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Introduction 



Introduction – The urban millennium

Source: United Nations, 2014



Source: Google Earth

Urban areas mark an extreme in terms of human 
domestication of nature.
Urban environments are very diverse in terms of size, 
shape, material composition and fragmentation.



jText 

Source: www.dlr.de

Berlin-Brandenburg area in Global Urban 
Footprint TerraSAR-X product of DLR 

Urban environments are not fully composed of built-up 
structures or impervious areas.
Different sensors contribute differently to mapping 
urban extent and urban composition.



Source: Small & Elvidge, 2012

Urban environments are characterized by high temporal 
dynamics.
Mapping urban growth is one of the key applications for 
urban remote sensing.

South-east Asia in multi-temporal 
nighttime lights composite.



Urban material composition influences the micro climate and other 
environmental variables. 



Introduction – Effects of impervious surfacesIntroduction – Effects of impervious surfaces
Source: Wikimedia Commons

A detailed description of urban composition (ideally 
fractions!) is needed for many environmental analysis.
Remote sensing contributes to urban planning, micro 
climatology, hydrology, hazard or habitat modelling, etc.



Introduction (summary) 
With more than have of the world’s population living in cities and rapid 
urbanization rates, remote sensing plays a pivotal role in monitoring urban 
environments. 
 
Especially in less developed countries and for fast growing urban 
agglomerations remote sensing is often the only reliable source of spatial 
information. 
 
Most urban environmental models use remotely sensed maps as input. 
 
Remote sensing analyses usually focus on 
 - mapping urban extent and growth 
 - mapping urban composition 



Characteristics and challenges  
of urban land cover and urban remote sensing 



Urban land cover 

Urban land cover is characterized by great diversity of materials. 

Source: Google Earth 



Urban land cover 

Urban land cover is characterized by high intra-class variation and often 
spectral ambiguity between classes. 

Landsat ETM+ (30 m; 6 spectral bands) 



Urban land cover 

Urban land cover classes can be hierarchically organized down to the  
material level. 
 

VIS concept 
(Ridd, 1995) 



High spectral 
diversity of 
construction 
materials and 
natural surface 
types.

Urban land cover

Source: Small et al., in press



30x30 km footprint of Berlin, 
Germany, as seen by 
UL: Landsat 8 (swIR, nIR, red) 
UR: Landsat 8 thermal 
LL: Sentinel-1A 
LR: vis. nightlights (ISS photo). 
 
Each observation provides 
complementary information, 
but is also subject to non-
uniqueness. 

Urban land cover 

Source: Small et al., in press 



Polarimetric representation of Berlin 
area and three subsets using 
TerraSAR-X StripMap data in the 
Pauli color coding scheme (R: HH-VV, 
G: HV, B: HH+VV). 
Mirror-like reflectors appear dark
(streets, sport fields, water). 
Vegetation is greenish with HV 
dominating. Strong backscatter
structure appear bright with the
actual color also depending on object
size, geometric arrangement and 
orientation.

Urban land cover

Source: Small et al., in press



Berlin area thermal emissions in July and 
September during day (middle) and night 
(bottom). Landsat 7 for comparison (top).  
 
Water bodies show low values at day and 
highest at night. Urban forests are always in 
mid-ranges. Street canyons and large 
buildings store energy longer and emit even 
at nighttime. 

Urban land cover 

Source: Small et al., in press 



The factor scale in urban remote sensing

Step from approx. 5 m to 30 m leads to massive spatial aggregation.

Source: Small et al., in press



The factor scale in urban remote sensing

Step from approx. 5 m to 30 m leads to massive spectral aggregation.

Source: Small et al., in press



The factor scale in urban remote sensing

High number of mixed pixels.
Complex 3-D geometry and illumination.



Mapping urban growth 



Urban growth can be mapped 
reliably by means of remote 
sensing. 
 
Taubenböck et al. (2012) use data 
from TerraSAR-X and Landsat to 
quantify urban growth for global 
mega cities since 1975 in four time 
steps. 
 

Mapping urban growth from optical and SAR data 

Source: Taubenböck et al., 2012 



Mega cities are mapped in  
1975 – Landsat MSS 
1990 – Landsat TM 
2000 – Landsat ETM+ 
2010 – TerraSAR-X 

Source: Taubenböck et al., 2012 



Source: Taubenböck et al., 2012 

Map of Karachi, Pakistan 



Landsat and TerraSAR data are classified with different approaches. 
 

Mapping urban growth from optical and SAR data 

Source: Taubenböck et al., 2012 



Griffiths et al. (2010) monitor the growth of Dhaka, Bangladesh, for 1990, 
2000 and 2006 based on Landsat TM/ETM+ and ERS-1/ASAR data. 
 
By fusing the multispectral optical and the SAR data they can map urban 
extent reliably in this heavily monsoon and flooding influenced area of rapid 
urbanization. 
 
Both sensor types contribute to the high overall accuracy. 

Source: Griffiths et al., 2010 

Mapping urban growth from spectral and SAR data 



Mapping urban growth from spectral and SAR data 

Source: Griffiths et al., 2010 



Mapping urban composition 



Mapping urban composition from spectral data 

Source: Ridd, 1995 

Ridd (1995) assumes, every urban pixel is  
composed of impervious surface,  
vegetation or soil. 
Ridd’s V-I-S concept is based on a  
thematical framework. It is not based  
on the spectral characteristics of  
urban areas. 



Small (2005) analyses more  
than 24 urban areas and  
concludes that the spectral  
properties working with Landsat  
ETM+ always relate to the  
degree of brightness and the  
portion of vegetation. This results 
in a mixing triangle in the first  
Two PC components. 

Mapping urban composition from spectral data 

Source: Small, 2005 



Mapping urban composition from spectral data 

Source: Small, 2005 



Mapping urban composition from spectral data 

Using higher spatial and spectral characteristics and machine learning, van 
der Linden et al. (2007) showed that more urban cover types can be mapped. 

Source: van der Linden et al., 2007 



Mapping urban composition using spectral and lidar data 

Land cover maps from APEX (2 m; 252  
bands) and LiDAR data. 
 
SVC classification with post-processing. 
 
Height/shadow information to account for  
spectral ambiguity. 
 
High share of pure pixels and high  
Accuracies. 
 

Source: Priem & Canters, 2016 



Source: Priem & Canters, 2016 



Species mapping in urban areas 

Urban tree species mapping using 3.7 m AVIRIS plus LiDAR data, later on 
used for LAI and carbon mapping (Alonzo et al., 2014) 
 

“We find that the addition of lidar data are critical for mapping species with 
small crowns and those with unique crown forms.” 

Source: Alonzo et al., 2014 



Mapping class fractions from spectral data

Given the high number of mixed pixels in spaceborne data, quantitative 
mapping appears more useful than traditional classification to describe urban 
composition.
Concepts for quantitative mapping most often assume a linearly mixed 
spectrum, which can be decomposed into “pure” components, e.g. by linear 
spectral mixture analysis.spectral analysis



SVRsynthmix (Okujeni, van der Linden et al., 2013, 2015, 2017)
Machine learning algorithms (e.g. for classification and regression) were 
shown to produce robust and accurate results with spectral data and 
overcome statistical approaches, like spectral mixture analysis.
Regression requires fractional training
data, which is usually not available.
This challenge is coped with by creating
synthetic mixtures with known labels, 
which serve as training data for the
supervised mapping approach.
Linear mixing is assumed and binary
ternary mixtures of pure components
are performed.

Mapping class fractions from spectral data

Source: Okujeni et al., 2017



Source: Okujeni et al., 2017

Mapping class fractions from spectral data

Large spectral libraries result in an 
excessive amount of samples.

E.g. 75 spectra result in ~400.000 
binary and ternary mixed spectra



All VIS components can 
be modelled at high 
accuracy using SVR with 
synthetic mixtures. 
The decrease in accuracy 
from 9 m to 30 m is 
relatively low. 
EnMAP data leads to 
slightly better results 
than Landsat data.  
 
Results for soils (not 
shown) are comparable.
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Mapping class fractions from spectral data 

Source: Okujeni et al., 2015 
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Mapping class fractions from spectral data 

Source: Okujeni et al., 2015 



The SVR with synthetic mixtures 
allows extending the VIS framework 
for two vegetation and impervious 
types, although a clear decrease in 
accuracies can be observed for tree 
cover. 
This time, the accuracy from EnMAP 
is clearly better than for Landsat. 
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Mapping class fractions from spectral data 

Source: Okujeni et al., 2015 
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Mapping class fractions from spectral data 

Source: Okujeni et al., 2015 



Mapping class fractions from spectral data 
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If not indicated differently, figures are taken from the dissertations of S. van der Linden and A. Okujeni. 
See edoc.hu-berlin.de. 
        
  



Thank you for your attention! 

 
 
Geomatics Lab @ HU Berlin 

UrbanEARS 
 
 
 

@HumboldtRemSens 
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