

Radar equation step by step		
Transmit power	$: P_t$	[W]
Power density (as distance R)		
$_{\mathcal{D}}$ $A_{e}GP_{t}$	-0.4 (0.2)	
Fraction of power result in $F_r = rac{F_r}{(4\pi)^2 R^4}$	$\begin{bmatrix} 0 & A \\ 0 & \end{bmatrix}$	
Bth Advanced Training Course on Land Remote Sensing, 1	0-14 eptember 2018, University of Leicester, United	Kingdom 44

Radar equation step by step Transmit power	:	P_t	[W]
Power density (at distance R)	:	$\frac{P_t}{4\pi R^2}$	$[W/m^2]$
Antenna directivity gain ${\cal G}$ concentrates energy	:	$G = 4\pi A_e / \lambda^2$	[·]
Power density at scattering object Power intercepted by area A	:	$\frac{\frac{P_t}{4\pi R^2}\cdot G}{\frac{P_t}{4\pi R^2}\cdot G\cdot A}$	[W/m ²] [W]
Fraction of power returned to radar	:	σ^0	$[\cdot]$
Radiating isotropically back	:	$\frac{1}{4\pi R^2}$	$[m^{-2}]$
Power density at receiving antenna	:	$\frac{P_t}{4\pi R^2} \cdot G \cdot A \cdot \sigma^0 \cdot \frac{1}{4\pi R^2}$	$\left[\mathrm{W}/\mathrm{m}^2 ight]$
Receive power at antenna with area A_e	:	$\frac{P_t}{4\pi R^2} \cdot G \cdot A \cdot \sigma^0 \cdot \frac{A_e}{4\pi R^2}$	[W]
$\mathbf{fu}_{Delft} \mathbf{Ce}_{r}^{P_{r}} = \frac{A_{e} G P_{t}}{(4\pi)^{2} R^{4}} \sigma^{0} A$	107	(9,3) ersity of Leicester, United K	ingdom 45

Working with de	cibels	S	
 Large power ratios dB = 10[•] ¹⁰log (P), and v. where P is • Power ratio, or • A parameter related to a powe • In equations, sometimes dB ne 	v. P = r unit (e.g. eds to be	10 ^(dB/10) antenna gai converted t	n) :o numeric
	D	dB	I
	1	0	
Examples:	2	3	
	100	20	
	31.6	15	
6	01.0	15	
TUDelft COSA 8th Advanced Training Course on Land	Remote Sensing, 10-14	4 eptember 2018, University	of Leicester, United Kingdom 61

(@ microwave frequencies)			
	m²		
Jumbo jet	100		
Medium jet airliner	20		
Helicopter	3		
Pickup truck	200		
Automobile	100		
Man	1		
Stealth fighter jet	< 1		
Medium bird	10-3		
Small insect (fly)	10-5		

 Fubleft
 Cesa
 8th Advanced Training Course on Land Remote Sensing, 10-14 eptember 2018, University of Leicester, United Kingdom
 63

• Minimum Doppler:
$$f_{D,\min} = \frac{2v_{S/C}\sin\frac{-\beta}{2}}{\lambda} \approx \frac{2v_{S/C}\frac{-\beta}{2}}{\lambda} = \frac{-v_{S/C}\beta}{\lambda}$$
• Maximum Doppler:
$$f_{D,\max} = \frac{2v_{S/C}\sin\frac{+\beta}{2}}{\lambda} \approx \frac{2v_{S/C}\frac{+\beta}{2}}{\lambda} = \frac{+v_{S/C}\beta}{\lambda}$$
• Doppler bandwidth:
$$B_{Dopp} = \frac{2v_{S/C}\beta}{\lambda} = \frac{2v_{S/C}\lambda/L}{\lambda} = \frac{2v_{S/C}}{L}$$
• SAR resolution azimuth:
$$\Delta_a = \frac{v_{S/C}}{B_{Dopp}} = \frac{v_{S/C}}{L} \begin{bmatrix} L \\ 2 \end{bmatrix}$$
Azimuth resolution SAR: Half the antenna size!

