

→ 8th ADVANCED TRAINING COURSE ON LAND REMOTE SENSING

10–14 September 2018 University of Leicester | United Kingdom

Forestry applications with Polarimetry and Interferometry (Lecture)

Laurent FERRO-FAMIL, Eric POTTIER

IETR / University of Rennes 1, France

Eric POTTIER eric.pottier@univ-rennes1.fr

I.E.T.R. - UMR CNRS 6164 Université de Rennes I - Campus de Beaulieu Pôle Micro Ondes Radar - Bat 11D 263 Avenue Général Leclerc CS 74205 - 35042 Rennes Cedex – France

Laurent FERRO-FAMIL

laurent.ferro-famil@univ-rennes1.fr

SAR & Hyperspectral multi-modal Imaging and sigNal processing, **Electromagnetic modeling**

→ 8th ADVANCED TRAINING COURSE ON LAND REMOTE SENSING

Rennes - Britanny

Rennes - Britanny

Rennes - Britanny

To provide the minimum, but necessary, amount of knowledge required to understand and to practice :

SAR Polarimetry + Interferometry (Pol-InSAR)

for forestry applications

→ 8th ADVANCED TRAINING COURSE ON LAND REMOTE SENSING 10-14 September 2018 | University of Leicester | United Kingdom

🖉 Height Estimation from Inversion Procedures		
Input Master - Slave Directory		
C:/My_Data_Directory/Pol-InSAR_PolSARproSIM	_forest/master_slave_FER	
Output Master - Slave Directory		
C/My_Data_Directory/PoHnSAR_PoISARproSIM_forest/master_slave_FER		
Init Row 1 End Row	301 Init Col 1 End Col 301	
	Update List	
☐ Polarimetric Phase Centre Height Estimation	Polanmetric Channel HH 👤	
DEM Differencing Algorithm		
Coherence Amplitude Inversion Procedure		
Ground Phase Estimation and RVDG Inversion Procedure Median Window Size 21 Weighting Coherence Fraction Factor 0.4		
Top Phase Centre HV 👤 2D Kz File	Ground Phase Centre HH - W	
C:/My_Data_Directory/PoHnSAR_PoISARproSIM_forest/slave/kz,bin		
Run	Ем	

PolSARpro - practicals

→ 8th ADVANCED TRAINING COURSE ON LAND REMOTE SENSING

10-14 September 2018 | University of Leicester | United Kingdom

INVERSION PROCEDURES

- DEM Differencing Algorithm
- Coherence Amplitude Inversion Procedure
- Ground Phase Estimation &
- **RVOG Inversion Procedure**

🖉 Height Estimation from Inversion Proc	edures
Input Master - Slave Directory	
C:/My_Data_Directory/PoHnSAR_PoISARpr	SIM_forest/master_slave_FER
Output Master - Slave Directory	
C:/My_Data_Directory/Pol-InSAR_PolSARpr	JSIM_forest/master_slave_FER /
Init Row 1 End Row	301 Init Col 1 End Col 301
	Update List
F Polarimetric Phase Centre Height Estimatic	n Polarimetric Channel HH _
DEM Differencing Algorithm	
Coherence Amplitude Inversion Procedure	
Ground Phase Estimation and RVOG Inve	rsion Procedure
Median Window Size 21 💌	Weighting Coherence Fraction Factor 0.4
Top Phase Centre HV	Ground Phase Centre HH - W
C:/My_Data_Directory/Pol-InSAR_PolSARpr	pSIM_forest/slave/kz,bin
Run	(D Exit

→ 8th ADVANCED TRAINING COURSE ON LAND REMOTE SENSING

🦨 Height Estimation from Inversion Procedu		
Input Master - Slave Directory		
C./My_Data_Directory/PoHnSAR_PoISARproSIM_forest/master_slave_FER		
Output Master - Slave Directory		
C:/My_Data_Directory/PoHnSAR_PoISARproSIM_forest/master_slave_FER		
Init Row 1 End Row	301 Init Col 1 End Col 301	
	Update List	
F Polarimetric Phase Centre Height Estimation	Polarimetric-Channel HH	
DEM Differencing Algorithm		
Coherence Amplitude Inversion Procedure		
Ground Phase Estimation and RVDG Inversion Procedure		
Median Window Size 21 💌 🛋	Weighting Coherence Fraction Factor 0.4	
Top Phase Centre HV 💌	Ground Phase Centre HH - VV	
2D Kz File		
C:/My_Data_Directory/PoHnSAR_PolSARproSIM_forest/slave/kz,bin		
Run Hist	Exit	

Pol-InSAR

Interferometry

SAR

→ 8th ADVANCED TRAINING COURSE ON LAND REMOTE SENSING

→ 8th ADVANCED TRAINING COURSE ON LAND REMOTE SENSING 10-14 September 2018 | University of Leicester | United Kingdom

2-D SAR imaging

→ 8th ADVANCED TRAINING COURSE ON LAND REMOTE SENSING 10-14 September 2018 | University of Leicester | United Kingdom

2-D SAR imaging

10-14 September 2018 | University of Leicester | United Kingdom

2-D SAR imaging

10-14 September 2018 | University of Leicester | United Kingdom

3-D In-SAR imaging

3-D In-SAR imaging

10-14 September 2018 | University of Leicester | United Kingdom

3-D In-SAR imaging

10–14 September 2018 | University of Leicester | United Kingdom

© E. Pottier - 2018

esa

Interferometric coherence γ

 $\gamma = \frac{E(s_1 s_2^*)}{\sqrt{E(s_1 s_1^*)E(s_2 s_2^*)}} = \frac{E(s_1 s_2^*)}{\sqrt{\overline{I}_1 \overline{I}_2}} = |\gamma| e^{j\phi}$

→ 8th ADVANCED TRAINING COURSE ON LAND REMOTE SENSING 10-14 September 2018 University of Leicester United Kingdom

→ 8th ADVANCED TRAINING COURSE ON LAND REMOTE SENSING 10-14 September 2018 University of Leicester United Kingdom

S₂

Interferometric coherence γ

$$=\frac{E\left(s_{1}s_{2}^{*}\right)}{\sqrt{E\left(s_{1}s_{1}^{*}\right)E\left(s_{2}s_{2}^{*}\right)}}=\frac{E\left(s_{1}s_{2}^{*}\right)}{\sqrt{I_{1}I_{2}}}=|\gamma|e^{j\phi}$$

Phase fringes Contour lines

3-D World

Ø

→ 8th ADVANCED TRAINING COURSE ON LAND REMOTE SENSING 10-14 September 2018 | University of Leicester | United Kingdom

 S_1

 $B_{\perp} = B\cos(\theta_1 - \alpha)$

 $\phi = \varDelta \phi_{1 \cdot 2} \approx \varDelta \phi_{topo} + \varDelta \phi_{fe}$

$$\Delta \phi_{topo} \propto rac{k_c B_{\perp}}{R_1 \sin(\theta_1)} \Delta h$$

$$k_c = \frac{4\pi f_c}{c} = \frac{4\pi}{\lambda_c}$$

→ 8th ADVANCED TRAINING COURSE ON LAND REMOTE SENSING

10-14 September 2018 | University of Leicester | United Kingdom

Β ,

10-14 September 2018 | University of Leicester | United Kingdom

→ 8th ADVANCED TRAINING COL 10-14 September 2018 | University of Leicester | United Kingdom

Complete InSAR phase-to-height processing chain

→ 8th ADVANCED TRAINING COL

Interferometric coherence γ

Arg(%)

DLR E-SAR L Band Pol-In SAR (1.5m x 3m) – Baseline 5m

→ 8th ADVANCED TRAINING COURSE ON LAND REMOTE SENSING

Interferometric coherence γ : decorrelation sources

 γ fixed by a set of external sources :

System :

- Thermal or system noise : SAR amplifiers, ADC, antennas ...
- Quantization noise
- Geometric decorrelation : Baseline, squint ...
- Azimuth : Doppler decorrelation ...
- Ambiguities ...
- Processing errors : coregistration, interpolation ...

Environment:

- Random media : Surface & Volumetric media e.g. forest ...
- Temporal variations : wind, flowing or plowing, building ...

 $\gamma = \gamma_{SNR} \cdot \gamma_{quant} \cdot \gamma_{amb} \cdot \gamma_{geo} \cdot \gamma_{az} \cdot \gamma_{proc} \cdot \gamma_{media} \cdot \gamma_{temp}$

→ 8th ADVANCED TRAINING COURSE ON LAND REMOTE SENSING

Interferometric coherence γ : decorrelation sources

 γ fixed by a set of external sources :

System :

- Thermal or system noise : SAR amplifiers, ADC, antennas ...
- Quantization noise
- Geometric decorrelation : Baseline, squint ...
- Azimuth : Doppler decorrelation ...
- Ambiguities ...
- Processing errors : coregistration, interpolation ...

Environment : • Random media : Surface & Volumetric media e.g. forest • Temporal variations : wind, flowing or plowing, building ... $\gamma = \gamma_{SNR} \cdot \gamma_{quant} \cdot \gamma_{amb} \cdot \gamma_{geo} \cdot \gamma_{az} \cdot \gamma_{proc} \cdot \gamma_{media} \cdot \gamma_{temp}$ • 8th ADVANCED TRAINING COURSE ON LAND REMOTE SENSING

Interferometric coherence γ

$$\gamma = \frac{E\left(s_{1}s_{2}^{*}\right)}{\sqrt{E\left(s_{1}s_{1}^{*}\right)E\left(s_{2}s_{2}^{*}\right)}} = \frac{E\left(s_{1}s_{2}^{*}\right)}{\sqrt{\overline{I}_{1}\overline{I}_{2}}} \approx \frac{E\left(s_{1}s_{2}^{*}\right)}{\overline{I}} = |\gamma|e^{j\phi}$$

 $\overline{I}_1 \approx \overline{I}_2 \approx \overline{I}$

In-SAR signal formulation

$$s_{1}(x,r) = e^{-jkr_{\theta_{1}}} \int_{V} a_{c_{1}}(\vec{r}') e^{-j\vec{k}_{1}\cdot(\vec{r}'-\vec{r}_{\theta})} h(x-x',r-r') dv'$$

$$s_{2}(x,r) = e^{-jkr_{\theta_{2}}} \int_{V} a_{c_{2}}(\vec{r}') e^{-j\vec{k}_{2}\cdot(\vec{r}'-\vec{r}_{\theta})} h(x-x',r-r') dv'$$

→ 8th ADVANCED TRAINING COURSE ON LAND REMOTE SENSING 10-14 September 2018 | University of Leicester | United Kingdom

Interferometric coherence γ

$$\gamma = \frac{E\left(s_{1}s_{2}^{*}\right)}{\sqrt{E\left(s_{1}s_{1}^{*}\right)E\left(s_{2}s_{2}^{*}\right)}} = \frac{E\left(s_{1}s_{2}^{*}\right)}{\sqrt{\overline{I_{1}\overline{I_{2}}}}} \approx \frac{E\left(s_{1}s_{2}^{*}\right)}{\overline{I}} = |\gamma|e^{j\phi} \qquad \overline{I_{1}} \approx \overline{I_{2}} \approx \overline{I}$$

Volume complex reflectivity
$$a_{c_i}(\vec{r})$$

 $\overline{I_i}(x,r) = E(s_i(x,r)s_i^*(x,r)) = \int_V \sigma_{v_i}(\vec{r}') |h(x-x',r-r')|^2 dv'$
 $E(s_1(x,r)s_2^*(x,r)) = \int_V \sigma_{v_e}(\vec{r}')e^{-j(\vec{k}_1-\vec{k}_2)(\vec{r}'-\vec{r}_0)} |h(x-x',r-r')|^2 dv'$

With :

$$E\left(a_{c_1}(\vec{r})a_{c_2}^*(\vec{r'})\right) = \sigma_{v_a}(\vec{r})\,\delta(\vec{r}-\vec{r'})$$

 $E\left(a_{c_i}\left(\vec{r}\right)a_{c_i}^*\left(\vec{r}'\right)\right) = \sigma_{v_i}\left(\vec{r}\right)\delta\left(\vec{r}-\vec{r}'\right)$

Reflectivity density

Effective reflectivity density

→ 8th ADVANCED TRAINING COURSE ON LAND REMOTE SENSING

Interferometric coherence γ

$$\gamma = \frac{E\left(s_{1}s_{2}^{*}\right)}{\sqrt{E\left(s_{1}s_{1}^{*}\right)E\left(s_{2}s_{2}^{*}\right)}} = \frac{E\left(s_{1}s_{2}^{*}\right)}{\sqrt{\overline{I_{1}\overline{I_{2}}}}} \approx \frac{E\left(s_{1}s_{2}^{*}\right)}{\overline{I}} = |\gamma|e^{j\varphi}$$

 $\overline{I}_1 \approx \overline{I}_2 \approx \overline{I}$

$$\gamma = \frac{\int_{V} \sigma_{v_{e}}(\vec{r}') e^{-j(\vec{k}_{1}-\vec{k}_{2})(\vec{r}'-\vec{r}_{0})} |h(x-x',r-r')|^{2} dv'}{\int_{V} \sigma_{v}(\vec{r}') |h(x-x',r-r')|^{2} dv'}$$

With :

$$E\left(a_{c_i}(\vec{r})a_{c_i}^*(\vec{r}')\right) = \sigma_{v_i}(\vec{r})\,\delta(\vec{r}-\vec{r}')$$

Reflectivity density

$$E\left(a_{c_1}(\vec{r})a_{c_2}^*(\vec{r}')\right) = \sigma_{v_e}(\vec{r})\,\delta(\vec{r}-\vec{r}')$$

Effective reflectivity density

→ 8th ADVANCED TRAINING COURSE ON LAND REMOTE SENSING

In-SAR coherence decomposition sa

Interferometric coherence γ

$$v = \frac{\int_{V} \sigma_{v_{e}}(\vec{r}') e^{-j(\vec{k}_{1}-\vec{k}_{2})(\vec{r}'-\vec{r}_{0})} |h(x-x',r-r')|^{2} dv'}{\int_{V} \sigma_{v}(\vec{r}') |h(x-x',r-r')|^{2} dv'}$$

 $\gamma = \gamma_{temp} \cdot \gamma_{media} = \gamma_{temp} \cdot \left(\gamma_{x,y} \cdot \gamma_z \right)$

Surface / Volume

$$\gamma_{vol} = \gamma_z = \frac{\int_Z \sigma_{v_e}(\vec{r}') e^{jk_z(z-z_0)} dz'}{\int_Z \sigma_{v_e}(\vec{r}') dz'}$$

Volumetric / random media decorrelation

→ 8th ADVANCED TRAINING COURSE ON LAND REMOTE SENSING

In-SAR coherence decomposition sa

Volume decorrelation

$$\gamma_z = \frac{\int \sigma_{v_e}(z) e^{jk_z(z-z_0)} dz'}{\int Z \sigma_{v_e}(z) dz'}$$

Decorrelation due to the vertical structure $\sigma_{v_e}(z) = A_{v_e}f(z)$

→ 8th ADVANCED TRAINING COURSE ON LAND REMOTE SENSING 10-14 September 2018 | University of Leicester | United Kingdom

In-SAR coherence decompositionesa

- 2 significant and uncorrelated mechanisms : volume + underlying ground
- Iow density medium = No refraction

→ 8th ADVANCED TRAINING COURSE ON LAND REMOTE SENSING

In-SAR coherence decomposition Sa

Ground only

Ground layer $\sigma_{v_e}(z) = \sigma_g \delta(z - z_g)$

No volume

$$\gamma_z = \frac{\int \sigma_{v_e}(z) e^{jk_z(z-z_0)} dz'}{\int \int \sigma_{v_e}(z) dz'} = e^{jk_z z_g}$$

 $z_0 + z_g$ z_0

Z.

→ 8th ADVANCED TRAINING COURSE ON LAND REMOTE SENSING

10-14 September 2018 | University of Leicester | United Kingdom

 $\sigma_{v_o}(z)$

 σ_{g}
In-SAR coherence decomposition sa

7 + h

Random volume (RV) with null extinction

No underlying ground

Homogeneous medium

$$\gamma_{z} = \frac{\int_{z_{0}+z_{v_{0}}}^{z_{0}+u_{v}} \sigma_{v_{e}}(z) e^{jk_{z}(z-z_{0})} dz'}{\int_{z_{0}+z_{v_{0}}}^{z_{0}+h_{v}} \sigma_{v_{e}}(z) dz'} = e^{jk_{z}} \frac{(h_{v}+z_{v_{0}})}{2} sinc\left(\frac{k_{z}d}{2}\right)}$$

→ 8th ADVANCED TRAINING COURSE ON LAND REMOTE SENSING

10-14 September 2018 | University of Leicester | United Kingdom

Null extinction : $\sigma_{v_e}(z) = A_v$

In-SAR coherence decomposition sa

Random volume (RV) with non-null extinction

No underlying ground

Non-null extinction : κ_e

Homogeneous medium with elementary reflectivity density σ_v (

ctivity density
$$\sigma_{v_e}(z) = A_v e^{\frac{2\kappa_e}{\cos(\theta)}(z - (z_\theta + h_v))}$$

In-SAR coherence decomposition Sa

Random volume (RV) with non-null extinction

$$\gamma_{z} = \frac{\int_{z_{0}+z_{v_{0}}}^{z_{0}+n_{v}} \sigma_{v_{e}}(z) e^{jk_{z}(z-z_{0})} dz'}{\int_{z_{0}+z_{v_{0}}}^{z_{0}+h_{v}} \sigma_{v_{e}}(z) dz'} = e^{jk_{z}z_{v_{0}}} \frac{p}{p_{1}} \left(\frac{e^{p_{1}d}-1}{e^{pd}-1}\right) \qquad p = \frac{2\kappa_{e}}{\cos(\theta)} \\ p_{1} = \frac{2\kappa_{e}}{\cos(\theta)} + jk_{z}$$

→ 8th ADVANCED TRAINING COURSE ON LAND REMOTE SENSING

In-SAR coherence decomposition Sa

Non-null extinction : κ_e Underlying ground : $I_g = \sigma_g e^{-\frac{2\kappa_e d}{\cos(\theta)}} \delta(z - (z_\theta + z_g))$

Homogeneous medium with elementary reflectivity density $\sigma_{vol}(z) = A_v e^{\frac{2\kappa_e}{\cos(\theta)}(z-(z_\theta+h_v))}$

→ 8th ADVANCED TRAINING COURSE ON LAND REMOTE SENSING 10-14 September 2018 | University of Leicester | United Kingdom

In-SAR coherence decompositionesa

Zn

Random volume over ground (RVoG)

$$\sigma_{v_e}(z) = I_g + \sigma_{vol}(z)|_{z \in [z_0 + z_{v_0} \dots z_0 + h_v]} \longrightarrow \gamma_z = \frac{\int \sigma_{v_e}(z) e^{jk_z(z - z_0)} dz'}{\int \sigma_{v_e}(z) dz'}$$

$$\gamma_{z} = \frac{\int_{z_{\theta}+z_{v_{\theta}}}^{z_{\theta}+h_{v}} \sigma_{vol}(z) e^{jk_{z}(z-z_{\theta})} dz' + I_{g} e^{jk_{z}z_{g}}}{\int_{z_{\theta}+z_{v_{\theta}}}^{z_{\theta}+h_{v}} \sigma_{vol}(z) dz' + I_{g}}$$

 $\gamma_z = \frac{\gamma_{vol} + \frac{I_g}{I_v} e^{jk_z z_g}}{1 + \frac{I_g}{I_v}} = e^{jk_z z_g} \frac{\widetilde{\gamma}_{vol} + m}{1 + m}$

$$\int_{z_{\theta}+z_{v_{\theta}}}^{z_{\theta}+h_{v}} \sigma_{vol}(z) e^{jk_{z}(z-z_{\theta})} dz' + I_{g} e^{jk_{z}z_{g}}$$

Z

 $I_v + I_g$

With :

$$\gamma_{vol} = \frac{1}{I_{v}} \int_{z_{0}+z_{v_{0}}}^{z_{0}+h_{v}} \sigma_{vol}(z) e^{jk_{z}(z-z_{0})} dz'$$

→ 8th ADVANCED TRAINING COURSE ON LAND REMOTE SENSING

In-SAR coherence decomposition sa

Random volume over ground (RVoG)

$$\widetilde{\gamma}_{vol} = e^{-jk_z z_g} \gamma_{vol}$$

$$k_{z} = \frac{k_{c}B_{\perp}}{R_{1}\sin(\theta_{1})}$$
$$k_{c} = \frac{4\pi f_{c}}{c}$$

Ground to volume intensity ratio : $m = \frac{I_g}{I_m}$

Observables (2): γ_z **Unknowns (4)**: z_g , m, $\gamma_{vol}(2)$

1 In-SAR acquisition vs. Complex RVOG structure : under-determined problem

 $\gamma_z = e^{jk_z z_g} \frac{\widetilde{\gamma}_{vol} + m}{1 + m}$

 \rightarrow another source of diversity is needed : polarization ?

→ 8th ADVANCED TRAINING COURSE ON LAND REMOTE SENSING 10-14 September 2018 | University of Leicester | United Kingdom

PART - 2

→ 8th ADVANCED TRAINING COURSE ON LAND REMOTE SENSING 10-14 September 2018 | University of Leicester | United Kingdom

© E. Pottier - 2018

Radar Polarimetry

Radar Polarimetry (Polar : polarisation Metry: measure) is the science of acquiring, processing and analysing the polarization state of an electromagnetic field

Radar Polarimetry deals with the full vector nature of polarized electromagnetic waves

→ 8th ADVANCED TRAINING COURSE ON LAND REMOTE SENSING

Radar Polarimetry

The POLARISATION information Contained in the waves backscattered from a given medium is highly related to:

its geometrical structure reflectivity, shape and orientation

its geophysical properties such as humidity, roughness, ...

→ 8th ADVANCED TRAINING COURSE ON LAND REMOTE SENSING

Radar Polarimetry

Forest Vegetation

Agriculture

Snow and Ice

- Forest Height
- Forest Biomass
- Forest Structure
- Canopy Extinction
- Underlying Topography
- Soil Moisture Content
- Soil roughness
- Height of Vegetation Layer
- Extinction of Vegetation Layer
- Moisture of Vegetation Layer

- Forest Ecology
- Forest Management
- Ecosystem Change
- Carbon Cycle
- Farming Management
- Water Cycle
- Desretification

- Topography
- Penetration Depth / Density
- Snow Ice Layer
- Snow Ice Extinction
- Water Equivalent

- Ecosystem Change
- Water Cycle
- Water Management

- Geometric Properties
- Dielectric Properties

INING COURSE ON LAND REMOTE SENSING

Urban Monitoring

10-14 Sentarce: 20 A Lary Scity of Leicester | United Kingdom

Dielectri

Scattering Polarimetry

→ 8th ADVANCED TRAINING COURSE ON LAND REMOTE SENSING

Scattering Polarimetry

→ 8th ADVANCED TRAINING COURSE ON LAND REMOTE SENSING

Scattering Polarimetry

Sinclair Color Coding

© Google Earth

→ 8th ADVANCED TRAINING COURSE ON LAND REMOTE SENSING

Sinclair Matrix

POLARIMETRIC DESCRIPTORS

 $\begin{bmatrix} S \end{bmatrix} = \begin{bmatrix} S_{HH} & S_{HV} \\ S_{VH} & S_{VV} \end{bmatrix}$

TRANSMITTER:H & VRECEIVERS:H & V

<u>k</u> Target Vector

[*T*] 3x3 COHERENCY Matrix

→ 8th ADVANCED TRAINING COURSE ON LAND REMOTE SENSING 10-14 September 2018 | University of Leicester | United Kingdom

Coherency Matrix

MONOSTATIC CASE

PAULI SCATTERING VECTOR \underline{k}

$$\underline{k} = \frac{1}{\sqrt{2}} \begin{bmatrix} S_{HH} + S_{VV} & S_{HH} - S_{VV} & 2S_{HV} \end{bmatrix}^{T}$$

COHERENCY MATRIX [7]

$$\begin{bmatrix} T \end{bmatrix} = \underline{k} \cdot \underline{k}^{*T} = \begin{bmatrix} 2A_0 & C - jD & H + jG \\ C + jD & B_0 + B & E + jF \\ H - jG & E - jF & B_0 - B \end{bmatrix}$$

HERMITIAN MATRIX - RANK 1

A0, B0+B, B0-B : HUYNEN TARGET GENERATORS

[T] is closer related to Physical and Geometrical Properties of the Scattering Process, and thus allows a better and direct physical interpretation

→ 8th ADVANCED TRAINING COURSE ON LAND REMOTE SENSING

Target Generators

PHYSICAL INTERPRETATION

$$T_{11} = 2A_0 = |S_{HH} + S_{VV}|^2$$

$$T_{33} = B_0 - B = 2|S_{HV}|^2$$

$$T_{22} = B_0 + B = |S_{HH} - S_{VV}|^2$$

→ 8th ADVANCED TRAINING COURSE ON LAND REMOTE SENSING

Target Generators

→ 8th ADVANCED TRAINING COURSE ON LAND REMOTE SENSING

Target Generators

© Google Earth

→ 8th ADVANCED TRAINING COURSE ON LAND REMOTE SENSING

SAR

Polarimetry

(Pol-InSAR)

→ 8th ADVANCED TRAINING COURSE ON LAND REMOTE SENSING

10-14 September 2018 | University of Leicester | United Kingdom

© E. Pottier - 2018

10-14 September 2018 | University of Leicester | United Kingdom

© E. Pottier - 2018

$$\langle [T_6] \rangle = \left\langle \underline{k} \cdot \underline{k}^{T*} \right\rangle = \begin{bmatrix} \left\langle \underline{k}_1 \cdot \underline{k}_1^{T*} \right\rangle & \left\langle \underline{k}_1 \cdot \underline{k}_2^{T*} \right\rangle \\ \left\langle \underline{k}_2 \cdot \underline{k}_1^{T*} \right\rangle & \left\langle \underline{k}_2 \cdot \underline{k}_2^{T*} \right\rangle \end{bmatrix} = \begin{bmatrix} \left\langle [T_1] \right\rangle & \left\langle [\Omega_{12}] \right\rangle \\ \left\langle [\Omega_{12}]^{T*} \right\rangle & \left\langle [T_2] \right\rangle \end{bmatrix}$$

POLARIMETRIC INTERFEROMETRIC COHERENCY MATRIX (6x6)

© E. Pottier - 2018

POLSAR IMAGES $I_1 = \underline{w}_1^{T^*} \cdot \underline{k}_1$ and $I_2 = \underline{w}_2^{T^*} \cdot \underline{k}_2$

With: $(\underline{w}_1, \underline{w}_2)$ complex Unitary Vectors

$$\gamma(\underline{w}_1, \underline{w}_2) = \frac{\langle I_1 I_2^* \rangle}{\sqrt{\langle I_1 I_1^* \rangle \langle I_2 I_2^* \rangle}} = \frac{\langle \underline{w}_1 [\Omega_{12}] \underline{w}_2^{T*} \rangle}{\sqrt{\langle \underline{w}_1 [T_1] \underline{w}_1^{T*} \rangle \langle \underline{w}_2 [T_2] \underline{w}_2^{T*} \rangle}}$$

COMPLEX POLARIMETRIC INTERFEROMETRIC COHERENCE

$$\gamma(\underline{w}_1, \underline{w}_2) = \frac{\langle I_1 I_2^* \rangle}{\sqrt{\langle I_1 I_1^* \rangle \langle I_2 I_2^* \rangle}} = \frac{\langle \underline{w}_1 [\Omega_{12}] \underline{w}_2^{T*} \rangle}{\sqrt{\langle \underline{w}_1 [T_1] \underline{w}_1^{T*} \rangle \langle \underline{w}_2 [T_2] \underline{w}_2^{T*} \rangle}}$$

COMPLEX POLARIMETRIC INTERFEROMETRIC COHERENCE

QUESTION: WHICH POLARISATION COMBINATION LEADS TO THE MAXIMUM POSSIBLE INTERFEROMETRIC COHERENCE ?

POLARIMETRIC INTERFEROMETRIC COHERENCE OPTIMISATION PROCEDURE

S.R CLOUDE - K. PAPATHANASSIOU (1999)

→ 8th ADVANCED TRAINING COURSE ON LAND REMOTE SENSING

POLARIMETRIC INTERFEROMETRIC COHERENCE OPTIMISATION PROCEDURE

S.R CLOUDE – K. PAPATHANASSIOU (1999)

$$\gamma(\underline{w}_1, \underline{w}_2) = \frac{\langle I_1 I_2^* \rangle}{\sqrt{\langle I_1 I_1^* \rangle \langle I_2 I_2^* \rangle}} = \frac{\langle \underline{w}_1 [\Omega_{12}] \underline{w}_2^{T*} \rangle}{\sqrt{\langle \underline{w}_1 [T_1] \underline{w}_1^{T*} \rangle \langle \underline{w}_2 [T_2] \underline{w}_2^{T*} \rangle}}$$

Optimum Coherence set (3x3 eigenvector problem) :

$$\left(\underline{w}_{opt_1}, \underline{w}_{opt_2}\right) = \underset{(\underline{w}_1, \underline{w}_2)}{\operatorname{arg\,max}} \left(\gamma(\underline{w}_1, \underline{w}_2) |^2 \right)$$

$$\frac{\partial |\gamma(\underline{w}_1, \underline{w}_2)|^2}{\partial \underline{w}_1} = \frac{\partial |\gamma(\underline{w}_1, \underline{w}_2)|^2}{\partial \underline{w}_2} = 0$$

→ 8th ADVANCED TRAINING COURSE ON LAND REMOTE SENSING

POLARIMETRIC INTERFEROMETRIC COHERENCE OPTIMISATION PROCEDURE

S.R CLOUDE – K. PAPATHANASSIOU (1999)

 $\frac{\partial |\gamma(\underline{w}_{1}, \underline{w}_{2})|^{2}}{\partial \underline{w}_{1}} = \frac{\partial |\gamma(\underline{w}_{1}, \underline{w}_{2})|^{2}}{\partial \underline{w}_{2}} = 0$ $[T_{1}]^{-1}[\Omega_{12}][T_{2}]^{-1}[\Omega_{12}]^{T^{*}}\underline{w}_{opt_{1}} = |\gamma_{opt}|^{2}\underline{w}_{opt_{1}}$ $[T_{2}]^{-1}[\Omega_{12}]^{T^{*}}[T_{1}]^{-1}[\Omega_{12}]\underline{w}_{opt_{2}} = |\gamma_{opt}|^{2}\underline{w}_{opt_{2}}$

3 Real Eigenvalues (Optimum Coherence Values) : $\gamma_{opt_1} \ge \gamma_{opt_2} \ge \gamma_{opt_3} \ge 0$

3 Pairs of Eigenvectors (Optimum Scattering Mechanisms) : $\left\{ \underbrace{w_{opt_{1-1}}, \underbrace{w_{opt_{2-1}}}_{}, \left\{ \underbrace{w_{opt_{1-2}}, \underbrace{w_{opt_{2-2}}}_{}, \left\{ \underbrace{w_{opt_{1-3}}, \underbrace{w_{opt_{2-3}}}_{}, \underbrace{w_{opt_{2-3}}}_{} \right\} \right\}$

→ 8th ADVANCED TRAINING COURSE ON LAND REMOTE SENSING

PHYSICAL INTERPRETATION OF POLARIMETRIC INTERFEROMETRIC COHERENCES OPTIMISATION ALGORITHM

IN A PERFECT WORLD

→ 8th ADVANCED TRAINING COURSE ON LAND REMOTE SENSING

C

YX1-X2

PHYSICAL INTERPRETATION OF POLARIMETRIC INTERFEROMETRIC COHERENCES OPTIMISATION ALGORITHM

2HV

HH+VV

HH-VV

IN A REAL WORLD

→ 8th ADVANCED TRAINING COURSE ON LAND REMOTE SENSING

PHYSICAL INTERPRETATION OF POLARIMETRIC INTERFEROMETRIC COHERENCES OPTIMISATION ALGORITHM

IN AN OPTIMISED WORLD

→ 8th ADVANCED TRAINING COURSE ON LAND REMOTE SENSING

 \bigcirc

YX1-X2

Importance: Key parameter for forest management worldwide

Height as a product itself

- Phase of stand development
- Spatial height distribution (risk assessment, diversity)
- Management with esthetical protection goals
- Change of topography by forests (water runoff, skidding, roads)

Height as an input parameter

- Wood volume / forest biomass
- Site Index (with age and species information)

Height and density determine the microclimate and ecological processes within the forest

Height is dependent on and therefore reflects the site conditions

Which Height does POLinSAR measure ? H100 (forest standard)

- Most characteristic height in a forest
- Formed by the crown of the trees exposed to the sun light
- Typically concentrate most of the forest biomass
- Simple to measure: it is the intuitive forest height, measurement of few representative tree heights
- Sufficient for a good estimation

Forest Stand Type II

Very heterogeneously structured stands Large height variations on short distance Typical for natural uneven-aged forest

Courtesy of

→ 8th ADVANCED TRAINING COURSE ON LAND REMOTE SENSING

MODELING AND PARAMETER ESTIMATION

Modeling Establishment of scattering model [M] In Radar Scatterer

Radar Observables

→ 8th ADVA

Scatterer Parameters

Parameter Estimation

Inversion of the scattering model [M]

 $\begin{vmatrix} Scatterer \\ Parameters \end{vmatrix} = [M]^{-1} \begin{vmatrix} 0 \\ 0 \end{vmatrix}$

Radar Observables

Requirements on [M]: 1. Correctness in Interpretation and prediction of the observables 2. Simplicity in terms of parameters in order to be determined

TRAINING COURSE ON LAND REMOTE SENSING

10-14 Septemb VDLR University of Leicester | United Kingdom

=[M]

Simplifications : Only 2 significant mechanisms Low density medium ⇒ No refraction

→ 8th ADVANCED TRAINING COURSE ON LAND REMOTE SENSING

In-SAR data statistics

Interferometric coherence γ : decorrelation sources

 γ fixed by a set of external sources :

System :

- Thermal or system noise : SAR amplifiers, ADC, antennas ...
- Quantization noise
- Geometric decorrelation : Baseline, squint ...
- Azimuth : Doppler decorrelation ...
- Ambiguities ...
- Processing errors : coregistration, interpolation ...

Environment:

- Random media : Surface & Volumetric media e.g. forest ...
- Temporal variations : wind, flowing or plowing, building ...

 $\gamma = \gamma_{SNR} \cdot \gamma_{quant} \cdot \gamma_{amb} \cdot \gamma_{geo} \cdot \gamma_{az} \cdot \gamma_{proc} \cdot \gamma_{surf} \cdot \gamma_{vol} \cdot \gamma_{temp}$

→ 8th ADVANCED TRAINING COURSE ON LAND REMOTE SENSING

2 Layer Combined Surface and random Volume Scattering

$$\gamma_{z}(\underline{w}) = e^{j\phi_{0}} \frac{\widetilde{\gamma}_{vol} + m(\underline{w})}{1 + m(\underline{w})}$$

 $m(\underline{w}) = \frac{\text{Surface Scattering Contribution}}{\text{Volume Scattering Contribution}}$

G / V ratio

B. Treuhaft (2000), S.R. Cloude (2003)

POLARIZATION DEPENDENT

→ 8th ADVANCED TRAINING COURSE ON LAND REMOTE SENSING

\underline{w}_{ν} Polarisation Channel corresponding to Volume Scattering

$$\gamma_z(\underline{w}_v) \underset{m \mapsto 0}{\longmapsto} = e^{j\phi_0} \widetilde{\gamma}_{vol}$$

2HV

 \underline{w}_s Polarisation Channel corresponding to Surface Scattering

$$\gamma_{z}(\underline{w}_{s}) = e^{j\phi_{0}} \frac{\widetilde{\gamma}_{vol} + m(\underline{w})}{1 + m(\underline{w})} \underset{m \mapsto \infty}{\longmapsto} e^{j\phi_{0}}$$

HH-VV

→ 8th ADVANCED TRAINING COURSE ON LAND REMOTE SENSING

→ 8th ADVANCED TRAINING COURSE ON LAND REMOTE SENSING 10-14 September 2018 | University of Leicester | United Kingdom

DEM Differencing Algorithm

$$\begin{array}{l} \gamma_{z}(\underline{w}_{v}) = e^{j\phi_{0}}\widetilde{\gamma}_{vol} \\ \gamma_{z}(\underline{w}_{s}) \mapsto e^{j\phi_{0}} \end{array} \right\} \quad \mapsto \quad \gamma_{z}(\underline{w}_{v}) = \gamma_{z}(\underline{w}_{s})\widetilde{\gamma}_{vol} \approx \gamma_{z}(\underline{w}_{s})\alpha \ e^{jk_{z}h_{v}} \end{array}$$

$h_{v} \approx \frac{\arg[\gamma_{z}(\underline{w}_{v})] - \arg[\gamma_{z}(\underline{w}_{s})]}{k_{z}}$

→ 8th ADVANCED TRAINING COURSE ON LAND REMOTE SENSING 10-14 September 2018 | University of Leicester | United Kingdom

© E. Pottier - 2018

Coherence Amplitude Inversion Procedure

Assumption : Only volume scattering is present

$$\gamma_z(\underline{w}_v) = e^{j\phi_0} \widetilde{\gamma}_{vol} \quad \mapsto \quad |\gamma_z(\underline{w}_v)| = |\widetilde{\gamma}_{vol}|$$

$$\underset{d}{\operatorname{arg\,min}} \left| \left| \gamma_{z}(\underline{w}_{v}) \right| - \left| \frac{p}{p_{1}} \left(\frac{e^{p_{1}d} - 1}{e^{pd} - 1} \right) \right| \right|$$

1-D search procedure with Look-Up-Table (LUT)

→ 8th ADVANCED TRAINING COURSE ON LAND REMOTE SENSING

Topographic Phase Estimation

$$\begin{array}{l} \gamma_{z}(\underline{w}_{v}) = e^{j\phi_{0}} \widetilde{\gamma}_{vol} \\ \gamma_{z}(\underline{w}_{s}) = e^{j\phi_{0}} \frac{\widetilde{\gamma}_{vol} + m(\underline{w})}{1 + m(\underline{w})} \end{array} \right\} \quad \mapsto \quad e^{j\phi_{0}} = \frac{\gamma_{z}(\underline{w}_{s}) - \gamma_{z}(\underline{w}_{v})(1 - L)}{L} \\ \\ m(w_{s}) \end{array}$$

With:
$$L = \frac{m(\underline{w}_s)}{1 + m(\underline{w}_s)}$$

$$\hat{\phi}_0 = \arg[\gamma_z(\underline{w}_s) - \gamma_z(\underline{w}_v)(1-L)]$$

→ 8th ADVANCED TRAINING COURSE ON LAND REMOTE SENSING 10-14 September 2018 | University of Leicester | United Kingdom

Estimation of *L* :

$$e^{j\phi_0} = \frac{\gamma_z(\underline{w}_s) - \gamma_z(\underline{w}_v)(1-L)}{L}$$

$$\left|\frac{\gamma_z(\underline{w}_s) - \gamma_z(\underline{w}_v)(1-L)}{L}\right|^2 = 1 \quad \Rightarrow \quad AL^2 + BL + C = \theta$$

With :
$$A = |\gamma_z(\underline{w}_v)|^2 - 1$$
 $B = 2\Re\left\{ (\gamma_z(\underline{w}_s) - \gamma_z(\underline{w}_v)) \gamma_z^*(\underline{w}_s) \right\}$
 $C = |\gamma_z(\underline{w}_s) - \gamma_z(\underline{w}_v)|^2$
 $L = \frac{-B - \sqrt{B^2 - 4AC}}{2A}$

→ 8th ADVANCED TRAINING COURSE ON LAND REMOTE SENSING

10-14 September 2018 | University of Leicester | United Kingdom

esa

Topographic Phase Estimation

$$A = |\gamma_{z}(\underline{w}_{v})|^{2} - 1$$

$$\{\gamma_{z}(\underline{w}_{s}), \gamma_{z}(\underline{w}_{v})\} \implies B = 2\Re\{(\gamma_{z}(\underline{w}_{s}) - \gamma_{z}(\underline{w}_{v}))\gamma_{z}^{*}(\underline{w}_{s})\}$$

$$C = |\gamma_{z}(\underline{w}_{s}) - \gamma_{z}(\underline{w}_{v})|^{2}$$

$$L = \frac{-B - \sqrt{B^2 - 4AC}}{2A}$$

$$\hat{\phi}_0 = \arg[\gamma_z(\underline{w}_s) - \gamma_z(\underline{w}_v)(1-L)]$$

→ 8th ADVANCED TRAINING COURSE ON LAND REMOTE SENSING

Random Vegetation Over Ground (RVoG) inversion procedure

$$\underset{d,\kappa_e}{\operatorname{arg\,min}} \left| \gamma_z(\underline{w}_v) - e^{j\hat{\phi}_0} \frac{p}{p_1} \left(\frac{e^{p_1 d} - 1}{e^{p d} - 1} \right) \right|$$

Expensive 2-D search procedure

→ 8th ADVANCED TRAINING COURSE ON LAND REMOTE SENSING

PolSARpro - practicals

	oherence Estima	tion	X
- Input Master D	irectory		
C:/My_Data_Di	rectory/Pol-InSAR	_PolSARproSIM_forest/master	
Input Slave Di	rectory		
C:/My_Data_Di	rectory/Pol-InSAR	_PolSARproSIM_forest/slave_FEF	
- Output Master	Slave Directory		
C;/My_Data_Di	rectory/Pol-InSAR	_PolSARproSIM_forest/master_sla	ve_FER / 🔤
Init Row	1 End	Row 301 Init Col	1 End Col 301
- Complex Cohe	rences		
- Linear-	- Circular -	Pauli	Optimal
Г⊽ НН	R IL	₩ HH + W F HV + VH	🔽 SVD. 🥅 L. MinMax
I HV	🔽 LR	₩ HH W T HH.W*	T PD T L Diff
ΓW	⊢ BB		IT NR
- Numerical R	adius	Loci MinMax	- Loci Diff
Theta1	Theta3	Num Points	Num Points
Box Car Wir	ndow	I ВМР	
Row 7	Col 7	Averaging Ro	aw Cal
Bun	1	Hist	Exit
- i dan			

Complex Coherence Estimation

→ 8th ADVANCED TRAINING COURSE ON LAND REMOTE SENSING

PolSARpro - practicals

🖉 Height Estimation from Inversion Procedures				
Input Master - Slave Directory				
C./My_Data_Directory/Pol-InSAR_PolSARproSIM_forest/master_stave_FER				
Dutput Master - Slave Directory	_			
C:/My_Data_Directory/PoHnSAR_PoISARproSIM_forest/master_slave_FER /				
Init Row 1 End Row 301 Init Col 1 End Col	301			
Update List				
Polarimetric Phase Centre Height Estimation Polarimetric Channel HH				
I DEM Differencing Algorithm				
Coherence Amplitude Inversion Procedure				
Ground Phase Estimation and RVOG Inversion Procedure Median Window Size 121 Weighting Coherence Fraction Factor	0.4			
Top Phase Centre HV Ground Phase Centre HH - VV	J			
2D Kz File				
C:/My_Data_Directory/PoHnSAR_PoISARproSIM_forest/slave/kz,bin				
Run Hist 2				

Height estimation Inversion procedures

→ 8th ADVANCED TRAINING COURSE ON LAND REMOTE SENSING

