

Forest Retrievals using SAR Polarimetry

(Practical Session D3P2a)

Laurent FERRO-FAMIL - Eric POTTIER

University of Rennes 1

Pol-InSAR Practical Forest Application

II1_db.bm

_ 🗆 🗙

→ 7th ADVANCED TRAINING COURSE ON LAND REMOTE SENSING

Exit

۲

Run

→ 7th ADVANCED TRAINING COURSE ON LAND REMOTE SENSING

The SAR image is evaluated as a coherent sum of scattering events from small elements of the scene

DECIDUOUS

Direct-Ground, Direct-Volume and Ground-Volume contributions are included, with both trees and short vegetation comprising Volume terms.

D\

Given the map of tree locations and dimensions a grid of points is used to sample the attenuation of the coherent wave in 3D

RANDOM HEDGE

→ 7th ADVANCED TRAINING COURSE ON LAND REMOTE SENSING

m m

Geometric configuration

Platform altitude :	3000m
Incidence angle:	45°
Horizontal Baseline :	10m
Vertical Baseline :	Om

System Configuration

Frequency :	1.5 GHz
Azimuth resolution :	1.3811 r
Range resolution :	0.6905 r

Ground Surface Configuration

Surface properties :0 (smoothest)Ground moisture Content :0 (driest)Azimuth / Range ground slope :0 %

Forest configuration

0 (hedge)
10m
0.2
1 Ha

→ 7th ADVANCED TRAINING COURSE ON LAND REMOTE SENSING

MAIN MENU

→ 7th ADVANCED TRAINING COURSE ON LAND REMOTE SENSING

ENVIRONMENT

Configure Data Main Directories location

/ Environment	×
Main Input Master Directory	
C:/POLinSAR Training_Course/Master_Track	
Main Input Slave Directory	
C:/POLinSAR Training_Course/Slave_Track	- E
🔲 Binary Data Check 🔽 ENVI Config File	✓ NEST MetaData File .
Display Size	
Rows 844 Columns	844 🔺 Save
Color Maps	
😥 Unsupervized ColorMap8 🛛 Single ColorMap9	Dbl_Vol_Sgl ColorMap27
🛞 Unsupervized ColorMap9 🛛 🛞 Double ColorMap9	🛞 Random ColorMap32
Unsupervized ColorMap16 🛛 🛞 Volume ColorMap9	
	Exit

Input Master Directory: C:/Pol-InSAR_Training_Course/Master_Track

Input Slave Directory: C:/Pol-InSAR_Training_Course/Slave_Track

→ 7th ADVANCED TRAINING COURSE ON LAND REMOTE SENSING

PROCESS DATA

→ 7th ADVANCED TRAINING COURSE ON LAND REMOTE SENSING

PROCESS DATA

→ 7th ADVANCED TRAINING COURSE ON LAND REMOTE SENSING

ELEMENTS

🦸 Data	Processing: S	inclair Element	5			
Input D	irectory					
C:/POLir	hSAR_Training_	Course/Master_Tr	ack			
Output	Directory					
C:/POLir	SAR_Training_	Course/Master_Tr	ack			
Init R	ow 1	End Row	301 Init Col	1	End Col	301
S11	O A11	O I11	A11 (dB) = I11	(dB)	O Phase	🗹 ВМР
S21	C A21	C 121	O A21 (dB) = 121	(dB)	Phase	💌 BMP
S12	C A12	O 112	A12 (dB) = I12	(dB)	O Phase	MP BMP
\$22	C A22	C 122	C A22 (dB) = 122	(dB)	Phase	💌 BMP
Span	C Linear	O De	eciBel = 10log(Span)			Г ВМР
			Reset			
	Run		2		Exit	

Do it Yourself: Select some elements, set the parameters and view the corresponding BMP files (select BMP).

→ 7th ADVANCED TRAINING COURSE ON LAND REMOTE SENSING

4-9 September 2017 | Szent István University | Gödöllő, Hungary

bace Office

ELEMENTS

DATA_MASTERDIR

ace Office

s11.bin, s12.bin s21.bin, s22.bin

Axy.bin, Ixy.bin Ixy_db.bin sxy_pha.bin

Axy.bmp, Ixy.bmp Ixy_db.bmp sxy_pha.bmp

→ 7th ADVANCED TRAINING COURSE ON LAND REMOTE SENSING

PROCESS DATA

→ 7th ADVANCED TRAINING COURSE ON LAND REMOTE SENSING

RAW INTERFEROGRAM

Interferogram Input Master Direct	n Estimation						
C/POLinSAB Training Course/Master Track							
	tory						
C:/POLinSAR_Trai	ning_Course/SI	ave_Track				_	
Cutput Master-Sla	ave Directory—						
C:/POLinSAR_Trai	ning_Course/M	aster_Track_Slav	e_Track		/		
Init Row 1	End	Row 301	Init Col	1	End Col	301	
-Image 1							
ОНН 🖲 Н	iv O W	○ HH + W	○ HH · W	ΟLL	O LR	O RR	
Онн ⊛н	w o w	○ HH + VV	○ HH · W	ΟLL	O LR	O RR	
□ A1	veraging		Row	Col			
Run			2		Exit		

Do it Yourself: Select polarization channels, set the parameters and view the corresponding BMP files.

Note:

The Output Directory is automatically set to: MasterDir_SlaveDir

→ 7th ADVANCED TRAINING COURSE ON LAND REMOTE SENSING

DATA_MASTERDIR_SLAVEDIR

config.txt

interferogram_XX_XX.bin

interferogram_XX_XX.bmp

→ 7th ADVANCED TRAINING COURSE ON LAND REMOTE SENSING

PROCESS DATA

→ 7th ADVANCED TRAINING COURSE ON LAND REMOTE SENSING

FLAT EARTH REMOVAL

SAR Data Processing and Educational Tool v5.1 - Menu	
esa PolSARpro The Polarimetric SAR Data Processing and Educational Tool	
Environment • [Import • Convert • Process • Display • Calibration • Utilities • Tools	Configuration Education Help Guit
POLinSAR Flat Earth Removal Input Master Directory D:/PoHnSAR_PolSARproSIM/master Input Slave Directory D:/PoHnSAR_PolSARproSIM/slave Init Row 1 End Row 301 Init Col 1 End Col 2D Flat Earth File D:/PoHnSAR_PolSARproSIM/slave/kz.bin Input Format	DATA_SLAVEDIR DATA_SLAVEDIR DATA_SLAVEDIR DATA_SLAVEDIR FER
Output Master Directory	- config.txt
Dutput Slave Directory D:/PoHnSAR_PolSARproSIM/slave_FER Run Exit	s11.bin, s12.bin s21.bin, s22.bin

Do it Yourself:

Enter Flat Earth file name, set the parameters and run the function.

Note:

The Input Slave Directory is automatically set to: SlaveDir_FER

→ 7th ADVANCED TRAINING COURSE ON LAND REMOTE SENSING

RAW INTERFEROGRAM

Interferogram	Estimation					
	iory IV					
[U:/PULINSAR_Train	iing_Course/M	aster_Track				
Input Slave Direct	ory					
C:/POLinSAR_Train	iing_Course/SI	ave_Track_FER				
Output Master-Sla	ve Directory					
C:/POLinSAR_Train	iing_Course/M	aster_Track_Slav	e_Track_FER		/	
Init Row 1	End	Row 301	Init Col	1	End Col	301
Image 1						
Онн ⊙н	v ow	⊂ HH + VV	○ HH · W	ΟLL	C LR	O RR
Image 2						
⊙нн ⊚н	v ow	○ HH + VV	⊙нн∍∨∨	ОШ	O LR	O RR
🗆 Av	eraging		Row	Col		
Run			2		Exit	

Do it Yourself: Select polarization channels, set the parameters and view the corresponding BMP files.

Note:

The Output Directory is automatically set to: MasterDir_SlaveDir_FER

→ 7th ADVANCED TRAINING COURSE ON LAND REMOTE SENSING

RAW INTERFEROGRAM

→ 7th ADVANCED TRAINING COURSE ON LAND REMOTE SENSING

config.txt

PROCESS DATA

→ 7th ADVANCED TRAINING COURSE ON LAND REMOTE SENSING

COHERENCE ESTIMATION

🥼 Polarimetric SAR Data Processing and Educational Tool v5.1 - Menu	
CE esa PolSARpro The Polarimetric SAR Data Processing and Educational Tool	
T3 S Environment V Import Convert V Process V Display V Calibration V Utilities V Tools V Configuration V Education V Help V	Quit .

Complex Coherence Estimation	×
Input Master Directory	
C:/POLinSAR Training_Course/Master_Track	
Input Slave Directory	
C:/POLinSAR Training_Course/Slave_Track_FER	
Dutput Master-Slave Directory	
C:/POLinSAR Training_Course/Master_Track_Slave_Track_FER /	\Box
Init Row 1 End Row 301 Init Col 1 End Col 30	1
Complex Coherences	
Circular 🔽 LL 🔽 LR 🔽 RR Optimal 🗖 SVD 🗖 PD 🗖 NR 🗖 L. MinMax 🗖 L.	Diff
Theta1 Theta3 Num Points Num Points	1
Box Car Window	
Row 7 Col 7 Averaging Row Col	
Run Hist Z	

Do it Yourself:

Select polarization channels (linear, circular, pauli), set the parameters (Box Car = 11x11) and view the corresponding BMP files (select BMP).

→ 7th ADVANCED TRAINING COURSE ON LAND REMOTE SENSING

COHERENCE ESTIMATION

→ 7th ADVANCED TRAINING COURSE ON LAND REMOTE SENSING

PROCESS DATA

→ 7th ADVANCED TRAINING COURSE ON LAND REMOTE SENSING

HEIGHT ESTIMATION

Height Estimation	from Inversion	Procedur	es			<u>- 🗆 ×</u>
Input Master - Slave Directory						
Output Master - Slave I	_Course/Master_T	Iduk_bidve	S_HOCK_FEN			
	Course /Moster, T	rock. Slove	Trook EED			- 6
	_Course/Master_1	Iduk_bidve	_ Hack_ren		- 4	
Init Row 1	End Row	301	Init Col	1	End Col	301
		Update	List			
Polarimetric Phase 0	Centre Height Estim	ation	Polarime	etric Channe	el HH	*
DEM Differencing A	lgorithm					
Coherence Amplitud	e Inversion Proced	lure				
Ground Phase Estin	nation and RVOG I	nversion Pr	ocedure			
Median Window Size		-	eighting Cohe	erence Frac	tion Factor	0.5
Top Phase Centre	HV	•	Ground Pha	se Centre	HH - VV	-
- 2D Kz File						
C:/POLinSAR_Training	_Course/Slave_Tr	ack/kz.bin				<u> </u>
Bun	Hist		2		Exi	t

→ 7th ADVANCED TRAINING COURSE ON LAND REMOTE SENSING

HEIGHT ESTIMATION

🦸 Height Estimation fr	om Inversion	Procedure	25			
– Input Master - Slave Dire	ctory					
C:/POLinSAR_Training_C	Course/Master_Tr	ack_Slave	_Track_FER			
– Output Master - Slave Di	rectory					
C:/POLinSAR_Training_C	Course/Master_Tr	ack_Slave	_Track_FER		/	
Init Row 1	End Row	301	Init Col	1	End Col	301
		Update L	List			
Polarimetric Phase Cer	ntre Height Estima	ation	Polarime	etric Channel	HH	_
DEM Differencing Algo	orithm					
Coherence Amplitude	Inversion Proced	ure				
Ground Phase Estima	tion and RVOG Ir	version Pro	ocedure			
Median Window Size	11	J we	eighting Cohe	erence Fract	ion Factor	0.5
Top Phase Centre	HV	•	Ground Pha	se Centre	HH · W	-
– 2D Kz File						
C:/POLinSAR_Training_0	Course/Slave_Tra	ack/kz.bin				- 2
Run	Hist		2		Exi	it

INVERSION PROCEDURES

DEM Differencing Algorithm Coherence Amplitude Inversion Procedure Ground Phase Estimation RVOG Inversion Procedure

→ 7th ADVANCED TRAINING COURSE ON LAND REMOTE SENSING

OBLUME COHERENCE MODEL

Simplifications : Only 2 significant mechanisms – Low density medium ⇒ No refraction

→ 7th ADVANCED TRAINING COURSE ON LAND REMOTE SENSING

OBLUME COHERENCE MODEL

 $\int f(z)e^{jkz}dz$ ‱₽€ *(z)dz*.

 ϕ_0 Topographic Phase

Vertical Wavenumber

POLARIZATION INDEPENDENT

→ 7th ADVANCED TRAINING COURSE ON LAND REMOTE SENSING

OBLUME COHERENCE MODEL

 $\int f(z)e^{jkz}dz$ YVOTE (z)dz

Vertical Structure function

Case of Uniform Random Layer

- θ_{θ} Incidence Angle
- **σ** Extinction Coefficient

POLARIZATION INDEPENDENT

→ 7th ADVANCED TRAINING COURSE ON LAND REMOTE SENSING

RVOG COHERENCE MODEL

RVOG = Random Volume Over Ground

2 Layer Combined Surface and random Volume Scattering

Surface Scattering Contribution Volume Scattering Contribution

G / V ratio

B. Treuhaft (2000), S.R. Cloude (2003)

POLARIZATION DEPENDENT

→ 7th ADVANCED TRAINING COURSE ON LAND REMOTE SENSING

OREST HEIGHT ESTIMATION

Polarisation Channel corresponding to Volume Scattering \underline{W}_{v}

 \underline{W}_{s} **Polarisation Channel corresponding to Surface Scattering**

ADVANCED TRAINING COURSE ON LAND REMOTE SENSING

COREST HEIGHT ESTIMATION

→ 7th ADVANCED TRAINING COURSE ON LAND REMOTE SENSING

DEM Differencing Algorithm

$$\begin{array}{c} \gamma(\underline{w}_{v}) = e^{j\phi_{0}} \gamma_{VOL} \\ \gamma(\underline{w}_{s}) \mapsto e^{j\phi_{0}} \end{array} \end{array} \mapsto \gamma(\underline{w}_{v}) = \gamma(\underline{w}_{s}) \gamma_{VOL} \approx \gamma(\underline{w}_{s}) \alpha e^{jk_{z}h_{v}} \\ \\ \mathbf{h}_{v} \approx \frac{\arg[\gamma(\underline{w}_{v})] - \arg[\gamma(\underline{w}_{s})]}{k_{z}} \end{aligned}$$

COREST HEIGHT ESTIMATION

Coherence Amplitude Inversion Procedure

Assumption: Only Volume Scattering is present

$$\gamma(\underline{w}_{v}) = e^{j\phi_{0}}\gamma_{VOL} \quad \mapsto \quad |\gamma(\underline{w}_{v})| = |\gamma_{VOL}|$$

$$\min_{h_{v}}\left\|\left|\gamma(\underline{w}_{v})\right|-\left|\frac{p}{p_{1}}\frac{e^{p_{1}h_{v}}-1}{e^{ph_{v}}-1}\right|\right\|$$

1-D Search Procedure Look Up Table (LUT)

OREST HEIGHT ESTIMATION

Topographic Phase Estimation

$$\gamma(\underline{w}_{v}) = e^{j\phi_{0}}\gamma_{VOL}$$

$$\gamma(\underline{w}_{s}) = e^{j\phi_{0}}\frac{\gamma_{VOL} + \mu(\underline{w}_{s})}{1 + \mu(\underline{w}_{s})} \qquad \mapsto \qquad e^{j\phi_{0}} = \frac{\gamma(\underline{w}_{s}) - \gamma(\underline{w}_{v})(1 - L)}{L}$$
With: $L = \frac{\mu(\underline{w}_{s})}{1 + \mu(\underline{w}_{s})}$

$$\widehat{\phi}_{0} = \arg[\gamma(\underline{w}_{s}) - \gamma(\underline{w}_{v})(1 - L)]$$
Estimation of $L \quad \left|\frac{\gamma(\underline{w}_{s}) - \gamma(\underline{w}_{v})(1 - L)}{L}\right|^{2} = 1 \implies AL^{2} + BL + C = \theta$

$$A = |\gamma(\underline{w}_{v})|^{2} - 1 \quad B = 2\Re[(\gamma(\underline{w}_{s}) - \gamma(\underline{w}_{v}))\gamma^{*}(\underline{w}_{s})] \quad C = |\gamma(\underline{w}_{s}) - \gamma(\underline{w}_{v})|^{2}$$

$$L = \frac{-B - \sqrt{B^{2} - 4AC}}{2A}$$

OREST HEIGHT ESTIMATION

RVOG Inversion Procedure

$$\min_{h_{v},\sigma} \gamma(\underline{w}_{v}) - e^{j\hat{\phi}_{0}} \frac{p}{p_{1}} \frac{e^{p_{1}h_{v}} - 1}{e^{ph_{v}} - 1}$$

Expensive 2-D Search Procedure !

HEIGHT ESTIMATION

→ 7th ADVANCED TRAINING COURSE ON LAND REMOTE SENSING

DEM_diff_heights

Ground_phase_median

Coh_heights

RVOG_phase_heights

Ground_phase

RVOG_heights

→ 7th ADVANCED TRAINING COURSE ON LAND REMOTE SENSING

→ 7th ADVANCED TRAINING COURSE ON LAND REMOTE SENSING

HEIGHT ESTIMATION

Do it Yourself: Select a BMP file Select a BIN file Select Input Data Format Select Show Select Area (line or rect) SAVE PLOT

→ 7th ADVANCED TRAINING COURSE ON LAND REMOTE SENSING

are Office

💹 gnuplot graph - 🗆 × HISTOGRAM 700 Label 600 500 Nb of Samples 400 300 200 100 0 -6 -4 -2 0 2 4 6 8 10 12 14 16 Value

DEM_diff_heights

RVOG_heights

Coh_heights → 7th ADVANCED TRAINING COURSE ON LAND REMOTE SENSING

→ 7th ADVANCED TRAINING COURSE ON LAND REMOTE SENSING

Do it Yourself: Select a BMP file Select a BIN file Select Input Data Format Select Pixel Select Show Select Representation X Range / Y Range = 200pix XY Range = 30 pix (3D) Set Min / Max Values PLOT

→ 7th ADVANCED TRAINING COURSE ON LAND REMOTE SENSING

HEIGHT ESTIMATION

are Office

Coh_heights

DEM_diff_heights

RVOG_heights

→ 7th ADVANCED TRAINING COURSE ON LAND REMOTE SENSING

Pol-InSAR Practical Forest Application

→ 7th ADVANCED TRAINING COURSE ON LAND REMOTE SENSING

MAIN MENU

→ 7th ADVANCED TRAINING COURSE ON LAND REMOTE SENSING

ENVIRONMENT

Configure Data Main Directories location

🖉 Environment	×
Main Input Master Directory	
C:/POLinSAR Training_Course/Master_Track	- E 🙆
- Main Input Slave Directory	
C:/POLinSAR Training_Course/Slave_Track	- L A
🗖 Binary Data Check 🔽 ENVI Cor	nfig File 🔽 NEST MetaData File .
Display Size	
Rows 844	olumns 844 🔺 Save
Color Maps	
🛞 Unsupervized ColorMap8 🛛 🛞 Single Co	olorMap9 🛛 🔬 Dbl_Vol_Sgl ColorMap27
🛞 Unsupervized ColorMap9 🛛 🔬 Double (ColorMap9 😥 Random ColorMap32
🔬 Unsupervized ColorMap16 🛛 🔬 Volume (ColorMap9
2	Exit

Input Master Directory: C:/Taunstein_ESAR/master_slc

Input Slave Directory: C:/Traunstein_ESAR/slave_slc

→ 7th ADVANCED TRAINING COURSE ON LAND REMOTE SENSING

→ 7th ADVANCED TRAINING COURSE ON LAND REMOTE SENSING

→ 7th ADVANCED TRAINING COURSE ON LAND REMOTE SENSING

RAW INTERFEROGRAM

Interferogram Input Master Direct	n Estimation					
C:/POLinSAB_Trai	ning Course/M	aster Track				_
	tory					
C:/POLinSAR_Trai	ning_Course/SI	ave_Track				_
Cutput Master-Sla	ave Directory—					
C:/POLinSAR_Trai	ning_Course/M	aster_Track_Slav	e_Track		/	
Init Row 1	End	Row 301	Init Col	1	End Col	301
-Image 1						
ОНН 🖲 Н	iv O W	○ HH + W	○ HH · W	ΟLL	O LR	O RR
Онн ⊛н	w o w	○ HH + VV	○ HH · W	ΟLL	O LR	O RR
□ A1	veraging		Row	Col		
Run			2		Exit	

Do it Yourself: Select polarization channels, set the parameters and view the corresponding BMP files.

Note:

The Output Directory is automatically set to: MasterDir_SlaveDir

→ 7th ADVANCED TRAINING COURSE ON LAND REMOTE SENSING

RAW INTERFEROGRAM

DATA_MASTERDIR_SLAVEDIR

config.txt

 $interferogram_XX_XX.bin$

interferogram_XX_XX.bmp

→ 7th ADVANCED TRAINING COURSE ON LAND REMOTE SENSING

→ 7th ADVANCED TRAINING COURSE ON LAND REMOTE SENSING

FLAT EARTH REMOVAL

SAR Data Processing and Educational Tool v5.1 - Menu	
esa PolSARpro The Polarimetric SAR Data Processing and Educational Tool	
Environment • [Import • Convert • Process • Display • Calibration • Utilities • Tools	Configuration Education Help Guit
POLinSAR Flat Earth Removal Input Master Directory D:/PoHnSAR_PolSARproSIM/master Input Slave Directory D:/PoHnSAR_PolSARproSIM/slave Init Row 1 End Row 301 Init Col 1 End Col 2D Flat Earth File D:/PoHnSAR_PolSARproSIM/slave/kz.bin Input Format	DATA_SLAVEDIR DATA_SLAVEDIR DATA_SLAVEDIR DATA_SLAVEDIR FER
Output Master Directory	- config.txt
Dutput Slave Directory D:/PoHnSAR_PolSARproSIM/slave_FER Run Exit	s11.bin, s12.bin s21.bin, s22.bin

Do it Yourself:

Enter Flat Earth file name, set the parameters and run the function.

Note:

The Input Slave Directory is automatically set to: SlaveDir_FER

→ 7th ADVANCED TRAINING COURSE ON LAND REMOTE SENSING

RAW INTERFEROGRAM

Interferogram	Estimation					
	iory IV					
[U:/PULINSAR_Train	iing_Course/M	aster_Track				
Input Slave Direct	ory					
C:/POLinSAR_Train	iing_Course/SI	ave_Track_FER				
Output Master-Sla	ve Directory					
C:/POLinSAR_Train	iing_Course/M	aster_Track_Slav	e_Track_FER		/	
Init Row 1	End	Row 301	Init Col	1	End Col	301
Image 1						
Онн ⊙н	v ow	⊂ HH + VV	○ HH · W	ΟLL	C LR	O RR
Image 2						
⊙нн ⊚н	v ow	○ HH + VV	⊙нн∍∨∨	ОШ	O LR	O RR
🗆 Av	eraging		Row	Col		
Run			2		Exit	

Do it Yourself: Select polarization channels, set the parameters and view the corresponding BMP files.

Note:

The Output Directory is automatically set to: MasterDir_SlaveDir_FER

→ 7th ADVANCED TRAINING COURSE ON LAND REMOTE SENSING

RAW INTERFEROGRAM

config.txt

interferogram_XX_XX.bin

interferogram_XX_XX.bmp

→ 7th ADVANCED TRAINING COURSE ON LAND REMOTE SENSING

Convert S2 - T6 : Multilook

ace Office

→ 7th ADVANCED TRAINING COURSE ON LAND REMOTE SENSING

Convert S2 - T6 : Multilook

Processing and Educational Tool v5.1 - Menu				
Ba PolSARpro The Polarimetric SAR Data Processing and Educational Tool		the second second second second		
ent v Import Convert v Process v Display v Calibration v Utilities v Tools	▼ Configuration ▼ Education	V Help V	Quit	
Data File Conversion Input Master Directory D:/TRAUNSTEIN_ESAR/master_stc Input Slave Directory D:/TRAUNSTEIN_ESAR/slave_stc_FER Init Row 1 End Row C Full Resolution C Sub Sampling	1320 Init Col 1	End Col 1414		
(* Multi Look Input Data Format 2x2.Compl Dutput Data Format	How 6			
C 2×[SPP] ≫ 2×[SPP] C 2×[S2] ≫ 2×[S2]	C 2×(SPP) >> [T4] (♥ 2×(S2)>>[T6]	C [T4]>> [T4] C [T6]>> [T6]		
Dutput Master-Slave Directory	e_slc_FER_MLK	/ TE		
Run	Q	Exit		

Do it Yourself: Select Multi Look : Row = 6 and Col = 2 Select Output Data Format : 2 x [S2] >> [T6]

→ 7th A[Note:

Hungarian

HSO

The Output Directory is automatically set to: MasterDir_SlaveDir_FER_MLK

→ 7th ADVANCED TRAINING COURSE ON LAND REMOTE SENSING

Input Master-Slave Directory D:/TRAUNSTEIN_ESAR/master_slc_slave_slc_FER_MLK/T6-
D:/TRAUNSTEIN_ESAR/master_slc_slave_slc_FER_MLK/T6
- Output Master-Slave Directory
D:/TRAUNSTEIN_ESAR/master_slc_slave_slc_FER_MLK_LEE / T6 💼
Init Row 1 End Row 220 Init Col 1 End Col 707
LEE Retined Speckle Filter
Number of Looks 3 Window Size Row 3 Window Size Col 1
Run 🗉 😨 Exit

Do it Yourself: Set the parameters : Num Looks = 3 ; Window Size = 3.

Note:

The Output Directory is automatically set to: MasterDir_SlaveDir_FER_MLK_LEE

→ 7th ADVANCED TRAINING COURSE ON LAND REMOTE SENSING

→ 7th ADVANCED TRAINING COURSE ON LAND REMOTE SENSING

4-9 September 2017 | Szent István University | Gödöllő, Hungary

ace Office

🥼 Polarimetric SAR Data Processing and Educational Tool v5.1 - Menu	
CE esa PolsARpro The Polarimetric SAR Data Processing and Educational Tool	
T3 S Environment Convert Process Display Calibration Utilities Cools Configuration Help Education Help	Quit .

→ 7th ADVANCED TRAINING COURSE ON LAND REMOTE SENSING

4-9 September 2017 | Szent István University | Gödöllő, Hungary

Hungarian Space Office

HSO

→ 7th ADVANCED TRAINING COURSE ON LAND REMOTE SENSING

🧣 Data Processing: Correlation	Coefficients (6x6)	×
- Input Master-Slave Directory		
D:/TRAUNSTEIN_ESAR/master_s	slc_slave_slc_FER_MLK_LEE/T6	
		-
- Output Master-Slave Directory -		
D:/TRAUNSTEIN_ESAR/master_	slc_slave_slc_FER_MLK_LEE	/ 16 📄
Init Row 1 End I	Row 220 Init Col	1 End Col 707
- Master		
□ Ro12 = (HH1 , HV1)	□ Ro13 = (HH1, VV1)	□ Ro23 = (HV1 , W1)
Slave		
🔽 Ro45 = (HH2, HV2)	□ Ro46 = (HH2, W2)	☐ Ro56 = (HV2, W2)
- Master - Slave		
I Fo14 = (HH1, HH2)	□ Ro15 = (HH1 , HV2)	□ Ro16 = (HH1, W2)
Ro24 = (HV1, HH2)	Fo25 = (HV1, HV2)	E Ro26 = (HV1 , W2)
□ Ro34 = (VV1 , HH2)	Ro35 = (W1, HV2)	₩ Fo36=(W1,W2)
☞ BMP (Mod / Phase) Win	dow Size : Row 5 Col	5 Select All Reset
Run		Exit

Do it Yourself: Select the correlation coefficients, set the parameters (Box Car= 5x5) and view the corresponding BMP files.

→ 7th ADVANCED TRAINING COURSE ON LAND REMOTE SENSING

4-9 September 2017 | Szent István University | Gödöllő, Hungary

ace Office

→ 7th ADVANCED TRAINING COURSE ON LAND REMULE SENSING

4-9 September 2017 | Szent István University | Gödöllő, Hungary

bace Office

→ 7th ADVANCED TRAINING COURSE ON LAND REMUTE SENSING

4-9 September 2017 | Szent István University | Gödöllő, Hungary

pace Office

→ 7th ADVANCED TRAINING COURSE ON LAND REMOTE SENSING

COHERENCE ESTIMATION

🥼 Polarimetric SAR Data Processing and Educational Tool v5.1 - Menu	
CE esa PolSARpro The Polarimetric SAR Data Processing and Educational Tool	
T3 S Environment V Import Convert V Process V Display V Calibration V Utilities V Tools V Configuration V Education V Help V	Quit .

Complex Coherence Estimation	×
Input Master Directory	
C:/POLinSAR Training_Course/Master_Track	
Input Slave Directory	
C:/POLinSAR Training_Course/Slave_Track_FER	
Dutput Master-Slave Directory	
C:/POLinSAR Training_Course/Master_Track_Slave_Track_FER /	\Box
Init Row 1 End Row 301 Init Col 1 End Col 30	1
Complex Coherences	
Circular 🔽 LL 🔽 LR 🔽 RR Optimal 🗖 SVD 🗖 PD 🗖 NR 🗖 L. MinMax 🗖 L.	Diff
Numerical Radius	
Theta1 Theta3 Num Points Num Points	-
Box Car Window	
Row 7 Col 7 Averaging Row Col	
Run Hist 🛛	

Do it Yourself:

Select polarization channels (linear, circular, pauli), set the parameters (Box Car = 7x7) and view the corresponding BMP files (select BMP).

→ 7th ADVANCED TRAINING COURSE ON LAND REMOTE SENSING

→ 7th ADVANCED TRAINING COURSE ON LAND REMUTE SENSING

→ 7th ADVANCED TRAINING COURSE ON LAND REMULE SENSING

→ 7th ADVANCED TRAINING COURSE ON LAND REMOTE SENSING

HEIGHT ESTIMATION

Quit
ĺ

# Height Estimation nom inversion Procedures	-
Input Master - Slave Directory	
D:/TRAUNSTEIN_ESAR/master_slc_slave_slc_FER_MLK_LEE/T6	
Output Master - Slave Directory	
D:/TRAUNSTEIN_ESAR/master_slc_slave_slc_FER_MLK_LEE /	T6 🖸
Init Row 1 End Row 220 Init Col 1 End Col	707
Update List	
Polarimetric Phase Centre Height Estimation Polarimetric Channel [HH]	<u>.</u>
C DEM Differencing Algorithm	
Coherence Amplitude Inversion Procedure	
Ground Phase Estimation and RVOG Inversion Procedure	
Median Window Size	0.5
Top Phase Centre HV Ground Phase Centre HH · W	•
- 2D Kz File	-
D:/TRAUNSTEIN_ESAR/kz-ph-mlk/kz.bin	
Run Hist Q Ex	it _

→ 7th ADVANCED TRAINING COURSE ON LAND REMOTE SENSING

HEIGHT ESTIMATION

2 Polarimetric SAR Data Processing and Educational Tool v5.1 - Menu	
CESA PolSARpro The Polatimetric SAR Data Processing and Educational Tool	
T3 S Environment Convert Process Display Calibration Utilities Configuration Education Help Education	Quit

4 Height Estimation from Inversion Procedures	
- Input Master - Slave Directory	
D:/TRAUNSTEIN_ESAR/master_slc_slave_slc_FER_MLK_LEE/T6	
Output Master - Slave Directory	
D:/TRAUNSTEIN_ESAR/master_slc_slave_slc_FER_MLK_LEE / T6	
Init Row 1 End Row 220 Init Col 1 End Col 707	
Update List	
Polarimetric Phase Centre Height Estimation Polarimetric Channel HH	
T DEM Differencing Algorithm	
T Coherence Amplitude Inversion Procedure	
Ground Phase Estimation and RVDG Inversion Procedure	
Median Window Size 5 I Weighting Coherence Fraction Factor 0.5	
Top Phase Centre	
2D Kz File	
D:/TRAUNSTEIN_ESAR/kz-ph-mlk/kz,bin	
Run Hist Z Exit	

Do it Yourself: Set the parameters (Median Size = 21, Factor = 0.4) and view the corresponding BMP files.

2D Kz File : DataDirectory / kz-ph-mlk / kz.bin

* THE ADVANCED TRAINING COORSE ON LAND REMOTE SENSING

→ 7th ADVANCED TRAINING COURSE ON LAND REMOTE SENSING

4-9 September 2017 | Szent István University | Gödöllő, Hungary

HS

ace Office

> 7th ADVANCED TRAINING COOKSE ON LAND REMOTE SENSING

4-9 September 2017 | Szent István University | Gödöllő, Hungary

HSC

ace Office

larimetric SAR Data Processing and Educational Tool v5.1 - Men		
	ing and Educational Tool	
3 S Environment V Import Convert V P	rocess v Display v Calibration v Utilities v Tools v Configuration v Education v Help v	Quit .
	Height Estimation from Inversion Procedures Input Master - Slave Directory D:/TRAUNSTEIN_ESAR/master_slc_slave_slc_FER_MLK_LEE/T6 Output Master - Slave Directory	
	D:/TRAUNSTEIN_ESAR/master_slc_slave_slc_FER_MLK_LEE	
	Init Row 1 End Row 220 Init Col 1 End Col 707	
	Update List	
	Polarimetric Phase Centre Height Estimation Polarimetric Channel HH	
	T DEM Differencing Algorithm	
	Coherence Amplitude Inversion Procedure	
	Ground Phase Estimation and RVOG Inversion Procedure Median Window Size 5 Median Window Size 5 Weighting Coherence Fraction Factor 0.5 Top Phase Centre HV Ground Phase Centre HH - VV Exit	

Data Analysis : Histogram

4-9 September 2017 | Szent István University | Gödöllő, Hungary

→ 7th ADVANCED TRAINING COURSE ON

→ 7th ADVANCED TRAINING COURSE ON LAND REMOTE SENSING

4-9 September 2017 | Szent István University | Gödöllő, Hungary

PROCESS DATA

→ 7th ADVANCED TRAINING COURSE ON LAND REMOTE SENSING

4-9 September 2017 | Szent István University | Gödöllő, Hungary

4–9 September 2017 | Szent István University | Gödöllő, Hungary

