nc <- nc_open(paste0(wpath,'cru_ts4.00.2001.2010.pre.dat.nc'))
pre <- ncvar_get(nc,varid = 'pre')
lon <- ncvar_get(nc,varid = 'lon')
lat <- ncvar_get(nc,varid = 'lat')
nc_close(nc)
nc <- nc_open(paste0(wpath,'cru_ts4.00.2001.2010.tmp.dat.nc'))
tmp <- ncvar_get(nc,varid = 'tmp')
nc_close(nc)

We then calculate and gather the mean temperature tmp and accumulated precipitation pre in a new
dataframe dfClim.
dfClim <- data.frame(lon=rep(lon,times=length(lat)),

lat=rep(lat,each=length(lon)),
tmp=as.vector(apply(tmp,MARGIN=c(1,2), FUN=mean,na.rm=T)),
pre=as.vector(apply(pre,MARGIN=c(1,2), FUN=sum,na.rm=T))/10)
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We can join dfClim to the previous one with the mean seasonal values dfSum
dfc <- left_join(dfSum,dfClim,by=c('lon','lat'))

The result can be plotted to control that everything is alright. This is a map of the mean temperature:
ggplot(dfc)+geom_raster(aes(x=lon,y=lat,fill=tmp))
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And the accumulated precipitation:
ggplot(dfc)+geom_raster(aes(x=lon,y=lat,fill=pre))
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We can define intervals or bins for the climate variables to facilitate visualization, as we previously did for
the latitude classes.
brks.TMP <- seq(-20,32, by=2) #; lims.TMP <- c(-20,32)
brks.PRE <- seq(0,4000, by=200)
dfc$int.TMP <- cut(dfc$tmp, brks.TMP, labels=brks.TMP[-1] - diff(brks.TMP)/2)
dfc$int.PRE <- cut(dfc$pre, brks.PRE, labels=brks.PRE[-1] - diff(brks.PRE)/2)

Now we summarize the mean climatogical value of the standardized index for each bin in the climate space
and make a plot.
dfc2 <- dfc %>%

group_by(int.TMP,int.PRE,type) %>%
summarize(mean_clim = mean(mean_clim,na.rm=T)) %>%
filter(!is.na(int.TMP),!is.na(int.PRE))

ggplot(dfc2)+
geom_raster(aes(x=int.PRE,y=int.TMP,fill=mean_clim)) +
facet_wrap(~type)
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The results look very similar. To spot the differences it is often better to calculate a difference. For that we
need to spread the two variables back into separate columns and then plot the differences.
dfc3 <- spread(dfc2,type,mean_clim)

ggplot(dfc3)+geom_raster(aes(x=int.PRE,y=int.TMP,fill=z_ndvi-z_sif))+
scale_fill_gradientn(bquote(Delta),limits=c(-0.5,0.5), colours = col.pal, oob=squish) +
ggtitle('z_NDVI - z_SIF')
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The output shows how the largest positive difference (i.e. std. NDVI larger than std. SIF) are in humid and
temperate areas, while the largest negative differences are in cold and warm regions, predominantly those
which are humid. Dryer areas show less marked differences, but extremes generally have higher values of std.
SIF.
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