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Introduction to 
urban remote sensing



Introduction – The urban millennium

Source: United Nations, 2014



Source: Google Earth

Urban areas mark extremes in terms of human 
domestication of nature.
Urban environments are very diverse in terms of size, 
shape, material composition and fragmentation.



30x30 km footprint of Berlin, 
Germany, as seen by

UL: Landsat 8 (swIR, nIR, red)

UR: Landsat 8 thermal

LL: Sentinel-1A

LR: vis. nightlights (ISS photo).

Each sensor system provides
complementary information, 
but is also subject to non-
uniqueness.

Urban areas from space

Source: Small et al., 2018
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Source: www.dlr.de

Global Urban Footprint: Berlin-Brandenburg 
TerraSAR-X product from DLR 

Urban environments are composed of built-up and non 
built-up structures.
Different products highlight different surface types.



jText

Source: www.dlr.de

Global Urban Footprint: Berlin-Brandenburg 
TerraSAR-X product from DLR 



Source: https://ghsl.jrc.ec.europa.eu/

Global Human Settlement layer: Berlin-Brandenburg 
Multi-sensor product from JRC
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Source: https://land.copernicus.eu/local/urban-atlas

European Urban Atlas: Berlin-Brandenburg 
Multi-sensor product of EEA



Source: Small & Elvidge, 2012

Urban environments are characterized by high temporal 
dynamics.
Mapping urban growth is one of the key applications for 
urban remote sensing.

South-east Asia in multi-temporal 
nighttime lights composite.



Introduction – Effects of impervious surfaces

Source: Wikimedia Commons

A detailed description of urban composition (ideally at 
sub-pixel level) is needed for environmental analysis.
Remote sensing contributes to urban planning, micro 
climatology, hydrology, hazard or habitat modelling, etc.



Introduction (summary)

With more than have of the world’s population living in cities and rapid 
urbanization rates, remote sensing plays a pivotal role in monitoring urban 
environments.

Especially in less developed countries and for fast growing urban 
agglomerations remote sensing is often the only reliable source of spatial 
information.

Most urban environmental models use remote sensing based maps as input.

Remote sensing analyses usually focus on

- mapping urban extent and growth

- mapping urban composition



Characteristics and challenges 
of urban remote sensing



Urban land cover

Urban land cover is characterized by great diversity of materials. Here the city 
of Berlin, Germany.

Source: Google Earth



Urban land cover

Urban land cover classes can be hierarchically organized down to the 
material level.

VIS concept
(Ridd, 1995)



High spectral
diversity of 
construction 
materials and 
natural surface 
types.

Urban land cover

Source: Small et al., 2018



Polarimetric SAR representation of 
Berlin area and three subsets using 
TerraSAR-X StripMap data in the 
Pauli color coding scheme (R: HH-VV, 
G: HV, B: HH+VV). 

Mirror-like reflectors appear dark
(streets, sport fields, water). 
Vegetation is dark greenish with HV 
dominating. Strong backscatter
structure appear bright, with the
actual color (green to pink) also 
depending on object size, geometric
arrangement and orientation.

Urban land cover

Source: Small et al., 2018



Berlin area thermal emissions in July 
and September during day (top, 
Landsat-7) and night (bottom, 
Landsat-8). 

Water bodies show low values at day
and highest at night. Urban forests
are always in mid-ranges. Street 
canyons and large buildings store
energy longer and emit even at 
nighttime.

Urban land cover

Source: Small et al., 2018



The factor scale in urban remote sensing

Step from approx. <1 m to 30 m leads to massive spatial aggregation.

Source: Small et al., 2018



The factor scale in urban remote sensing

Step from approx. 5 m to 30 m leads to massive spectral aggregation.

Source: Small et al., 2018



The factor scale in urban remote sensing

High number of mixed pixels.

Complex 3-D geometry and illumination.



Mapping urban growth
and urban composition



Urban growth can be mapped 
reliably by means of remote 
sensing.

Taubenböck et al. (2012) use data 
from TerraSAR-X and Landsat to 
quantify urban growth for global 
mega cities since 1975 in four time 
steps.

Mapping urban growth from optical and SAR data

Source: Taubenböck et al., 2012



Mega cities are mapped in 

1975 – Landsat MSS

1990 – Landsat TM

2000 – Landsat ETM+

2010 – TerraSAR-X

Source: Taubenböck et al., 2012



Source: Taubenböck et al., 2012

Map of Karachi, Pakistan



Urban growth 
best described by 
sub-pixel fraction 
information, e.g. 
percent built-up 
cover.

Spectral unmixing 
or regression
analyses needed.

Mapping urban growth from optical data

Source: Schug et al., 2018



Information from two seasons allows 
reliable separation of soil and seasonal 
vegetation.

Mapping urban growth from optical data

Source: Schug et al., 2018



Sub-pixel fraction allow the
description of densification
over time better than discrete
classification results.

Mapping urban growth from optical data

Source: Schug et al., 2018



Mapping urban composition from optical data

Source: Ridd, 1995

Ridd (1995) assumes, every urban pixel is 

composed of impervious surface, 

vegetation or soil.

Ridd’s V-I-S concept is based on a 

thematical framework. It is not based 

on the spectral characteristics of 

urban areas.



Small (2005) analysed more 
than 24 urban areas and 
concludes that the spectral 
properties working with Landsat 

ETM+ always relate to the 

degree of brightness and the 

portion of vegetation. This results

in a mixing triangle in the first 

two PC components.

Mapping urban composition from optical data

Source: Small, 2005



Mapping urban composition from optical data

Source: Small, 2005



Mapping urban composition from optical data

Using higher spatial and spectral characteristics with machine learning more 
urban cover types can be mapped, as e.g. van der Linden et al. (2007) showed.

Source: van der Linden et al., 2007



Mapping urban composition using spectral and lidar data

Land cover maps from APEX (2 m; 252 
bands) and LiDAR data.

SVC classification with post-processing.

Height/shadow information to account for 

spectral ambiguity.

High share of pure pixels and high 

Accuracies.

Source: Priem & Canters, 2016



Source: Priem & Canters, 2016



Mapping class fractions from spectral data

Given the high number of mixed pixels in spaceborne data, fraction mapping 
appears more useful than classification to describe urban composition.

Concepts for quantitative mapping most often assume a linearly mixed 
spectrum, which can be decomposed into “pure” components, e.g. by linear 
spectral mixture analysis.



Source: Okujeni et al., 2017

Mapping class fractions from spectral data

Regression based on synthetic
training data proved a reliable and 
accurate alternative to linear 
spectral mixture analysis.



VIS components can be 
modelled at high 
accuracy using SVR with 
synthetic mixtures.

The decrease in accuracy 
from 9 m to 30 m is 
relatively low.

Hyperspectral EnMAP 
data leads to slightly 
better results than 
Landsat data. 

EnMAP (30 m) HyMap (9 m) Landsat (30 m)
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Source: Okujeni et al., 2015

Mapping class fractions from spectral data



Mapping class fractions from spectral data

The importance for sub-pixel analysis and mapping of fractions is illustrated by 
an analysis of frequency of extended VIS cover in image data at different 
resolutions.

Source: van der Linden et al., 2018



Mapping class fractions from spectral data

Accordingly, the 
number of mixed 
pixels increases at 
coarser resolutions, 
i.e. pure class colors 
appear mixed in 
fraction map. 

Source: van der Linden et al., 2018



Mapping class fractions from spectral data



Synthesis

Remote sensing of urban areas at high to very high resolutions is important.

Even at 10-20 resolutions a high number of mixed pixels prevails.

Quantitative maps of (sub-pixel) land cover fractions are needed to describe
urban land surfaces with spaceborne remote sensing data.

Approaches for reliable and accurate fraction mapping are needed for urban 
remote sensing.

 The practical will introduce you to regression-based mapping of urban areas!
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Thank you for your attention!
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