

→ 8th ADVANCED TRAINING COURSE ON LAND REMOTE SENSING

10–14 September 2018 University of Leicester | United Kingdom Monitoring Vegetation in a Changing Climate

Gregory Duveiller

14/09/2018

European Commission Joint Research Centre (JRC)

Objectives...

To give a (brief) overview of:

- The type of questions we can address in this subject
- The type of variables we can measure/estimate from satellite EO *(and which are useful for this subject)*
- The type of tools we have at hand
- The type of methods we can use/develop

→ 8th ADVANCED TRAINING COURSE ON LAND REMOTE SENSING

Why/how is the climate changing?

The Global Energy (im)balance

Wild et al. 2015. Clim. Dynamics

→ 8th ADVANCED TRAINING COURSE ON LAND REMOTE SENSING

Vegetation interacts with climate in various ways

→ 8th ADVANCED TRAINING COURSE ON LAND REMOTE SENSING

Terrestrial vegetation is the most variable and uncertain component in the global carbon balance

→ 8th ADVANCED TRAINING COURSE ON LAND REMOTE

Land cover changes also has local biophysical impacts

Source:

Jackson, R. B., Randerson, J. T., Canadell, J. G., Anderson, R. G., Avissar, R., Baldocchi, **D. D., ...** Pataki, D. E. (2008). Protecting climate with forests. Environmental Research Letters, 3(4)

→ 8th ADVANCED TRAINING COURSE ON LAND REMOTE SENSING

Water limitation \rightarrow Low ET \rightarrow HIGH Air Temp

Low albedo \rightarrow High Absorbed radiation \rightarrow HIGH Air Temp

High albedo \rightarrow Low Absorbed radiations \rightarrow LOW Air Temp

→ 8th ADVANC 10-14 September 7

ARTICLE

DOI: 10.1038/s41467-017-02810-

The mark of vegetation change on Earth's surface energy balance

Gregory Duveiller 1, Josh Hooker¹ & Alessandro Cescatti¹

Vegetation cover change from 2000 to 2015, dominated by agricultural expansion into tropical forest, has resulting in a local warming of 0.23 ± 0.03 °C.

→ 8th ADVANCED TRAINING COURSE ON LAND REMOTE SENSING

а

Delta Ts forcing [°C]

1.0

0.0

Duveiller et al. 2018, NCOMM

What would we want to extract from RS?

- Vegetation productivity and biomass
- Energy fluxes (LST, albedo, ET)
- Vegetation type and change

SPACE and TIME

What do we use these estimates for?

- To better understand land surface processes

- To monitor changes in land surface at global to local scales
- To benchmark, calibrate and parametrize land surface models

→ 8th ADVANCED TRAINING COURSE ON LAND REMOTE SENSING

ESA Climate Change Initiative (CCI)

The Global Climate Observing System (GCOS) developed the concept of the Essential Climate Variable (ECV).

ECVs: Physical, chemical or biological variable (or group of linked variables) that critically contributes to the **characterisation of Earth's climate.**

ECVs are defined based on criteria of:

Relevance, Feasibility and Cost effectiveness

The CCI program is the response of ESA to GCOS.

→ 8th ADVANCED TRAINING COURSE ON LAND REMOTE SENSING

Climate Change Service

Copernicus is the European Union's Earth Observation Programme, looking at our planet and its environment for the ultimate benefit of all European citizens. It offers information services based on satellite Earth Observation and in situ (non-space) data.

		5	Login/register
Home Search Datasets Tool	lbox Help & support		
	Welc Dive into this weak It is freely available and functions as a one-s We are constantly improving the services and Enter search term(s)	ome to the Climate Data S h of information about the Earth's past, present top shop to explore climate data. Register for free adding new datasets. For more information, pleas	Store t and future climate. e to obtain access to the CDS and its Toolbox. se consult our catalogue roadmap and our FAQ. Search
→ 8th AD	- CHIPS / RCH S (RC-Ranh) - CHIPS / RCH S (RC-Ranh)	and contrast to be a set of the s	
.0−14 Septe	Climate Data Store Toolbox	Climate Data Store API	Access climate reanalysis (ERAS)

Ecological terms commonly used in carbon accounting

GPP [Gross Primary Production]: total amount of carbon fixed in the process of photosynthesis by plants in an ecosystem NPP [Net Primary Production]: net production of organic matter by plants in an ecosystem, that is: GPP - autotrophic respiration NEP [Net Ecosystem Production]: net accumulation of organic matter or carbon by an ecosystem; NEP = NPP - heterotrophic resp.NBP [Net Biosphere Production]: net production of organic matter in a region containing

a range of ecosystems (a biome) minus what is lost by

disturbance (harvest, forest clearance, and fire, etc.)

Kirschbaum, M. U. F., et al. "Definitions of some ecological terms commonly used in carbon accounting." Cooperative Research Centre for Carbon Accounting, Canberra (2001): 2-5.

Complexity of measuring all **components...**

Kirschbaum, M. U. F., et al. "Definitions of some ecological terms commonly used in carbon accounting." Cooperative Research Centre for Carbon Accounting, Canberra (2001): 2-5.

→ 8th ADVANCED TRAINING COURSE ON LAND REMOTE SENSING

Productivity measured from flux-towers

Measures NEE (Net Ecosystem Exchange = NEP)

GPP can be derived, but already contains some modelling assumptions to remove respiration

Limited to a very localized area (~1km)

→ 8th ADVANCED TRAINING COURSE ON LAND REMOTE SENSING

Productivity measured from flux-towers

Sub-optimal spatial distribution despite reasonable climatic distribution

Schimel, D., Pavlick, R., Fisher, J. B., Asner, G. P., Saatchi, S. S., Townsend, P., ... Cox, P. (2015). Observing terrestrial ecosystems and the carbon cycle from space. Global Change Biology, 21(5), 1762–76.

→ 8th ADVANCED TRAINING COURSE ON LAND REMOTE SENSING

Light use efficiency (Monteith approach)

Monteith, J. L. (1972). Solar radiation and productivity in tropical ecosystems. Journal of Applied Ecology, 9(3), 747–766.

Canopy Radiation Radiation use productivity interception refficiency

Simple approach that can be linked to remote sensing observations

→ 8th ADVANCED TRAINING COURSE ON LAND REMOTE SENSING

PAR, APAR and fAPAR

Photosynthetically Active Radiation (PAR):

Radiation between 400 and 700 nm that photosynthetic organisms are able to use in the process of photosynthesis.

Coincides with visible light [Units: μ mol photons m-2 s-1]

```
Absorbed PAR (APAR):
```

Quantity of PAR absorbed by the plants Often considered equal to *intercepted* PAR Source: http://www.fondriest.com/environmentalmeasurements/parameters/weather/photosynthetically-active-

Fraction of APAR (fAPAR):

Normalized variable between 0 and 1 fAPAR = APAR/PAR

→ 8th ADVANCED TRAINING COURSE ON LAND REMOTE SENSING

Spectral properties of vegetation

Source: Plants in Action, published by the Australian Society of Plant Scientists, http://plantsinaction.science.uq.edu.au/edition1/

→ 8th ADVANCED TRAINING COURSE ON LAND REN

Plant pigments

Absorption from water in the plants

Source: http://www.exelisvis.com/docs/No nPhotosyntheticVegetation.html [incorrectly cited as coming from: Asner, G.P., 1998. RSE.]

→ 8th ADVANCED TRAINING COURSE ON LAND REMOTE SENSING

Leaf Area Index (LAI)

Source: Plants in Action, published by the Australian Society of Plant Scientists, http://plantsinaction.science.ug.edu.au/edition1/

Defined as half the total developed area of green leaves per unit of ground horizontal surface area [units: m2 m-2]

Interface between atmosphere and vegetation.

Useful to describe light interception: $I = I_0 e^{-kLAI}$

Measuring 'greenness'

Normalized Difference Vegetation Index

 $NDVI = \frac{NIR - Red}{NIR + Red}$

Exploits particular spectral properties of vegetation

Partly independent of viewing geometry

Proposed by Rouse et al. 1974 Popularized by Tucker since 1980

→ 8th ADVANCED TRAINING COURSE ON LAND REMOTE SENSING

Vegetation indices

- Convenient way to • resume information
- Exploit the particular • spectral properties of vegetation
- Depend on spectral response of the sensors (which changes even for bands with same names)
- Potentially unlimited • number of combinations

→ 8th ADVANCED TRAINING COURSE ON L

10-14 September 2018 | University of Leicester | United K

Misra Green Vegetation IndexMGVI(-Misra Yellow Vegetation IndexMYVI(C)Misra Non Such IndexMNSI(C)Perpendicular Vegetation IndexPVIAshburn Vegetation IndexAVIGreenness Above Bare SoilGRABSMulti-Temporal Vegetation IndexMTVIGreenness Vegetation and SoilGVSBBrightnessGVSBAdjusted Soil Brightness IndexASBIAdjusted Green Vegetation IndexTVIDifferenced Vegetation IndexDVINormalized Difference GreennessNDGIIndexRINormalized Difference Vegetation IndexPVISoil Adjusted Vegetation IndexPVISoil Adjusted Vegetation IndexSAVITransformed SAVITSAVITransformed SAVITSAVIAtmospherically Resistant VegetationARVIIndexGEMITransformed Soil AtmosphericallyTSARVITransformed SAVIMSAVIAngular Vegetation IndexAVItransformed SAVIMSAVI	Misra Soil Brightness Index	MSBI	(0.
Misra Yellow Vegetation IndexMYVI(0Misra Non Such IndexMNSI(0Perpendicular Vegetation IndexPVIAshburn Vegetation IndexAVIGreenness Above Bare SoilGRABSMulti-Temporal Vegetation IndexMTV1Greenness Vegetation and SoilGVSBBrightnessGVSBAdjusted Soil Brightness IndexASBIAdjusted Soil Brightness IndexASBIAdjusted Green Vegetation IndexTV1Differenced Vegetation IndexDV1Normalized Difference GreennessNDGIIndexRINormalized Difference VegetationNDV1IndexPV1Soil Adjusted Vegetation IndexPV1Soil Adjusted Vegetation IndexSAVITransformed SAVITSAVITransformed SAVITSAVIAtmospherically Resistant VegetationARVIIndexGEMITransformed Soil AtmosphericallyTSARVITransformed SAVIMSAVIAngular Vegetation IndexAVItransformed SAVIMSAVI	Misra Green Vegetation Index	MGVI	(-0
Misra Non Such IndexMNSI(0Perpendicular Vegetation IndexPVIAshburn Vegetation IndexAVIGreenness Above Bare SoilGRABSMulti-Temporal Vegetation IndexMTVIGreenness Vegetation and SoilGVSBBrightnessAdjusted Soil Brightness IndexASBIAdjusted Soil Brightness IndexASBIAdjusted Green Vegetation IndexTVIDifferenced Vegetation IndexDVINormalized Difference GreennessNDGIIndexRINormalized Difference Vegetation IndexPVISoil Adjusted Vegetation IndexPVISoil Adjusted Vegetation IndexSAVITransformed SAVITSAVITransformed SAVITSAVIAtmospherically Resistant VegetationARVIIndexCEMITransformed Soil AtmosphericallyTSARVIModified SAVIMSAVIAngular Vegetation IndexAVItan-1	Misra Yellow Vegetation Index	MYVI	(0.
Perpendicular Vegetation IndexPVIAshburn Vegetation IndexAVI Greenness Above Bare SoilGRABS Multi-Temporal Vegetation IndexMTVIGreenness Vegetation and SoilGVSBGVSBBrightnessIndexASBI Adjusted Soil Brightness IndexASBI AGVIAdjusted Soil Brightness IndexASBI Adjusted Green Vegetation IndexAGVI Transformed Vegetation IndexTVIDifferenced Vegetation IndexDVI Normalized Difference GreennessNDGI IndexRINormalized Difference VegetationNDVI IndexNDVISoil Adjusted Vegetation IndexSAVISAVITransformed SAVITSAVITSAVITransformed SAVITSAVIRIIndexGEMI IndexGEMIGlobal Environment Monitoring IndexGEMITSARVITransformed Soil Atmospherically Resistant Vegetation IndexMSAVIAngular Vegetation IndexAVI Imaxtan ⁻¹ .	Misra Non Such Index	MNSI	(0.
Ashburn Vegetation IndexAVI GRABS Multi-Temporal Vegetation IndexMTV1Greenness Above Bare SoilGRABS MTV1Greenness Vegetation IndexMTV1Greenness Vegetation and SoilGVSBAdjusted Soil Brightness IndexASBI AGV1Adjusted Green Vegetation IndexAGV1Transformed Vegetation IndexDV1Differenced Vegetation IndexDV1Normalized Difference GreennessNDGIIndexRINormalized Difference VegetationNDV1IndexPV1Soil Adjusted Vegetation IndexSAV1Transformed SAVITSAV1Transformed SAVITSAV1Atmospherically Resistant VegetationARV1IndexGEM1Transformed Soil Atmospherically Resistant Vegetation IndexTSARV1Angular Vegetation IndexAV1Tansformed SAVITSARV1	Perpendicular Vegetation Index	PVI	
Greenness Above Bare SoilGRABS MUlti-Temporal Vegetation IndexMTV1Greenness Vegetation and SoilGVSBBrightnessAdjusted Soil Brightness IndexASBI Adjusted Green Vegetation IndexASBI AGV1Adjusted Green Vegetation IndexTV1Differenced Vegetation IndexDV1Normalized Difference GreennessNDGI IndexRedness IndexRINormalized Difference VegetationNDV1IndexPV1Soil Adjusted Vegetation IndexPV1Soil Adjusted Vegetation IndexSAV1Transformed SAVITSAV1Transformed SAVITSAV1Atmospherically Resistant Vegetation IndexARV1Transformed Soil Atmospherically Resistant Vegetation IndexTSARV1Angular Vegetation IndexAV1transformed SAVITSARVITransformed Soil Atmospherically Resistant Vegetation IndexTSARVIAngular Vegetation IndexAV1tan-1.	Ashburn Vegetation Index	AVI	
Multi-Temporal Vegetation IndexMTV1Greenness Vegetation and SoilGVSBAdjusted Soil Brightness IndexASBIAdjusted Green Vegetation IndexAGV1Transformed Vegetation IndexTV1Differenced Vegetation IndexDV1Normalized Difference GreennessNDGIIndexRINormalized Difference VegetationNDV1IndexPV1Soil Adjusted Vegetation IndexSAV1Transformed SAVITSAV1Transformed SAVITSAV1Transformed SAVIGEM1IndexGEM1IndexSav1Transformed SAVITSAV1Atmospherically Resistant VegetationARV1Transformed Soil AtmosphericallyTSARV1Modified SAVIMSAVIAngular Vegetation IndexAV1tan-1.	Greenness Above Bare Soil	GRABS	
Greenness Vegetation and SoilGVSBAdjusted Soil Brightness IndexASBIAdjusted Green Vegetation IndexAGVITransformed Vegetation IndexTVIDifferenced Vegetation IndexDVINormalized Difference GreennessNDGIIndexRINormalized Difference VegetationNDVIPerpendicular Vegetation IndexPVISoil Adjusted Vegetation IndexSAVITransformed SAVITSAVITransformed SAVITSAVIGlobal Environment Monitoring IndexGEMITransformed Soil Atmospherically Resistant Vegetation IndexTSARVIAngular Vegetation IndexAVI tan^{-1} .	Multi-Temporal Vegetation Index	MTVI	
Adjusted Soil Brightness IndexASBI AGVIAdjusted Green Vegetation IndexTVIDifferenced Vegetation IndexDVINormalized Difference GreennessNDGIIndexRINormalized Difference VegetationNDVIIndexRINormalized Difference VegetationNDVIIndexPVISoil Adjusted Vegetation IndexSAVITransformed SAVITSAVITransformed SAVITSAVIAtmospherically Resistant VegetationARVIIndexGEMITransformed Soil AtmosphericallyTSARVITransformed SAVIMSAVIAngular Vegetation IndexAVItransformed SAVITSARVI	Greenness Vegetation and Soil Brightness	GVSB	
Adjusted Green Vegetation IndexAGVITransformed Vegetation IndexTVIDifferenced Vegetation IndexDVINormalized Difference GreennessNDGIIndexRINormalized Difference VegetationNDVIIndexPVISoil Adjusted Vegetation IndexSAVITransformed SAVITSAVITransformed SAVITSAVIGlobal Environment Monitoring IndexGEMITransformed SAVITSARVIAtmospherically Resistant VegetationARVIIndexYANIAtmospherically Resistant VegetationARVIIndexYANITransformed SAVITSARVIAngular Vegetation IndexAVItan-1AtmosphericallyTansformed SAVITSARVI	Adjusted Soil Brightness Index	ASBI	
Transformed Vegetation IndexTVIDifferenced Vegetation IndexDVINormalized Difference GreennessNDGIIndexRIRedness IndexRINormalized Difference VegetationNDVIIndexPVISoil Adjusted Vegetation IndexSAVITransformed SAVITSAVITransformed SAVITSAVIGlobal Environment Monitoring IndexGEMITransformed SAVITSARVIAtmospherically Resistant VegetationARVIIndexMSAVIAngular Vegetation IndexAVItransformed SAVITSARVI	Adjusted Green Vegetation Index	AGVI	
Differenced Vegetation IndexDVINormalized Difference Greenness IndexNDGIRedness IndexRINormalized Difference Vegetation IndexNDVIPerpendicular Vegetation IndexPVISoil Adjusted Vegetation IndexSAVITransformed SAVITSAVITransformed SAVITSAVIAtmospherically Resistant Vegetation IndexARVIGlobal Environment Monitoring IndexGEMITransformed Soil Atmospherically Resistant Vegetation IndexTSARVIAngular Vegetation IndexAVItransformed SAVITSARVI	Transformed Vegetation Index	TVI	
Normalized Difference Greenness IndexNDGIRedness IndexRINormalized Difference Vegetation IndexNDVIPerpendicular Vegetation IndexPVISoil Adjusted Vegetation IndexSAVITransformed SAVITSAVITransformed SAVITSAVIAtmospherically Resistant Vegetation IndexARVIGlobal Environment Monitoring IndexGEMITransformed SAVITSARVIAtmospherically Resistant Vegetation IndexARVIAngular Vegetation IndexAVIAngular Vegetation IndexAVItan-1.	Differenced Vegetation Index	DVI	
Redness Index RI Normalized Difference Vegetation Index NDVI Perpendicular Vegetation Index PVI Soil Adjusted Vegetation Index SAVI Soil Adjusted Vegetation Index SAVI Transformed SAVI TSAVI Transformed SAVI TSAVI Atmospherically Resistant Vegetation Index ARVI Global Environment Monitoring Index GEMI Transformed Soil Atmospherically Resistant Vegetation Index TSARVI Angular Vegetation Index AVI	Normalized Difference Greenness Index	NDGI	
Normalized Difference Vegetation NDVI Index PVI Perpendicular Vegetation Index PVI Soil Adjusted Vegetation Index SAVI Transformed SAVI TSAVI Transformed SAVI TSAVI Atmospherically Resistant Vegetation ARVI Index GEMI Transformed Soil Atmospherically TSARVI Modified SAVI MSAVI Angular Vegetation Index AVI	Redness Index	RI	
Perpendicular Vegetation Index PVI Soil Adjusted Vegetation Index SAVI Transformed SAVI TSAVI Transformed SAVI TSAVI Atmospherically Resistant Vegetation Index ARVI Global Environment Monitoring Index GEMI Transformed Soil Atmospherically Resistant Vegetation Index TSARVI Modified SAVI MSAVI Angular Vegetation Index AVI	Normalized Difference Vegetation Index	NDVI	
Soil Adjusted Vegetation IndexSAVITransformed SAVITSAVITransformed SAVITSAVIAtmospherically Resistant VegetationARVIIndexGEMIGlobal Environment Monitoring IndexGEMITransformed Soil Atmospherically Resistant Vegetation IndexTSARVIModified SAVIMSAVIAngular Vegetation IndexAVItan-1	Perpendicular Vegetation Index	PVI	
Transformed SAVI TSAVI Transformed SAVI TSAVI Atmospherically Resistant Vegetation Index ARVI Global Environment Monitoring Index GEMI Transformed Soil Atmospherically Resistant Vegetation Index TSARVI Modified SAVI MSAVI Angular Vegetation Index AVI	Soil Adjusted Vegetation Index	SAVI	
Transformed SAVI TSAVI Atmospherically Resistant Vegetation Index ARVI Global Environment Monitoring Index GEMI Transformed Soil Atmospherically Resistant Vegetation Index TSARVI Modified SAVI MSAVI Angular Vegetation Index AVI	Transformed SAVI	TSAVI	
Atmospherically Resistant Vegetation ARVI Index Global Environment Monitoring GEMI Index GEMI GEMI Transformed Soil Atmospherically TSARVI Resistant Vegetation Index MSAVI Angular Vegetation Index AVI tan ⁻¹	Transformed SAVI	TSAVI	
Global Environment Monitoring GEMI Index GEMI Transformed Soil Atmospherically TSARVI Resistant Vegetation Index MSAVI Angular Vegetation Index AVI	Atmospherically Resistant Vegetation Index	ARVI	
Transformed Soil Atmospherically TSARVI Resistant Vegetation Index Modified SAVI MSAVI Angular Vegetation Index AVI tan ⁻¹ .	Global Environment Monitoring Index	GEMI	
Modified SAVI MSAVI Angular Vegetation Index AVI tan ⁻¹ .	Transformed Soil Atmospherically Resistant Vegetation Index	TSARVI	
Angular Vegetation Index AVI tan ⁻¹	Modified SAVI	MSAVI	
	Angular Vegetation Index	AVI	tan-1 {

Differenced Vegetation Index

DVI

(2.4MSS7 – MSS5)	Richardson and Wiegand, 1977
(0.406MSS4 + 0.600MSS5 + 0.645MSS6 + 0.243MSS7)	Misra et al., 1977
-0.386MSS4 - 0.530MSS5 + 0.535MSS6 + 0.532MSS7)	Misra et al., 1977
(0.723MSS4 - 0.597MSS5 + 0.206MSS6 - 0.278MSS7)	Misra et al., 1977
(0.404MSS4 - 0.039MSS5 - 0.505MSS6 + 0.762MSS7)	Misra et al., 1977
$\sqrt{(\rho_{sol} - \rho_{v \acute{e}g \acute{e}})_R^2 + (\rho_{sol} - \rho_{v \acute{e}g \acute{e}})_{NIR}^2}$	Richardson and Wiegand, 1977
(2.0MSS7 – MSS5)	Ashburn, 1978
(GVI - 0.09178SBI + 5.58959)	Hay et al., 1979
(NDVI(date 2) – NDVI(date 1))	Yazdani et al., 1981
GVI SBI	Badhwar, 1981
(2.0 YVI)	Jackson et al., 1983
GVI - (1 + 0.018GVI)YVI - NSI/2	Jackson et al., 1983
$\frac{(\text{NDVI}+0.5)}{ \text{NDVI}+0.5 }\sqrt{ \text{NDVI}+0.5 }$	Perry and Lautenschlager, 1984
(NIR – R)	Clevers, 1986
$\frac{(G-R)}{(G+R)}$	Chamard et al., 1991
$\frac{(\mathbf{R}-\mathbf{G})}{(\mathbf{R}+\mathbf{G})}$	Escadafal and Huete, 1991
$\frac{(\text{NIR} - \text{R})}{(\text{NIR} + \text{R})}$	Rouse et al., 1974
$\frac{(\text{NIR} - aR - b)}{\sqrt{a^2 + 1}}$	Jackson et al., 1980
$\frac{(\text{NIR} - \text{R})}{(\text{NIR} + \text{R} + \text{L})}(1 + \text{L})$	Huete, 1988
$\frac{[a(NIR - aR - b)]}{(R + aNIR - ab)}$	Baret et al., 1989
$\frac{[a(NIR - aR - b)]}{[R + aNIR - ab + X(1 + a^2)]}$	Baret and Guyot, 1991
$(NIR - RB)$ $(NIR + RB)$ $RB = R - \gamma(B - R)$	Kaufman and Tanré, 1992
GEMI = $\eta(1 - 0.25\eta) - \frac{(R - 0.125)}{(1 - R)}$	Pinty and Verstraete, 1992
$\eta = \frac{[2(\text{NIR}^2 - \text{R}^2) + 1.5\text{NIR} + 0.5\text{R}]}{(\text{NIR} + \text{R} + 0.5)}$	
$\frac{[a_{rb}(\text{NIR} - a_{rb}\text{RB} - b_{rb})]}{[\text{IDR} + a_{rb}(\text{NIR} - a_{rb}(\text{RB} - b_{rb})]}$	Bannari et al., 1994
$[KB + a_{rb}NIK - a_{rb}b_{rb} + X(1 + a_{rb})]$	and the second second
$\frac{2NIR + 1 - \sqrt{(2NIR + 1)^2 - 8(NIR - R)}}{2}$	Qi et al., 1994
$\left\{\frac{\lambda_3 - \lambda_2}{\lambda_2}[NIR - R]^{-1}\right\} + \tan^{-1}\left\{\frac{\lambda_2 - \lambda_1}{\lambda_2}[G - R]^{-1}\right\}$	Plummer et al., 1994

Retrieving biophysical variables (fAPAR, LAI) from RS

Empirical methods

- Establishment of a statistical relationship
 between VI or ρ and field measured biophysical
 variables
- Require intensive field measurements for calibration and validation
- Relation is typically limited to large geographic extent (for now)

Drones, Big Data and machine learning should revolutionize field data collections in the near-future

Retrieving biophysical variables (fAPAR, LAI) from RS

Physical methods

- Replacement of field measurements by radiative transfer models (RTMs)

- Mathematical inversion necessary, but difficult because it is an ill-posed problem
- Method is transportable across landscapes as long as RTM is valid

→ 8th ADVANCED TRAINING COURSE ON LAND REMOTE SENSING

→ 8th ADVANCED TRAINING COURSE ON LAND REMOTE SENSING

Light use efficiency

Source: Plants in Action, published by the Australian Society of Plant Scientists, http://plantsinaction.science.uq.edu.au/edition1/

→ 8th ADVANCED TRAINING COURSE ON LAND REMOTE SENSING

→ 8th ADVANCED TRAINING COURSE ON LAND REMOTE SENSING

→ 8th ADVANCED TRAINING COURSE ON LAND REMOTE SENSING

Exploring other avenues ...

- (Sun-induced) chlorophyll fluorescence (SIF) emitted by the photosynthetic machinery
- Responds instantaneously to perturbations in the environmental conditions such as light and water stress
- This allows to translate effects of stress which do not necessarily cause a reduction of ChI or LAI
- Can provide early and direct diagnostic of functional status of vegetation... proxy for photosynthetic activity

http://www.nightsea.com/articles/fluorescence-photographyilluminates-chlorophyll/

→ 8th ADVANCED TRAINING COURSE ON LAND REMOTE SENSING

The various fates of exited chlorophyll...

The challenge of retrieving SIF from satellite RS

Only 1-5% of the reflected signal !!! Fluorescence is proportional to photosynthesis

A)

1.2

1.0

Meroni, M. et al.

(2009) Remote

Sensing of

Environment

Several global datasets have appeared from serendipity...

(c) GOME-2 (left) and GOSAT (right), Annual 2009

- Potentially useful, even if it might only be a better 'green APAR'
- Coarse spatial resolution: 0.5 degrees
 (but downscaled product exist ... come to the practical lesson!)

→ 8th ADVANCED TRAINING COURSE ON LAND REMOTE SENSING

Other avenues worth exploring...

NIRv: Index multiplying NIR times NDVI seems to provide high correlation with SIF/GPP (*Badgley, Field, Berry, Sci. Adv. 2017*), advantage of having longer archive & higher res.

Photochemical Reflectance Index (PRI): Normalized difference between leaf reflectance at 531 nm and a reference wavelength (~550 nm) (*Gamon et al. 1992*)

- \Rightarrow Related to xanthophyll cycle
- \Rightarrow can serves as proxy for LUE

Bands in the RED EDGE: region of rapid change in reflectance of vegetation between red and near infrared (690-730 nm)

- ⇒ recognized as key for improving chlorophyll retrieval
- \Rightarrow SentineI-2 has 2 bands in the red edge

→ 8th ADVANCED TRAINING COURSE ON LAND REMOTE SENSING

(Above-Ground) Biomass [AGB] from space

- Requires space-borne lidar to estimate AGB from tree height
- Assume global or continental allometric relationships (AGB varies only with stand height

NEW MISSIONS COMING UP:

- NASA GEDI
- ESA BIOMASS

Fig. 3 Fused map, representing the distribution of live woody aboveground biomass (AGB) for all land cover types at 1-km resolution for the tropical region.

VOD – Vegetation Optical Depth

Passive microwave sensors are used for estimating soil moisture

But they need to 'model' and estimate 'noise' from the vegetation above

This 'noise' is in fact useful to relate to wet canopy structure

Not all bands penetrate as much...

Source: http://www.dlr.de/hr/en/desktopdefault.aspx/tabid-8113/14171_read-35852/

VOD from C-band

Long time series of above-ground biomass change estimated from VOD But arguably does not penetrate enough...

VOD from L-band sensors (SMOS, SMAP)

Show some promise of better results.

But time series are very short (couple of years)...

→ 8th ADVANCED TRAINING COURSE ON LAND REMOTE SENSING

The surface energy balance (SEB)

Radiative vs non-radiative (turbulent) fluxes

SW + LW = LE + H + G

$$SW_{down} - SW_{up} + LW_{down} - LW_{up} = LE + H + G$$

$$SW_{down} (1 - a) + LW_{down} - LW_{up} =$$

LE + H + G

Wild et al. 2015. Clim. Dynamics

→ 8th ADVANCED TRAINING COURSE ON LAND REMOTE SENSING

Surface Albedo

- How much shortwave radiation is reflected by the surface
- Obtained from multi-angular observations over a moving window
- Algorithms provide black-sky (directional) albedo and vs white-sky (diffuse) albedo
- Shortwave broadband or provided per spectral band (BRDF correction)

http://modis.gsfc.nasa.gov

→ 8th ADVANCED TRAINING COURSE ON LAND REMOTE SENSING

Land surface temperature (LST)

- Radiant temperature in Kelvin
- Variable resuming the consequence of the energy balance
- Linked to LW by Stephen-Boltzmann law

 $LW = \epsilon \sigma T^4$

- Obtained from multi-angular observations of TIR reflectance
- Ill-posed problem inversion

→ 8th ADVANCED TRAINING COURSE ON LAND REMOTE SENSING

Evapotranspiration or Latent Heat

Penman-Monteith equation

$$ET_{o} = \frac{0.408\Delta(R_{n} - G) + \gamma \frac{900}{T + 273}u_{2}(e_{s} - e_{a})}{\Delta + \gamma(1 + 0.34u_{2})}$$

Priestly-Taylor equation

$$ETp = \alpha \frac{\Delta}{\Delta + \gamma} (Rn - G)$$

[1]

Some existing products: MOD16, evapotranspiration = transpiration + evaporation

→ 8th ADVANCED TRAINING COURSE ON LAND REMOTE SENSING

Description of the land surface

Land Cover = physical material at the surface of the earth (grass, asphalt, trees) **main high resolution land cover**

Land Use = description of how people *utilize* the land (wheat field, short-rotation coppice, ...)

Plant Functional Types = group of plants based on common features: structural (grasses/shrubs/trees), physiological (broadleaf/needleleaf) phenological (deciduous/evergreen)

Optically distinguishable functional types = based on detectable traits Ustin, S. L., & Gamon, J. A. (2010). Remote sensing of plant functional types. The New Phytologist, 186(4), 795-816. https://doi.org/10.1111/j.1469-8137.2010.03284.x

→ 8th ADVANCED TRAINING COURSE ON LAND REMOTE SENSING

From land cover to plant functional types (PFTs)

→ 8th ADVANCED TRAINING COURSE ON LAND REMOTE SENSING

But this transformation should not be necessary if we have 'optical functional types' or if we produce continuous maps of vegetation cover directly

155	sparse neroaceous cover (< 15 %)							15	00	
160	Tree cover, flooded, fresh or brackish water	30	30					20		20
170	Tree cover, flooded, saline water	60			20					20
180	Shrub/herbaceous cover, flooded, fresh/saline/brackish water		5	10		10	5	40		30
190	Urban areas		2.5	2.5				15	75	5
200	Bare areas								100	
201	Connellidated have energy								100	

Climate modelling: some clarifications...

LSMs [Land surface models]: models biogeophysical and biogeochemical interactions between the land and the atmosphere.

DGVMs [Dynamic global vegetation model]: models potential vegetation and its associated biogeochemical and hydrological cycles as a response to shifts in climate. *(often equivalent to LSM with dynamic vegetation but sometimes has no biophysics)*

GCMs [General Circulation Models]: models the general circulation of a planetary atmosphere (AGCM) or ocean (OGCM) or both (AOGCM). Includes an LSM/DGVM.

I AMs [Integrated Assessment Models]: models socio-economic interactions and their responses to forced climate (eg. from GCMs). Used to make scenarios (SSPs and RCPs)

ESMs [Earth System models]: models full Earth system, i.e. physical processes like an AOGCM but also includes human interactions such as land use change

→ 8th ADVANCED TRAINING COURSE ON LAND REMOTE SENSING

Role of remote sensing for climate science

- Full potential has been neglected to some extent by climate community

Some downsides...

- no direct observation of carbon
- Requires archive... often too short...
- Cannot go in the future under difference scenarios

Major strengths ...

- Synoptic coverage \rightarrow can bridge the gap between *in situ* and models
- Could be a baseline for a revisited bottom-up approach to vegetation modelling

→ 8th ADVANCED TRAINING COURSE ON LAND REMOTE SENSING

Thank you for your attention...

Contact:

gregory.duveiller@ec.europa.eu

→ 8th ADVANCED TRAINING COURSE ON LAND REMOTE SENSING