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Multitemporal Images
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Introduction
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Number of papers published in the major journals and conferences
(source: Scopus) related to methodologies and applications of
multitemporal analysis between 1990 and 2016
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The increased interest in multitemporal data analysis is due to many
issues:

 Increased number of satellites with increased revisit time that allow
the acquisition of either long time series or frequent bitemporal
images.

 New policy for data distribution of archive data that makes it possible
a retrospective analysis on large scale (e.g. the Landsat Thematic
Mapper archive).

 New policies for the distribution of new satellites data (e.g. ESA
Sentinel, Landsat 8).

Introduction: Multitemporal Analysis
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Multitemporal Images: Change Detection

• Change detection (CD): process that analyzes multitemporal remote
sensing images acquired on the same geographical area for
identifying changes occurred between the considered acquisition
dates.

• We can define different change detection problems:

 Binary change detection.

 Multiclass change detection.

 Change detection in long time series of images.
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Taxonomy of CD Problems

Sardinia Island, 
July 2013 (Landsat 8)

Map of burned areasSardinia Island, 
August 2013 (Landsat 8)

1. Binary change detection
 Goal: production of binary maps in which changed and unchanged areas are 

separated.
 Number of images: 2 (or pairs of images extracted from a series).
 Application domain: detection of abrupt (step) changes.

8
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Taxonomy of CD Problems

May (Landsat) July (Landsat) 

URBAN
URBAN

BARE SOIL
SUGAR BEET

WHEAT
BARE SOIL

BARE SOIL
SOYBEAN

BARE SOIL
CORN

Thematic Map

2. Multiclass change detection
 Goal: generation of a change-detection map in which land-cover transitions 

are explicitly identified.
 Number of images: 2 (or pairs of images extracted from a series).
 Application domain: updating thematic maps, detection of multiple changes.

9
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Taxonomy of CD Problems

3. Change detection in long time series of images
 Goal: detection of changes associated with modifications of the behavior of 

the temporal signature of a land cover between two time series (detection of 
long term changes).

 Number of images: 2 time series made up on n images (n>>2).
 Application domain: monitoring seasonal/annual changes.
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Change detection
30%

Multitemporal analysis
14%

Time series
32%

Trend analysis
18%

Multitemporal 
classification

1%

Disturbance analysis
5%

Change detection Multitemporal analysis Time series

Trend analysis Multitemporal classification Disturbance analysis

Distribution of the overall number of published papers versus different
topics related to multitemporal data between 1990 and 2016 (Source:
Scopus)

Distribution of Papers per Topics
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Change Detection Architecture

1
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Data
Collection

Data
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Data
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Change Detection 
Map
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Depends on the specific sensor 
considered and on the quality of the 

considered images

Mandatory in all change-detection 
techniques

Original Images

t1 image tN image

Geometric Corrections 
& Image Registration

Radiometric 
Corrections

X1 XN

Image 
Filtering

Very important with optical images

Interpolating
missing data

X’1 X’N

Depends on the requested acquisition 
frequency and data availability (careful 

application, see information theory!)

Data Pre-processing
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Data Pre-processing: Radiometric Corrections

Differences in light and atmospheric conditions between the two acquisition
times can be mitigated by applying radiometric calibration to the images. Two
different approaches can be applied:

• Absolute calibration: digital numbers are transformed into the 
corresponding ground reflectance values (radiometric transfer models, 
regression algorithms applied to ground-reflectance measurements 
collected during the data acquisition phase).

• Relative calibration: modification of the histograms, so that the same gray-
levels values in the two images can represent the same reflectance 
values, whatever the reflectance values on the ground may be (histogram 
matching).

The choice of one of the two approaches depends on the particular application
considered and on the specific information available.
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Data Pre-processing: Image Registration

Generally it is not possible to obtain a perfect alignment between multitemporal
images. This is mainly due to local defects in the geometries of the images.

Residual misregistration results in a very critical source of noise, which is called 
“registration noise”



Shift vs. error for 1 x 1 meter pixels
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t1 image
Change-detection map

Registration noise

t2 image

Data Pre-processing: Registration Noise Effects

Elba Island, Landsat-TM4
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Change Detection Architecture
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Binary Change Detection in Remote Sensing

Binary change detection in remote-sensing images is characterized by several
peculiar factors that render ineffective some of the multitemporal image
analysis techniques typically used in other application domains. Some of these
factors are:

 Differences in light conditions, sensor calibration, and ground moisture at the two 
acquisition dates considered;

 Absence of a reference background;

 Lack of a priori information about the shapes of changed areas;

 Non-perfect alignment (registration noise) between the two considered images;

 Different acquisition conditions of multitemporal images (view angle, shadows, 
etc.).

18
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Binary CD: Typical Architecture

AnalysisComparison

Difference/Ratio
Image

Change-detection 
map

Corrected
t1 image

Corrected
t2 image

Ω ={ωc , ωu}

X1

X2

XD

Analysis:
• Pixel-based thresholding
• Context-based approaches
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CD in Multispectral Images: Comparison Operators

Technique Feature vector fk at the time tk Computation of XD

Univariate image 
differencing

Vegetation index 
differencing

Change vector analysis

Regression and

Multivariate Alteration 
Detection (MAD)

b: variable associated with the spectral channel
k: variable associated with the acquisition date

b
k kXf 1 2DX C  f f

k kVf 1 2DX C  f f

1[ ,.., ]m
k k kX Xf 1 2DX  f f

2 2
ˆ bXf 1 2DX C  f f1 1

bXf

F. Bovolo, L. Bruzzone, “The Time Variable in Data Fusion: a Change Detection Perspective,” IEEE Geoscience and Remote 
Sensing Magazine, Vol. 3, No 3, 2015.

ܺ 	ൌ 	்ܽ ଶ݂ 	െ 	்ܾ ଵ݂
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k k kX Xf
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Magnitude
Image

Pixel (i,j)

X1X2

X1XD

Multispectral 
difference image

Vector
Difference

X1X1

X2

X2

X1

X1

XD

Multispectral 
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Change Vector Analysis (CVA)

Assumption: only 2 spectral channels are considered for each date.
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Polar Change Vector Analysis

 -> Random variable associate to magnitude image X

 -> Random variable associate to direction image X
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Polar Change Vector Analysis: Example

Study area: Lake Mulargia, Sardinia Island (Italy).

Multitemporal data set: a portion of 412×300 pixels of two images acquired by 
the TM sensor of Landsat-5 satellite in September 1995 and  July 1996.

23

Before Change Reference MapAfter Change

© Lorenzo Bruzzone
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Registration noise effectsCorrected Images (Ideal case) Radiometric difference effects

Optimal threshold value on the 
magnitude variable: ideal case

Threshold value on the magnitude 
variable: radiometric distortion case  

Registration noise effects

Polar Change Vector Analysis: Example

F. Bovolo, L. Bruzzone, A Theoretical Framework for Unsupervised Change Detection Based on Change Vector Analysis in 
Polar Domain, IEEE Transactions on Geoscience and Remote Sensing, Vol. 45, No.1, 2007, pp.218-236. 
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Polar Change Vector Analysis: Example

Study area: Lake Mulargia, Sardinia Island (Italy).
Multitemporal data set: a portion of 412×300 pixels of two images acquired by 
the TM sensor of Landsat-5 satellite in September 1995 and  July 1996.
Changes: 1 natural change, 1 simulated change.

September 1995 July 1996

Lake surface enlargementSimulated burned area
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1 21 2 
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Lake surface

Burned area

No-change

Polar Change Vector Analysis: Example

F. Bovolo, S. Marchesi, L. Bruzzone, “A Framework for automatic and unsupervised detection of multiple changes in 
multitemporal images,” IEEE Transactions on Geoscience and Remote Sensing, Vol. 50, No. 6, pp. 2196–2212, 2012. 
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Example: CD in Multispectral Images

Magnitude Difference Image Change Detection Map (Burned Area)

Landsat TM, Pre-event Landsat TM,  Post-event

Burned 
area

Landsat 5 Thematic Mapper images of a forest fire in the Island of Elba, Italy
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 There have been many recent developments related to CVA:
 Compressed CVA [2];
 Adaptive change-specific semisupervised CVA [3];
 Advanced statistical modeling and thresholding [4];
 Deep CVA (based on features extracted via deep learning).

F. Bovolo, S. Marchesi, L. Bruzzone, “A Framework for Automatic and Unsupervised Detection of Multiple Changes in Multitemporal Images”, IEEE 
Transactions on Geoscience and Remote Sensing, Vol. 50, No. 6, pp. 2196-2212, 2011.

D. Capella Zanotta, L. Bruzzone, F. Bovolo, Y.E. Shimabukuro, “An Adaptive Semi-Supervised Approach to the Detection of User-Defined Recurrent 
Changes in Image Time Series,” IEEE Transactions on Geoscience and Remote Sensing, Vol. 53, pp. 3707 - 3719, 2015. 

M. Zanetti, F. Bovolo, L. Bruzzone Rayleigh-Rice Mixture Parameter Estimation via EM Algorithm for Change Detection in Multispectral Images, IEEE 
Transactions on Image Processing, Vol. 24, 2015, pp.5004-5016.

Brasilian Amazan: Landsat Thematic Mapper false color compositions. Magenta color highlogths deforestation

September 2007 September 2008 September 2010 September 2011

Change Vector Analysis: Advanced Concepts

28
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CD in SAR Images: Comparison Operators

Technique Feature vector      at the time tk Computation of 

Image rationing

Kullback-Leibler distance 
(Similarity measures)

Difference of scattering 
matrix element products

Difference of scattering 
matrix amplitude correlation 

coefficients

k: variable associated with the acquisition date

Technique Feature vector fk at the time tk Computation of XD

Image rationing

Kullback-Leibler distance 
(Similarity measures)

Difference of scattering 
matrix element products

Difference of scattering 
matrix amplitude correlation 

coefficients

k: variable associated with the acquisition date
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Example: CD in SAR Images

Change Detection Map
(Flooded  Area)ERS-2, Post-event ImageERS-2, Pre-event Image

ERS-2 SAR images of a flood in the City of Pavia, Italy

30
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2. Change Detection in Very High Resolution 
Multispectral Images
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© Lorenzo Bruzzone

New Satellites with VHR Multispectral (MS) Sensors
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July 2006 October 2005
Quickbird images of the city of Trento (Italy)

CD in Multitemporal VHR MS images

33
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CD in Multitemporal VHR MS images

October 2005 July 2006
Quickbird images of the city of Trento (Italy)

34
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AnalysisComparison

Difference/Ratio
Image

Change-detection 
map

Corrected
t1 image

Corrected
t2 image

Ω ={ωc , ωu}

X1

X2

Unsupervised CD: Typical Architecture

XD

Comparison Operators:
• Difference 
• Vector difference

Analysis:
• Pixel-based thresholding
• Context-based approaches

35
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Magnitude
Difference

Image

Pixel-Based
Change Detection

Map

Quickbird, 
October 2004

(true color 
composition)

Quickbird,
July 2006
true color 

composition

CD in Multitemporal VHR Images: Example
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Change detection in VHR Images should exploit a top-down approach to the
definition of the processing architecture. This approach should [4]:

 explicitly model the presence of different radiometric changes on the
basis of the properties of the considered images

 extract the semantic meaning of changes;

 identify changes of interest with strategies designed on the basis of
the specific application;

 exploit the intrinsic multiscale properties of the objects and the high
spatial correlation between pixels in a neighborhood.

CD in Multitemporal VHR images

L. Bruzzone, F. Bovolo, “A Conceptual Framework for Change Detection in Very High Resolution Remote Sensing
Images,” Proceedings of IEEE, Vol. 101, pp. 609-630, 2013.

37
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CD in VHR MS Images: Architecture Design

Multitemporal data set

Identification of the tree
of radiometric changes

Direct extraction of
changes of interest

Refined detection of the radiometric
change of interest

Change detection map

Differential extraction of changes
of interest by cancellation

Selection of the
strategy for detecting
changes of interest

Auxiliary
information

Detection of all
radiometric changes

Detection of the 
changes of interest

Change Vector Analysis, 
Context-sensitive
techniques, etc.

38
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Changes due to 
acquisition 

conditions (Acq)

Differences in 
atmospheric 

conditions (Atm)

Differences in 
acquisition 

system (Sys)

Changes 
occurred on the 
ground  (Grd)

Vegetation 
Phenology (veg)

Anthropic
activity (Ant)

Natural 
disasters (Dis)

Environmental 
conditions (Env)

Radiometric 
Changes(rad)

Sensor 
view angle

Sensor 
acquisition 
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Type of 
sensor

Seasonal 
effects

Identification of the Tree of Radiometric Changes
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Detection of Changes of Interest

Refined detection of the
radiometric change of interest

Non-relevant
change 1

Detection of 
radiometric changes

Non-relevant
change 2

Non-relevant
change N

-
+

X1 X2

Direct detection Differential detection by cancellation

Detection of
change of interest 1

Detection of
change of interest K

X1 X2

- -
+ +

+ +

Map of changes Map of changes
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Multilevel Approach: Semantic of Changes
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L. Bruzzone, F. Bovolo, “A Conceptual Framework for Change Detection in Very High Resolution Remote Sensing
Images,” Proceedings of IEEE, Vol. 101, pp. 609-630, 2013.
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Multilevel Multitemporal Representation
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October 2004 July 2006 Reference Map

Study area: South part of Trento (Italy).

Multitemporal data set: portion (380×430 pixels) of two images acquired by the
Quickbird satellite in October 2004 and July 2006.

Causes of Change: changes on the ground, seasonal changes, registration noise.

Example: CD in VHR Optical Images

43
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Identification of the Tree of Radiometric Changes
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Change Tree and Detection Strategy
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Multilevel Representation of Radiometric Changes
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S. Marchesi, F. Bovolo, L. Bruzzone, “A Context-Sensitive Technique
Robust to Registration Noise for Change Detection in VHR
Multispectral Images”, IEEE Transactions on Image Processing, Vol.
19, pp. 1877-1889, 2010.

F. Bovolo, “A Multilevel Parcel-Based Approach to Change Detection in
Very High Resolution Multitemporal Images,” IEEE Geoscience and
Remote Sensing Letters, Vol. 6, No. 1, pp. 33-37, January 2009.

L. Bruzzone and D. Fernández-Prieto, "Automatic Analysis of the
Difference Image for Unsupervised Change detection," IEEE Trans.
Geosci. Rem. Sens., vol. 38, pp. 1170-1182, 2000.

V. J. D. Tsai, "A comparative study on shadow compensation of color
aerial images in invariant color models," IEEE Trans. Geosci. Remote
Sens., vol. 44, pp. 1661-1671, 2006.
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Reference Map

Change Detection Map
CVA Parcel Based

Change detection Map
Top-down Architecture

October 2005 July 2006

Example: Qualitative Results
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Technique False 
Alarms

Missed 
Alarms

Total 
Errors

Overall accuracy 
(%)

CVA pixel-based 5005 9924 14929 90.86
CVA parcel-based 3537 10261 13798 91.56

Top-down 
architecture 1470 8480 9950 93.91

95

90

85

80

Overall change detection accuracy (%)

90.86 91.56

93.91

CVA
Pixel-based

CVA 
parcel-based

Example: Quantitative Results

Top-down
architecture 
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3. Change Detection in Very High Resolution 
SAR Images
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New Satellites with VHR SAR Sensors
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09
Septem

ber 2009

Comso-Skymed SAR Images of the Earthquake of L’Aquila, Italy
COSMO‐SkyMed Product – ©ASI – Agenzia Spaziale Italiana – (2010). All Rights Reserved. 

Multitemporal SAR Images: New Challenges
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 In multitemporal SAR VHR images we have many sources of backscattering
changes.

 Often backscattering changes associated with different sources exhibit
characteristics similar to each other. They can be separated only by explicitly
modeling the EM behavior of complex objects.

 To this end it is necessary to bridge the semantic gap between low level
features and semantic information:
• Modelling the interaction between the EM waves and the imaged objects;
• Extracting the different object components with proper detectors;
• Combining object components for identifying the objects and the possible changes

in their state.

CD in VHR SAR Images

53
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VHR satellite SAR image

Example: Building Detection  in VHR SAR Images

Building EM model

54
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• Moving from object detection in single images to object change detection
in multitemporal images increases the complexity of the information
extraction.

• In order to define an effective general approach to change detection for
VHR SAR images we have to:

 Decompose the general complex problem in simpler hierarchical problems.

 Exploit the intrinsic multiscale nature of objects present in VHR images.

 Model the specific properties of expected changes for extracting the semantic
meaning of backscattering changes.

 Exploit the available prior information on the considered scenario.

Change Detection in VHR SAR Images
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Changed Building
Detection

X1

X2

VHR SAR t1
image

VHR SAR t2
image

X1 X2

Backscattering
Increase/Decrease 

Detection

Changed Building 
Map

Ancillary
information

• Look side
• Minimum expected

building size

nM

Backscattering decrease
Backscattering increase
No-Change

Architecture for Building Change Detection

F. Bovolo, C. Marin, L. Bruzzone, “A Hierarchical Approach to Change Detection in Very High Resolution SAR Images for
Surveillance Applications,” IEEE Transactions on Geoscience and Remote Sensing, Vol. 51, pp. 2042-2054, 2013.
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X1

X2

VHR SAR t1
image

Multiscale 
decompositionLRX

Image
Comparison

1N
LR
X

0
LRX

N n
LR
X

VHR SAR t2
image

Goal: detect changes associated with increase and decrease in backscattering.

Log-ratio 
image

Optimal Scale Selection
& Thresholding

nM

Backscattering decrease
Backscattering increase
No-Change

Architecture for Building Change Detection

F. Bovolo, L. Bruzzone, "A Detail-Preserving Scale-Driven Approach to Unsupervised Change Detection in Multitemporal SAR 
Images", IEEE Transactions on Geoscience and Remote Sensing, 2005, Vol.43, No. 12, pp. 2963-2972, 2005.
F. Bovolo and L. Bruzzone, “A split-based approach to unsupervised change detection in large-size multitemporal images: 
Application to tsunami-damage assessment,” IEEE Trans. Geosci. Rem. Sens, vol. 45, no. 6, pp. 1658 –1670, 2007.
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nM Changed 
Building Detector

M

Ancillary
information

Changed Building 
Map

Goal: detect new/destroyed buildings.

Backscattering decrease
Backscattering increase
No-Change

• Look side
• Minimum expected

building size

Architecture for Building Change Detection

FUZZY RULES

• Backscattering model
of new/destroyed building

C. Marin, F. Bovolo, L. Bruzzone, Building Change Detection in Multitemporal Very High Resolution SAR Images,
IEEE Transactions on Geoscience and Remote Sensing, Vol. 53, 2015, pp. 2664–2682.
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VHR satellite SAR image

Building EM model

Architecture for Building Change Detection
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a) Ground return;
b) Double bounce;
c) Building wall;
d) Building roof;
e) Shadow;
a+c+d) Layover;
f) Bare soil.

 Changes in VHR SAR images imply increase or
decrease of backscattering values.

 Changes in buildings (i.e., new/destroyed
buildings) imply the generation of patterns of
increase/decrease with specific proprieties.

 Scattering models for flat-roof buildings [8] and bare land.

Backscattering decrease
Backscattering increase

Destroyed
building

New building

Architecture for Building Change Detection
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5th April 2009 RGB multitemporal composition
(R:04/21/2009, G:04/05/2009, B:04/21/2009)

Optical image GeoEye, Tele Atlas 2011 
Google ©

21st April 2009

Example: L’Aquila Earthquake
Multitemporal data set: SpotLight (CSK®) images acquired before (5th April 2009) and after
(21st April 2009) the earthquake of L’Aquila (Italy, 6th April 2009).

• 1m×1m resolution
• X-band
• 1-look
• Amplitude
• HH-polarization
• 57-58 degree 

incidence angle
• Ascending orbit
• Right look
• CSKS1
• Calibrated
• Co-registered
• Geo-referred

Backscattering decrease Backscattering increase Unchanged areas
COSMO-SkyMed Product – ©ASI – Agenzia Spaziale Italiana – (2009). All Rights Reserved. 
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MSL	

Backscattering decrease Backscattering increase Unchanged areas

RGB multitemporal composition
(R:09/12/2009, G:04/05/2009, B:09/12/2009)

Detection of increase and decrease of backscattering performed by using stationary
wavelet transform applied to the log-ratio image.

• 1m×1m resolution
• X-band
• 1-look
• Amplitude
• HH-polarization
• 57-58 degree 

incidence angle
• Ascending orbit
• Right look
• CSKS1
• Calibrated
• Co-registered
• Geo-referred

Example: L’Aquila Earthquake
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Generation of the building change detection according to the output of fuzzy rules.

Overlay between RGB and the final buildings 
change detection map

Ground Truth from orthophotos acquired  on  
April 2009 by the civil protection (GeoPortale 

Abruzzo) 
Other changesCollapsed buildings

Example: L’Aquila Earthquake
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Pre-Crisis Reference Image

Post-Crisis Reference Image
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Destroyed Building Other Changes)
Changed building map

Example: L’Aquila Earthquake
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1

2 3

4

5

Area Total # of 
buildings

Actually
destroyed Missed False

1 200 7 0 0
2 200 6 2 0
3 400 2 1 1
4 400 0 0 1
5 200 0 0 0

Total 1400 15 3 2

Reference about collapsed buildings derived from airborne orthophotos acquired after the earthquake available at 
www.regione.abruzzo.it/xcartografia/.

Example: L’Aquila Earthquake

C. Marin, F. Bovolo, L. Bruzzone, Building Change Detection in Multitemporal Very High Resolution SAR Images,
IEEE Transactions on Geoscience and Remote Sensing, Vol. 53, 2015, pp. 2664–2682.
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4. New Challenges in Multitemporal Data 
Analysis
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 Exploit the large amount of freely available image time series of
Sentinel and Landsat data for information extraction:
 New paradigms for analysis of long time series of high resolution

images;
 New products at improved resolution;
 New applications of the analysis of images time series.

dayd0 d1 d2 d3 d4 … dn

Iy,d y1

y2

Sentinel “Era”
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Example: Sentinel 2 Time Series

Cumulative Vegetation 
Index

Cumulative Water
Index

Barrax (Spain) Sentinel 2 
Image Time Series
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VIS-NIR SWIR TIR
Hyperion EO-1 (USA 2000)

Chris/Proba (EU 2001)

HySI (India 2008)

HJ-1A (China, 2008)

PRISMA (Italy 2018)

EnMAP (Germany 2018)

HISUI-ALOS-3 (Japan)

30 m

17/34 m

500 m

30 m

100 m

30 m

30 m

60 m

HyspIRI (USA) 30 m

GISAT (India)

Source of data: IEEE GRSS ISIS Technical Committee

Hyperspectral Systems



University of Trento, Italy 72© Lorenzo Bruzzone

 Problem: what is a change in multitemporal hyperspectral images?

 Let us analyze the qualitative behaviors of an hyperspectral difference image:

S. Liu, L. Bruzzone, F. Bovolo, P. Du, “Hierarchical Unsupervised Change Detection in Multitemporal Hyperspectral Images,” IEEE Transactions on Geoscieance and
Remote Sensing, Vol. 53, pp. 244 - 260, 2015.

S. Liu, L. Bruzzone, F. Bovolo, M. Zanetti, P. Du, “Sequential Spectral Change Vector Analysis for Change Detection in Multitemporal Hyperspectral Images,” IEEE
Transactions on Geoscience and Remote Sensing, Vol. 53, pp. 4363 – 4378, 2015.

S. Liu, L. Bruzzone, F. Bovolo, P. Du, “Unsupervised Multitemporal Spectral Unmixing for Detecting Multiple Changes in Hyperspectral Images,” IEEE Transactions on
Geoscience and Remote Sensing, Vol. 54, pp. 2733 - 2748, 2016.

Major changes Subtle changes

Change Detection in Hyperspectral Images
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Hyperspectral multitemporal images acquired by Hyperion in Oregon, USA

False color composition of the image 
difference (R: 1729.70nm, G: 

1023.40nm, B: 752.43nm)

RGB composition of the t1 image RGB composition of the t2 image
(R: 650.67nm, G: 548.92nm, B: 447.17nm)

Change Detection in Hyperspectral Images



University of Trento, Italy 74© Lorenzo Bruzzone

False color composites of the difference image
R: 823.65nm
G: 721.90nm
B: 620.15nm

R:1729.7nm
G: 752.43nm
B: 548.92nm

Multiclass Change
Detection map

Hyperspectral multitemporal images acquired by Hyperion in Oregon, USA

Change Detection in Hyperspectral Images
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 The current scenario is rich of opportunities:
 Multitemporal VHR multispectral and SAR images;
 Long time series of HR SAR and multispectral images;
 Constellations of satellites with short revisit time;
 Large archives of data available for free;
 New data analysis paradigms (e.g., deep learning).

 Need to foster the development of methodologies, applications,
and operational products related to mulitemporal data acquired by
last generation satellite missions.

 Fundamental a cross disciplinary approach to the full exploitation
of the potentialities of multitemporal data.

Conclusion
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