

INTRODUCTION TO OPTICAL REMOTE SENSING AND ATMOSPHERIC CORRECTION

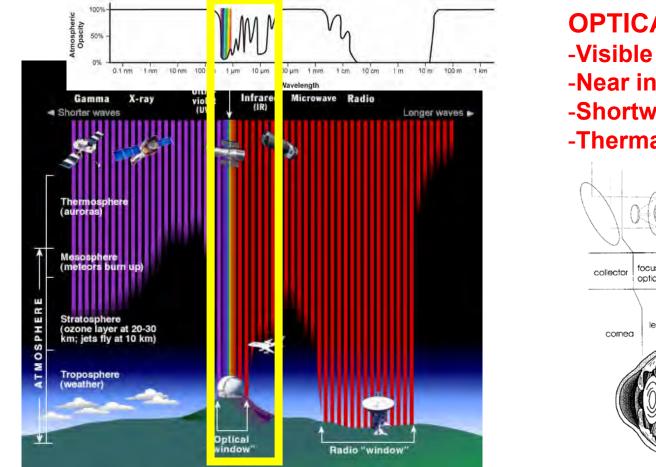
Jose F. Moreno University of Valencia, Spain

Jose.Moreno@uv.es

OUTLINE

- Radiometric quantities: definitions, units and physical meaning.
- The information content of optical data.
- Measurements with optical instruments: radiometric and spectral calibration and pre-processing aspects.
- Atmospheric correction of optical remote sensing data, compensation for topographic effects and BRDF normalization.
- Retrieval of information from optical data for science and applications.
- Uncertainty estimates for optical measurements and product validation.

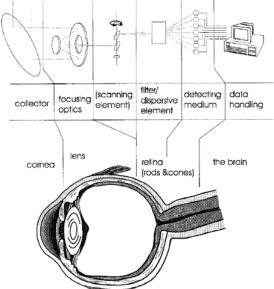
→ 7th ADVANCED TRAINING COURSE ON LAND REMOTE SENSING



→ 7th ADVANCED TRAINING COURSE ON LAND REMOTE SENSING

4–9 September 2017 | Szent István University | Gödöllő, Hungary

OPTICAL SYSTEMS: -Visible -Near infrared -Shortwave infrared -Thermal infrared



All we measure are radiances !

$$L = \frac{d^{2}\Phi}{d\Omega \ dS} = \frac{d^{2}\Phi}{d\Omega \ dA \ \cos\vartheta}$$
$$L = \frac{d^{3}E}{dt \ d\Omega \ dA \ \cos\vartheta}$$
$$L = \frac{d^{3}E}{dt \ d\Omega \ dA \ \cos\vartheta}$$

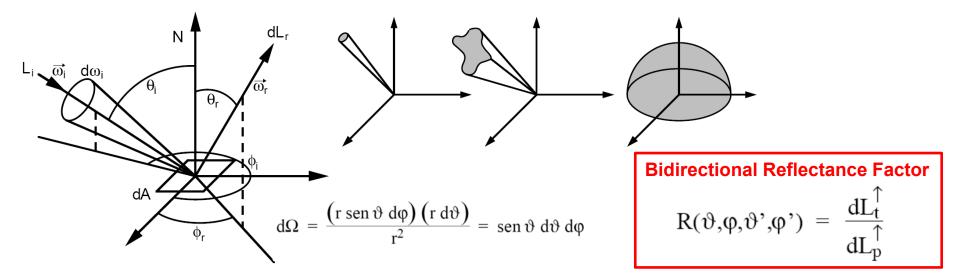
solid angle

 L_i

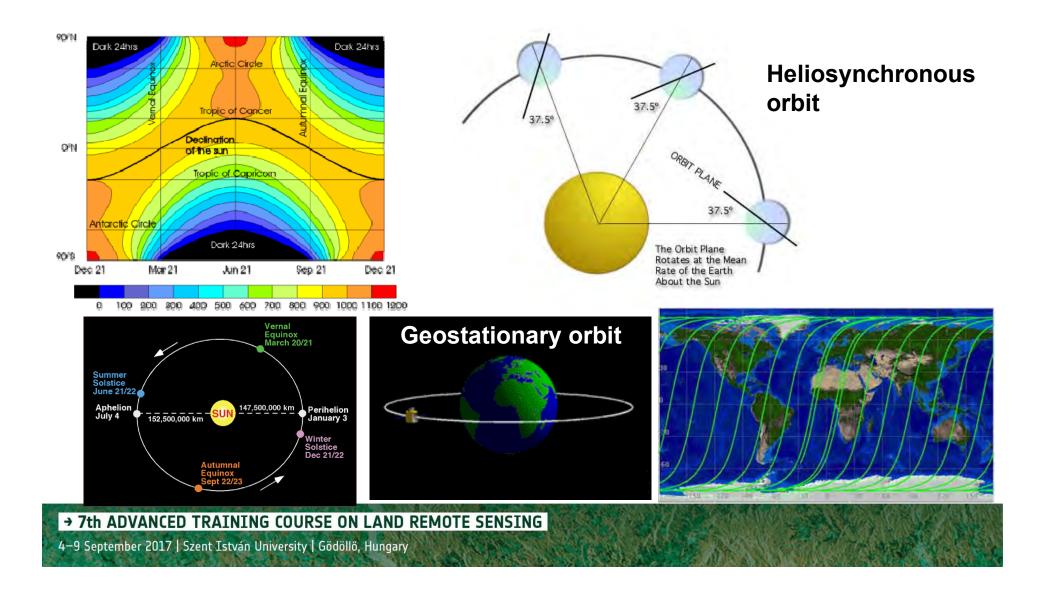
→ 7th ADVANCED TRAINING COURSE ON LAND REMOTE SENSING

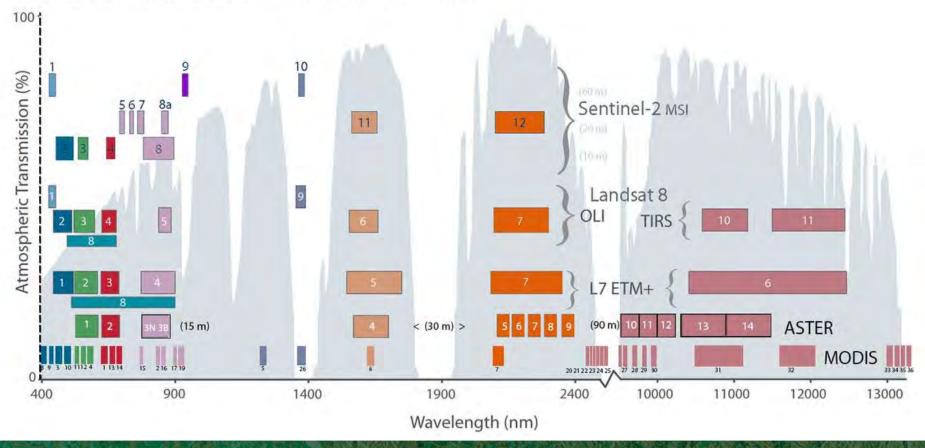
nine types of reflectance measurements

	Incident		
Reflected	$\operatorname{directional}$	$\operatorname{conical}$	hemispherical
directional	bidirectional	$\operatorname{conical-directional}$	hemispherical-directional
conical	$\operatorname{directional-conical}$	biconical	hemispherical-conical
hemispherical	directional-hemispherical	conical-hemispherical	bihemispherical



→ 7th ADVANCED TRAINING COURSE ON LAND REMOTE SENSING





Comparison of Landsat 7 and 8 bands with Sentinel-2

→ 7th ADVANCED TRAINING COURSE ON LAND REMOTE SENSING

INFORMATION CONTENT OF OPTICAL DATA

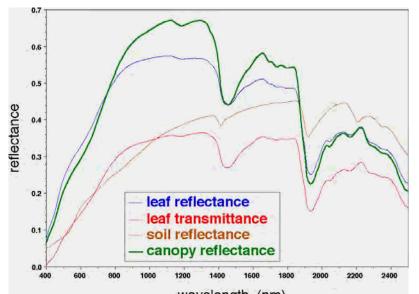
Signatures of natural targets:

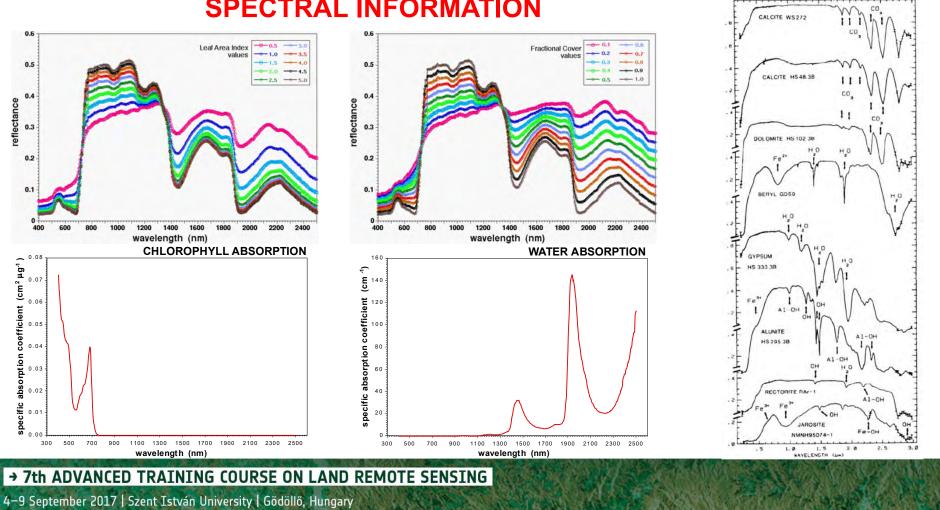
- Spectral signatures
- Angular signatures
- Spatial signatures
- Temporal signatures
- 0.1 soil reflectance canopy reflectance wavelength (nm)

What we measure is always radiance, either reflected and / or emitted by the land surface, which variations depend on the optical properties of land targets (and illumination conditions)

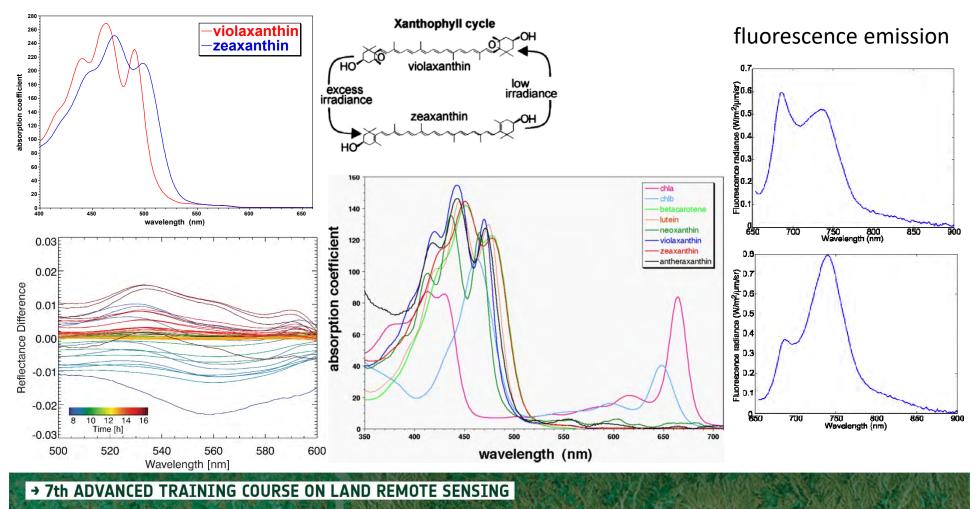
- Other signatures (i.e., fluorescence, polarization, etc.)

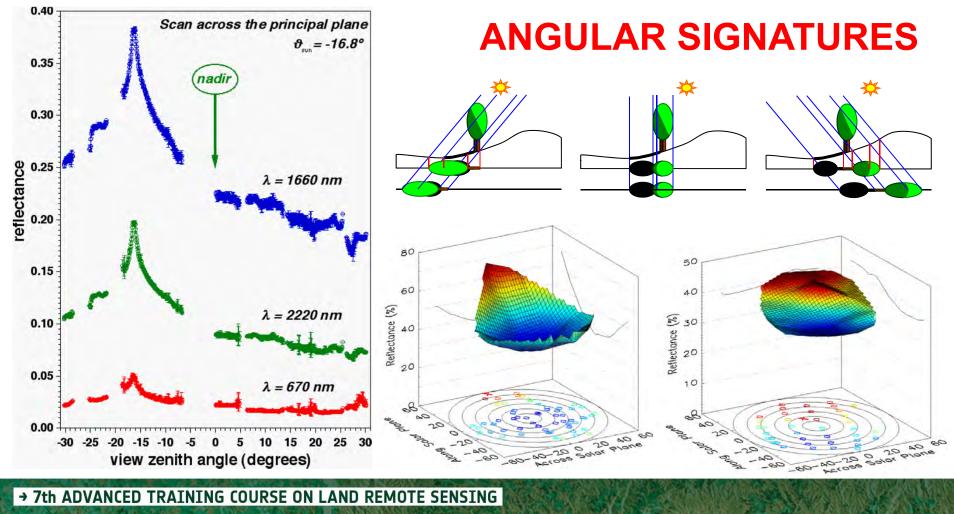
→ 7th ADVANCED TRAINING COURSE ON LAND REMOTE SENSING





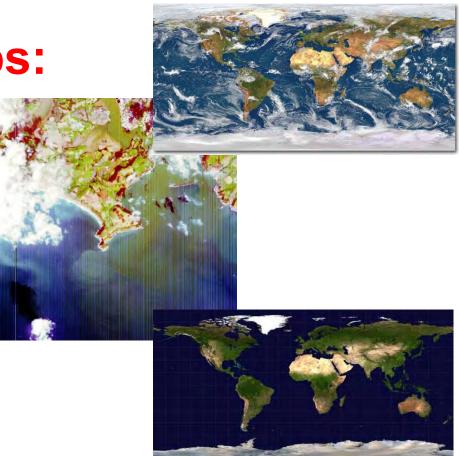
SPECTRAL INFORMATION





Pre-processing steps:

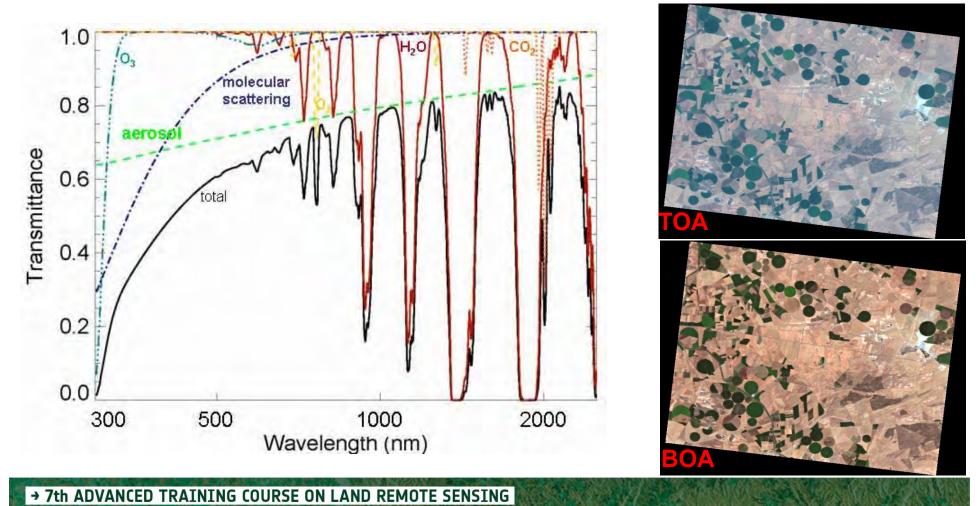
- Radiometric calibration
- Noise removal
- Cloud screening
- Geometric correction
- Atmospheric correction

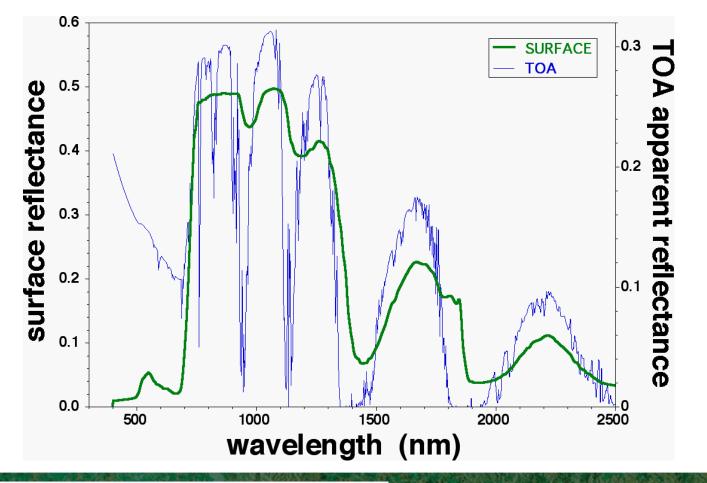


→ 7th ADVANCED TRAINING COURSE ON LAND REMOTE SENSING
 4-9 September 2017 | Szent István University | Gödöllő, Hungary

Atmospheric correction

→ 7th ADVANCED TRAINING COURSE ON LAND REMOTE SENSING



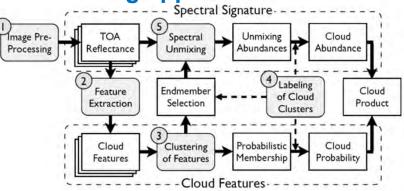


→ 7th ADVANCED TRAINING COURSE ON LAND REMOTE SENSING

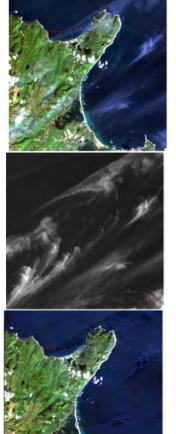
CLOUD SCREENING

Simple static thresholds over TOA reflectance and spectral slope

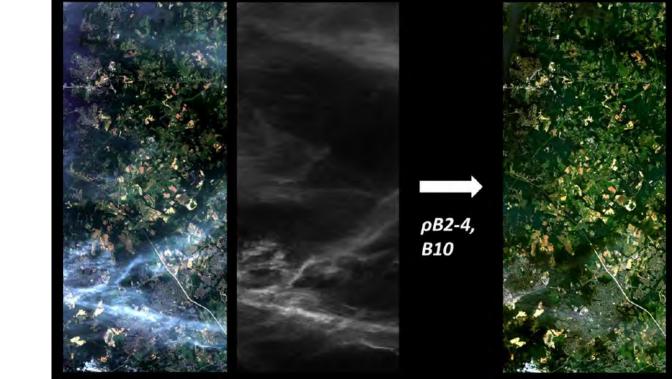
Classification / unmixing approaches



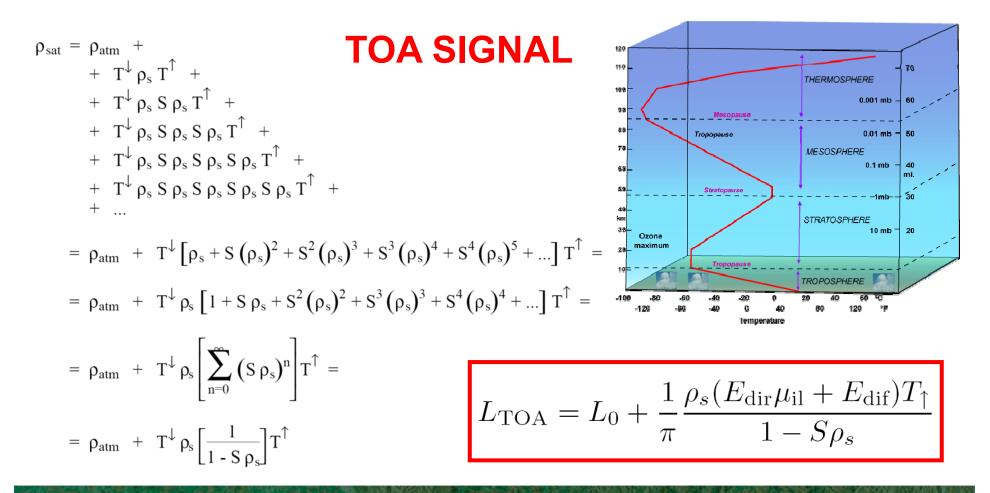
→ 7th ADVANCED TRAINING COURSE ON LAND REMOTE SENSING



Correction of surface reflectance for cirrus transmítance effects



→ 7th ADVANCED TRAINING COURSE ON LAND REMOTE SENSING



→ 7th ADVANCED TRAINING COURSE ON LAND REMOTE SENSING

Atmospheric correction

Flat, Lambertian and horizontally homogeneous areas:

$$L_{\text{TOA}} = L_0 + \frac{1}{\pi} \frac{\rho_s (E_{\text{dir}} \mu_{\text{il}} + E_{\text{dif}}) T_{\uparrow}}{1 - S \rho_s}$$

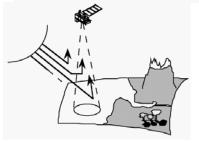
$$\rho_s = \frac{L_{\text{TOA}} - L_0}{\left[(E_{\text{dir}}\mu_{\text{il}} + E_{\text{dif}})\frac{T_{\uparrow}}{\pi} \right] + S[L_{\text{TOA}} - L_0]}$$

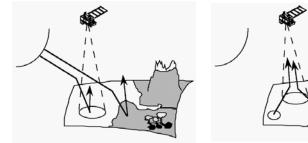
Analytical inversion possible in this case !

→ 7th ADVANCED TRAINING COURSE ON LAND REMOTE SENSING

MULTIPLE CONTRIBUTIONS TO THE SIGNAL

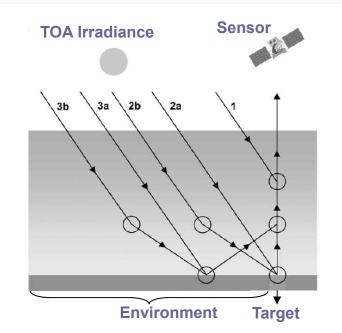
$$\rho'(\theta_s, \theta_v, \phi_v) = t_g(\theta_s, \theta_v) \left\{ \rho_a(\theta_s, \theta_v, \phi_v) + \frac{T(\theta_s)}{1 - \langle \rho(M) \rangle S} \left[\rho_c(M) e^{-\tau/\mu_v} + \langle \rho(M) \rangle t_d(\theta_v) \right] \right\}$$





6S formulation

→ 7th ADVANCED TRAINING COURSE ON LAND REMOTE SENSING



INVERSION OF SURFACE REFLECTANCE

Inhomogeneous flat Lambertian areas:

$$\rho' = A + \frac{B \rho_c + C < \rho >}{1 - S < \rho >}$$

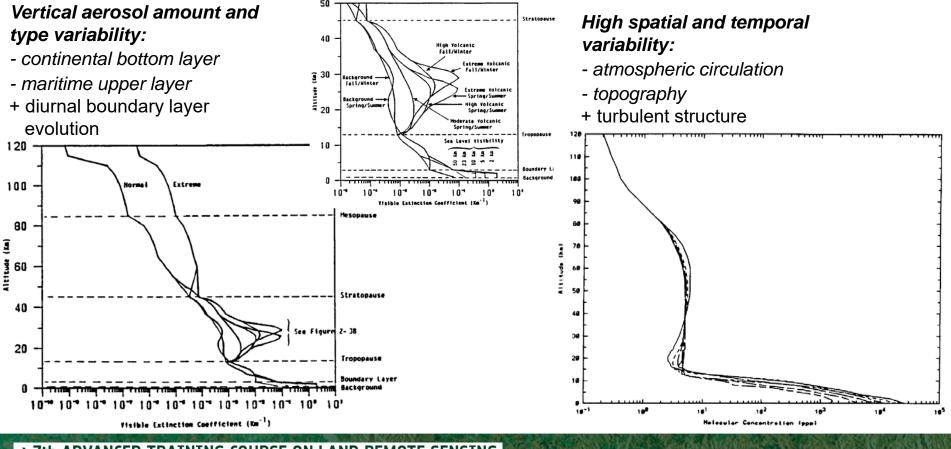
$$\rho_{c} = \frac{\left(\frac{\rho' - A}{B}\right) - \frac{C}{B + C}\left(\frac{<\rho' > - A}{B}\right)}{1 + S\frac{B}{B + C}\left(\frac{<\rho' > - A}{B}\right)}$$

Non-Lambertian areas with topographic structure:

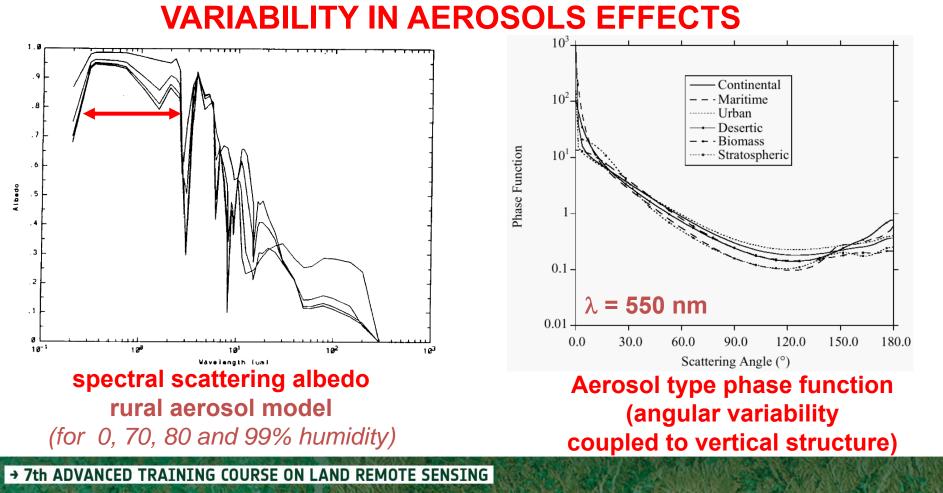
- no analytic inversion under approximations
- decoupling 'effective' reflectances and 'effective' geometric terms required for environment
- multistep numerical procedure required for inversion
- multiple reflection terms only significant for high reflectance surroundings

→ 7th ADVANCED TRAINING COURSE ON LAND REMOTE SENSING

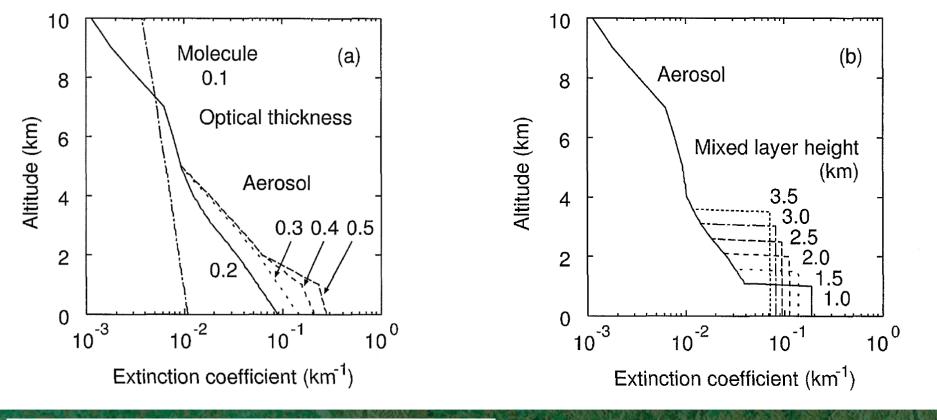
COUPLING OF AEROSOLS AND WATER VAPOUR VERTICAL STRUCTURE



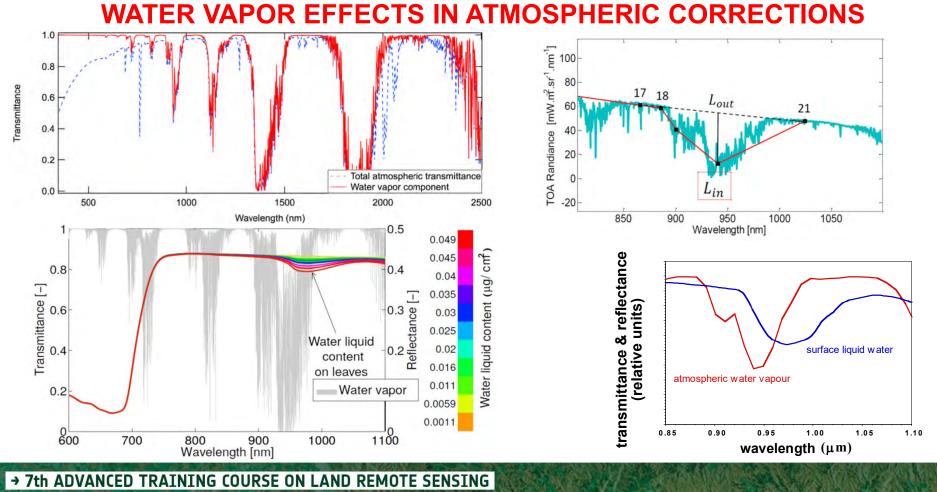
→ 7th ADVANCED TRAINING COURSE ON LAND REMOTE SENSING



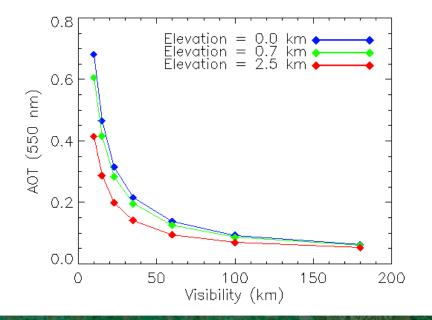
VARYING VERTICAL STRUCTURE OF AEROSOLS



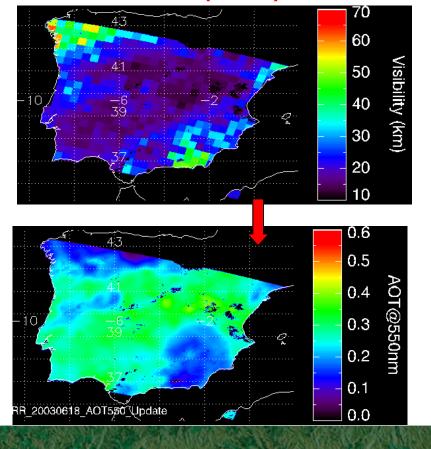
→ 7th ADVANCED TRAINING COURSE ON LAND REMOTE SENSING



- Retrieval of AOT for each cell
- Filling-in empty cells.
- Conversion from VIS to AOT at 550nm



Aerosols (AOT) retrieval



→ 7th ADVANCED TRAINING COURSE ON LAND REMOTE SENSING

AOT retrieval

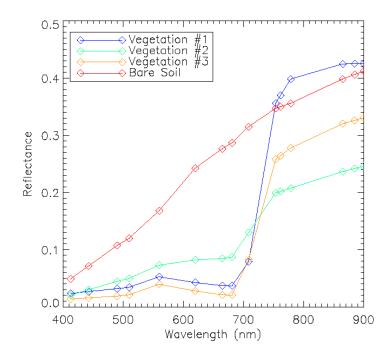
 Surface reflectance is given by the linear combination of 2 endmembers of typical vegetation and bare soil spectra:

$$\rho_s = C_v \rho_{veg} + C_s \rho_{soil} \qquad C_v, C_s > 0$$

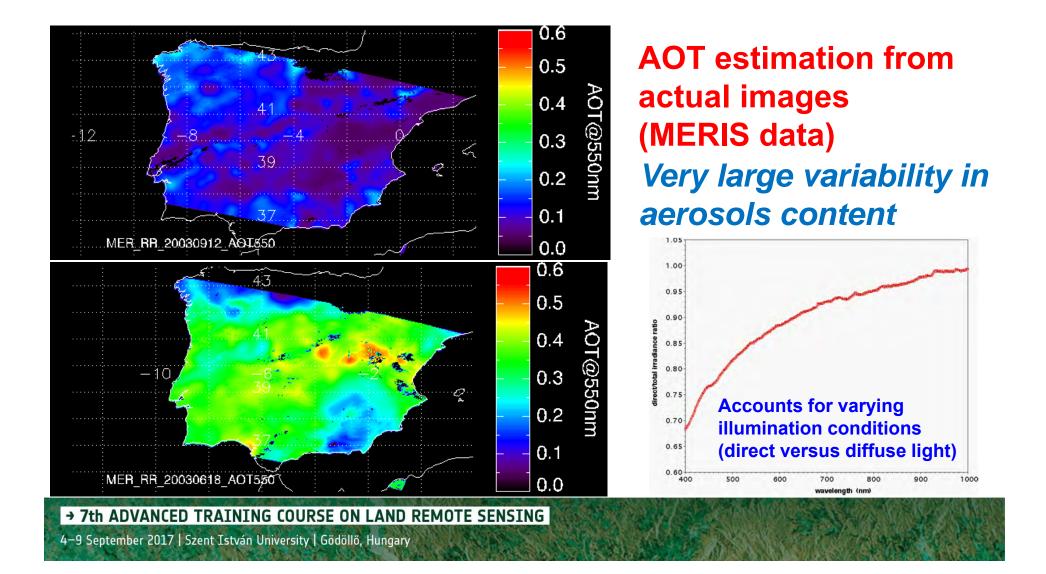
- Vegetation endmember is varied to account for different vegetation types
- Merit Function:

$$\delta^2 = \sum_{\text{pix}=1}^5 \omega_{\text{pix}} \sum_{\lambda_i} \frac{1}{\lambda_i^2} \left[L^{\text{SIM}} |_{\text{pix},\lambda_i} - L^{\text{SEN}} |_{\text{pix},\lambda_i} \right]^2$$

- VIS + $5(C_{v}, C_{s})$ free parameters
- Numerical inversion (minimization)

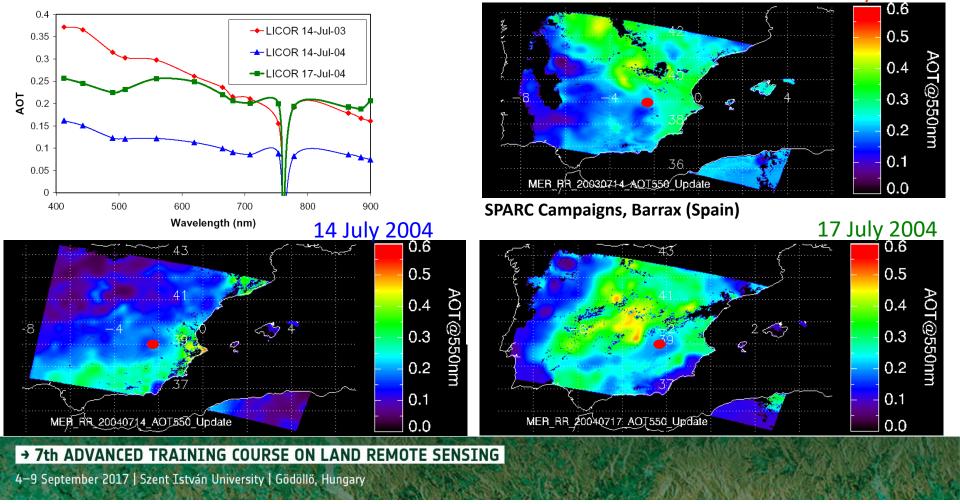


→ 7th ADVANCED TRAINING COURSE ON LAND REMOTE SENSING



VALIDATION OF AEROSOL RETRIEVALS

14 July 2003



MODELING OF ADJACENCY EFFECTS IN THE DEFINITION OF SPATIALLY AVERAGED 'ENVIRONMENT' REFLECTANCES

 $\langle \varphi(\vartheta_{s},\phi_{s};\vartheta_{v},\phi_{v})\rangle = \frac{1}{\overline{T}^{\uparrow}(\vartheta)} \int_{0}^{2\pi} d\phi' \int_{0}^{\pi/2} d\vartheta' \int_{0}^{2\pi} d\psi \int_{0}^{\infty} dr \ \rho(r,\psi;\vartheta_{s},\phi_{s};\vartheta',\phi') \ T^{\uparrow*}(r,\psi;\vartheta',\phi';\vartheta_{v},\phi_{v})$

 ρ = type of reflectance (direct-direct, diffuse-direct, etc.) < ρ >= corresponding average for each reflectance type

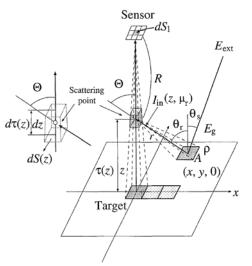
 $\rho(\mathbf{r}, \psi; \vartheta_s, \phi_s; \vartheta', \phi') =$ reflectance at the point of (cilindrical) coordinates (\mathbf{r}, ψ) around the central target being at the origin

 $T^{\uparrow*}(r,\psi;\vartheta',\phi';\vartheta_v,\phi_v) = \text{contribution of point } (r,\psi) \text{ to the transmission function} \\ T^{\uparrow}(\vartheta',\phi';\vartheta_v,\phi_v) \text{ at the observation point}$

$$\overline{T}^{\uparrow}(\vartheta) = \int_{0}^{2\pi} d\phi' \int_{0}^{\pi/2} d\vartheta' T^{\uparrow}(\vartheta', \phi'; \vartheta_{v}, \phi_{v})$$

→ 7th ADVANCED TRAINING COURSE ON LAND REMOTE SENSING

4–9 September 2017 | Szent István University | Gödöllő, Hungary



Dealing with atmospheric adjacency effects in an accurate way requires quite complicated numerical computations !!!

Effective atmospheric Point Spread Function (PSF)

$$PSF(x,y) = \frac{h_{r}}{4\pi K \cos \vartheta_{r}} \sum_{k=1}^{K} \kappa_{s}^{(k)} P(\xi_{P}^{k}) \frac{\Delta x \,\Delta y \cos \vartheta_{k}}{\pi \left| \overrightarrow{r}_{k} \right|^{2}} \exp \left[-\kappa_{t}^{(k)} \left\{ \left| \overrightarrow{r}_{k} \right| + \left(1 - \frac{k}{K} \right) \frac{h_{r}}{\cos \vartheta_{r}} \right\} \right]$$

 ξ_P^k = phase angle (introduces azimuthal dependence)

 \vec{P}_0 = position of the central 'target' on the surface \vec{P}_k = generic point along the line-of-sight $\xi_{\mathbf{P}}^{k} = \cos^{-1}\left(\frac{\left(\vec{\mathbf{P}}_{0} - \vec{\mathbf{P}}_{k}\right) \cdot \vec{\mathbf{r}}_{k}}{\left|\vec{\mathbf{P}}_{0} - \vec{\mathbf{P}}_{k}\right| \left|\vec{\mathbf{r}}_{k}\right|}\right)$

 \vec{P} = position of each surface element $\vec{r}_{k} = \vec{P} \cdot \vec{P}_{k}$

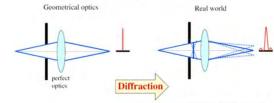
Modulation Transfer Function (MTF)

$$MTF(f_x, f_y) = \operatorname{Re}[FT(PSF(x, y))]$$

→ 7th ADVANCED TRAINING COURSE ON LAND REMOTE SENSING

4–9 September 2017 | Szent István University | Gödöllő, Hungary

 $PSF = \left| FT(P(x, y)) \right|^2$



Airy Disc

Effects introduced by topography:

- A Vertical geometric distorsion (horizontal displacement due to relief)
- B Variation of atmospheric (optical) properties with height
- C Relative changes in slope and orientation of surface introduce variations in illumination conditions:

Direct irradiance:

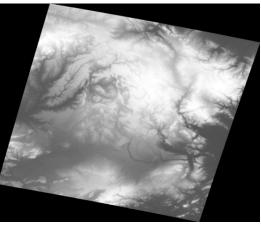
- illuminated areas
- self-shadowed areas
- cast-shadowed areas

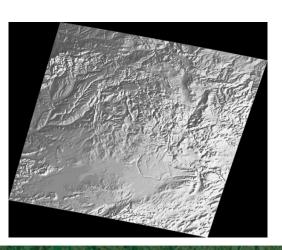
Diffuse irradiance:

- directional distribution
- modeling of sky view factors

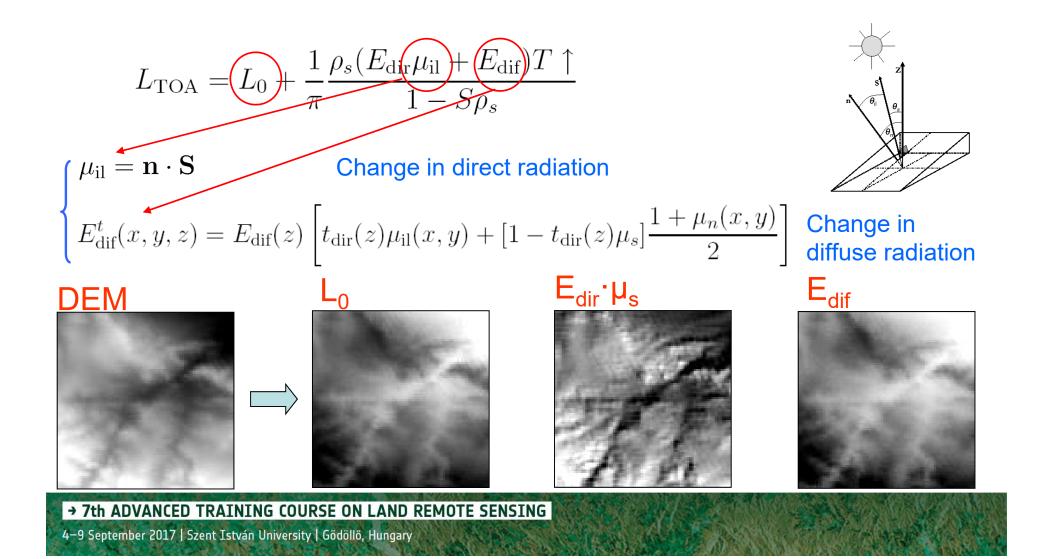
Surface reflectance model:

- non-Lambertian effects
- modeling of direct/diffuse components
- D Adjacency effects (additional contributions)
- E Additional multiple reflections





→ 7th ADVANCED TRAINING COURSE ON LAND REMOTE SENSING



SURFACE REFLECTANCE

Heterogeneous, non-Lambertian and topographically structured surfaces

$$\begin{split} \rho^{'} &= \rho_{atm} + T \frac{1}{dr}(\theta_{s}) \left[\rho_{c} \Theta \frac{\cos \theta_{i}}{\cos \theta_{s}} \right] T \frac{1}{dr}(\theta_{v}) + \\ &+ T \frac{1}{dr}(\theta_{s}) \left[<_{\rho}^{c} > \right] T \frac{1}{dr}(\theta_{v}) + \\ &+ T \frac{1}{dr}(\theta_{s}) \left[<_{\rho}^{c} > \right] T \frac{1}{dr}(\theta_{v}) + \\ &+ T \frac{1}{dr}(\theta_{s}) \left[-_{\rho}^{cis} \frac{\cos \theta_{i}}{\cos \theta_{s}} V_{cis}^{cis} F_{cis}^{cis} \right] T \frac{1}{dr}(\theta_{v}) + \\ &+ T \frac{1}{dr}(\theta_{s}) \left[-_{\rho}^{cis} \frac{\cos \theta_{i}}{\cos \theta_{s}} V_{cis}^{cis} F_{cis}^{cis} \right] T \frac{1}{dr}(\theta_{v}) + \\ &+ T \frac{1}{dr}(\theta_{s}) \left[-_{\rho}^{cis} \frac{\cos \theta_{i}}{\cos \theta_{s}} V_{cis}^{cis} F_{cis}^{cis} \right] T \frac{1}{dr}(\theta_{v}) + \\ &+ T \frac{1}{dr}(\theta_{s}) \left[-_{\rho}^{cis} \frac{\cos \theta_{i}}{\cos \theta_{s}} V_{cis}^{cis} F_{cis}^{cis} \right] T \frac{1}{dr}(\theta_{v}) + \\ &+ T \frac{1}{dr}(\theta_{s}) \left[-_{\rho}^{cis} \frac{\cos \theta_{i}}{\cos \theta_{s}} V_{cis}^{cis} F_{cis}^{cis} \right] T \frac{1}{dr}(\theta_{v}) + \\ &+ T \frac{1}{dr}(\theta_{s}) \left[-_{\rho}^{cis} \frac{\cos \theta_{i}}{\cos \theta_{s}} V_{cis}^{cis} F_{cis}^{cis} \right] T \frac{1}{dr}(\theta_{v}) + \\ &+ T \frac{1}{dr}(\theta_{s}) \left[-_{\rho}^{cis} \frac{\cos \theta_{i}}{\cos \theta_{s}} F_{cis}^{cis} \right] T \frac{1}{dr}(\theta_{v}) + \\ &+ T \frac{1}{dr}(\theta_{s}) \left[-_{\rho}^{cis} \frac{\cos \theta_{i}}{\cos \theta_{s}} F_{cis}^{cis} \right] T \frac{1}{dr}(\theta_{v}) + \\ &+ T \frac{1}{dr}(\theta_{s}) \left[-_{\rho}^{cis} \frac{\cos \theta_{i}}{\cos \theta_{s}} F_{cis}^{cis} \right] T \frac{1}{dr}(\theta_{v}) + \\ &+ T \frac{1}{dr}(\theta_{s}) \left[-_{\rho}^{cis} \frac{\cos \theta_{i}}{\cos \theta_{s}} F_{cis}^{cis} \right] T \frac{1}{dr}(\theta_{v}) + \\ &+ T \frac{1}{dr}(\theta_{s}) \left[-_{\rho}^{cis} \frac{\cos \theta_{i}}{\cos \theta_{s}} F_{cis}^{cis} \right] T \frac{1}{dr}(\theta_{v}) + \\ &+ T \frac{1}{dr}(\theta_{s}) \left[-_{\rho}^{cis} \frac{\cos \theta_{i}}{\cos \theta_{s}} F_{cis}^{dis} \right] T \frac{1}{dr}(\theta_{v}) + \\ &+ \left[\left(T \frac{1}{dr}(\theta_{s}) - \left(-_{\rho}^{cis} \frac{\cos \theta_{i}}{\cos \theta_{s}} F_{cis}^{cis} + \left(-_{\rho}^{cis} \frac{\cos \theta_{i}}{\cos \theta_{s}} F_{cis}^{cis} \right) \right] + \\ &+ T \frac{1}{dr}(\theta_{s}) \left[-_{\rho}^{cis} \frac{\cos \theta_{i}}{\cos \theta_{s}} F_{cis}^{dis} \right] T \frac{1}{dr}(\theta_{v}) + \\ &+ \left[\left(T \frac{1}{dr}(\theta_{s}) - \left(-_{\rho}^{cis} \frac{\cos \theta_{i}}{\cos \theta_{s}} F_{cis}^{cis} + \left(-_{\rho}^{cis} \frac{\cos \theta_{i}}{\cos \theta_{s}} F_{cis}^{dis} \right) \right] + \\ &+ T \frac{1}{dr}(\theta_{s}) \left[-_{\rho}^{cis} \frac{\cos \theta_{i}}{\cos \theta_{s}} F_{cis}^{dis} + \left(-_{\rho}^{cis} \frac{\cos \theta_{i}}{\cos \theta_{s}} F_{cis}^{dis} \right) \right] + \\ &+ T \frac{1}{dr}(\theta_{s}) \left[-_{\rho}^{cis} \frac{\cos \theta_{i}}{\cos \theta_{s}} F_{cis}^{dis} + \left(-_{\rho}^{cis} \frac{\cos \theta_{i}}{\cos$$

→ 7th ADVANCED TRAINING COURSE ON LAND REMOTE SENSING 4-9 September 2017 | Szent István University | Gödöllő, Hungary

SIMPLE SEMI-EMPIRICAL FORMULATIONS OF SURFACE BIDIRECTIONAL REFLECTANCE MODELS USED FOR ATMOSPHERIC/TOPOGRAPHIC NORMALIZATION

$$\rho = \rho_0 \frac{k+1}{2} \left[\cos \vartheta_s \cos \vartheta_v \right]^{k-1}$$

 ρ_0 = surface albedo

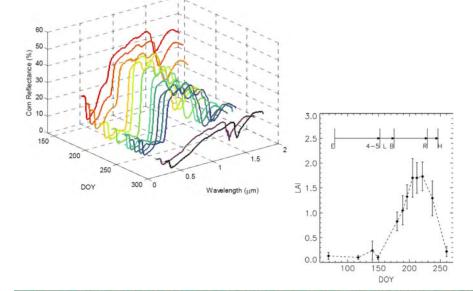
k = Minnaert parameter (=1 for Lambertian case)

Minnaert model

$$\rho = \rho_0 \frac{k+1}{2} \left(\overrightarrow{n} \cdot \overrightarrow{s} \right)^{k-1} \left(\overrightarrow{n} \cdot \overrightarrow{v} \right)^{k-1} \left(\overrightarrow{n} \cdot \overrightarrow{s} \right) \left(\overrightarrow{n} \cdot \overrightarrow{v} \right) = \frac{1}{2} \left[\left(\overrightarrow{v} \cdot \overrightarrow{s} \right) + \left(\overrightarrow{v} \cdot \overrightarrow{p} \right) \right] \rho = \rho_0 \frac{k+1}{4} \left[\left(\overrightarrow{v} \cdot \overrightarrow{s} \right) + \left(\overrightarrow{v} \cdot \overrightarrow{p} \right) \right]^{k-1}$$
 Model generalization

→ 7th ADVANCED TRAINING COURSE ON LAND REMOTE SENSING

OUTPUT OF THE ATMOSPHERIC/TOPOGRAPHIC CORRECTION FOR QUANTITATIVE COMPARISONS IN MULTITEMPORAL STUDIES



a.- reflectance

 $\rho(\vartheta_{s}, \phi_{s}; \vartheta_{v}, \phi_{v})$

- no comparison is possible among different dates
 no comparison is possible among different points of an image
- b.- spectral albedo

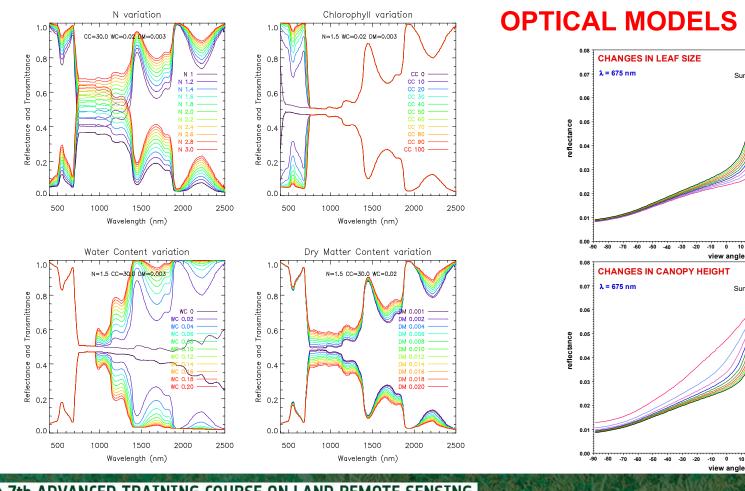
$$\alpha(\vartheta_{s},\phi_{s}) = \iint_{\Omega} d\Omega \ \rho(\vartheta_{s},\phi_{s};\vartheta_{v},\phi_{v})$$

- comparison is possible within an image but not among different dates results are model-dependent (!)
- c.- 'normalized' spectral albedo

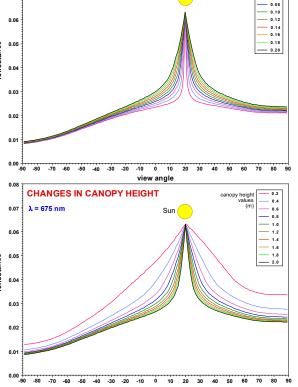
$$\alpha(\vartheta_0,\phi_0) = \alpha(\vartheta_s,\phi_s) |_{(\vartheta_s = \vartheta_0,\phi_s = \phi_0)}$$

comparison is possible within an image and among different dates strongly model-dependent (!) _

→ 7th ADVANCED TRAINING COURSE ON LAND REMOTE SENSING



OPTICAL MODELS



Sun

leaf size 0.02

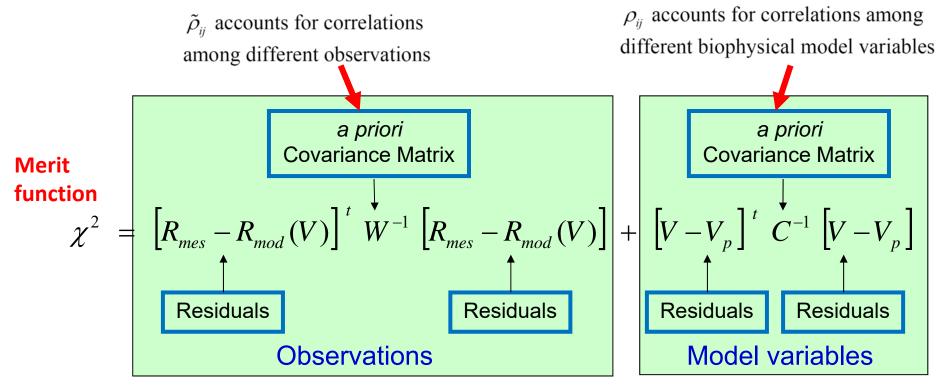
values (m)

- 0.04

0.06

→ 7th ADVANCED TRAINING COURSE ON LAND REMOTE SENSING

MODEL INVERSION: minimization of a 'merit function'



Use of constrained minimization procedures that guarantee the minimal variation of model variables to produce the same output, and a robust initialization procedure of such variables (consistency even if model has global bias).

→ 7th ADVANCED TRAINING COURSE ON LAND REMOTE SENSING

Definition of the merit function

Merit function as a least-squares estimator (LSE):

- favorable properties if their underlying assumptions are true (i.e., Gaussian noise)
- misleading results if those assumptions are violated

Estimates with robust regression methods can be more stable with respect to anomalous errors.

$$D[P,Q] = \sum_{\lambda_i=1}^{\lambda_n} (p(\lambda_i) - q(\lambda_i))^2$$
$$D(P,Q) = \sum_{\lambda_1=1}^{\lambda_n} |p(\lambda_l) - q(\lambda_l)|$$

$$D(P,Q) = \sum_{\lambda_1=1}^{\lambda_n} \frac{(p(\lambda_l) - q(\lambda_l))^2}{(1 + (p(\lambda_l) - q(\lambda_l))^2)}$$

Geman - McClure function

→ 7th ADVANCED TRAINING COURSE ON LAND REMOTE SENSING

'divergence measures' merit function: based on the minimization of distances between two probability distributions

$$\begin{split} D[P,Q] &= \sum_{\lambda_1=1}^{\lambda_n} p(\lambda_l) ln\left(\frac{p(\lambda_l)}{q(\lambda_l)}\right) & \text{Kullback Leibler divergence} \\ D[P,Q] &= \sum_{\lambda_1=1}^{\lambda_n} \frac{(q(\lambda_l) - p(\lambda_l))^2}{p(\lambda_l)} & \text{Pearson chi-square} \\ D[P,Q] &= \sum_{\lambda_1=1}^{\lambda_n} (p(\lambda_l) - q(\lambda_l)) \left(ln(p(\lambda_l)) - ln(q(\lambda_l))\right) & \text{Jeffreys-Kullback-Leibler} \\ D[P,Q] &= \sum_{\lambda_1=1}^{\lambda_n} p(\lambda_l) ln\left(\frac{2p(\lambda_l)}{p(\lambda_l) + q(\lambda_l)}\right) & \text{K-divergence} \end{split}$$

→ 7th ADVANCED TRAINING COURSE ON LAND REMOTE SENSING

Non-linear general fit to a function of *N* variables

$$\chi^{2}(\mathbf{p}) = \frac{1}{2} (\mathbf{y} - \hat{\mathbf{y}}(\mathbf{p}))^{T} \mathbf{W} (\mathbf{y} - \hat{\mathbf{y}}(\mathbf{p}))$$

.

Levenberg-Marquardt approach $\begin{bmatrix} \mathbf{J}^T \mathbf{W} \mathbf{J} + \lambda \operatorname{diag} (\mathbf{J}^T \mathbf{W} \mathbf{J}) \end{bmatrix} \mathbf{h}_{LM} = \mathbf{J}^T \mathbf{W} (\mathbf{y} - \mathbf{w})$

W = matrix of weigths for each point (can be based on variance)

NOTE: there are many other approaches (i.e, Nelder-Mead method do not need derivatives)

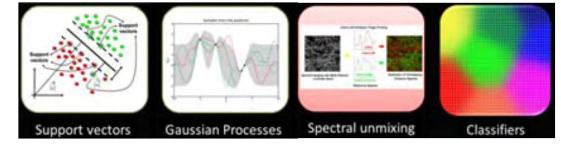
→ 7th ADVANCED TRAINING COURSE ON LAND REMOTE SENSING

	$\frac{\partial \hat{y}(\mathbf{x}_1,\mathbf{p})}{\partial p_1}$	$\frac{\partial \hat{y}(\mathbf{x}_1,\mathbf{p})}{\partial p_2}$		$\frac{\partial \hat{y}(\mathbf{x}_1,\mathbf{p})}{\partial p_M}$
J =	$\frac{\partial \hat{y}(\mathbf{x}_2,\mathbf{p})}{\partial p_1}$	$\frac{\partial \hat{y}(\mathbf{x}_2,\mathbf{p})}{\partial p_2}$		$\frac{\partial \hat{y}(\mathbf{x}_2,\mathbf{p})}{\partial p_M}$
	:	1	٠.	:
	$\partial \hat{y}(\mathbf{x}_N,\mathbf{p})$	$\partial \hat{y}(\mathbf{x}_N,\mathbf{p})$		$\partial \hat{y}(\mathbf{x}_N,\mathbf{p})$
	∂p_1	∂p_2		∂p_M)

ALTERNATIVE "REGRESSION" METHODS:

- Numerical inversion methods are computationally expensive (and subject to unstable results)
- Functional approximations often used as practical solution:
 - (a) Empirical approaches based on regression using many EO data points and field measurements (incomplete / biased sampling in most cases)
 - (b) Alternative (or complement) use of forward model outputs to produce a simple mathematical relationship which is then used for retrievals (complete sampling)

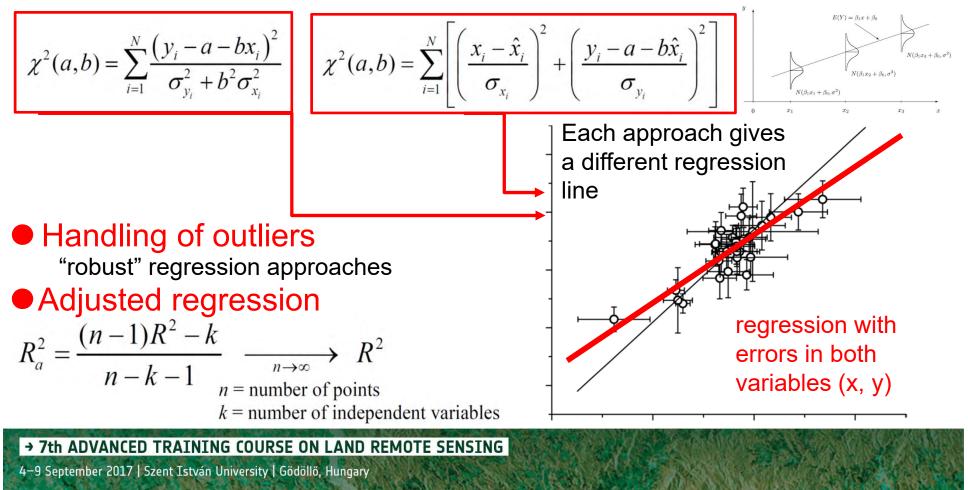
Signal decompositon or multiple linear/non-linear regression approaches (parametric or non-parametric):

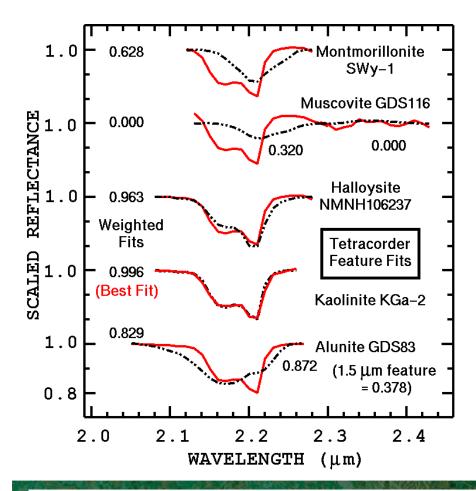


- Neural Networks, Partial least squares regression, Kernel regression, Multivariate adaptive regression, Stepwise regression, Segmented regression
- Spectral unmixing, Principal components / SVD decompositions
- Support Vector Machines, Gaussian processes, ...

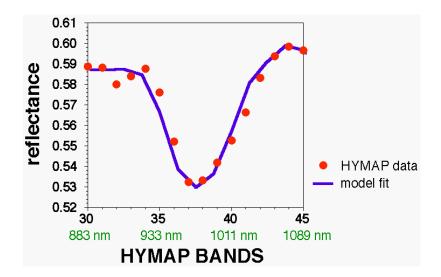
→ 7th ADVANCED TRAINING COURSE ON LAND REMOTE SENSING

RETRIEVALS BASED ON REGRESSION TECNIQUES





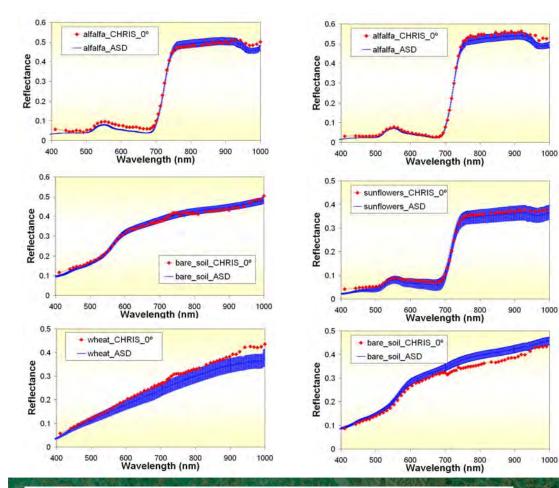
SPECTRAL FITTING METHODS



Spectral fitting methods are especially useful because we can use the wellknown shape of spectral features.

Requires rather high spectral resolution.

→ 7th ADVANCED TRAINING COURSE ON LAND REMOTE SENSING



Comparison between surface reflectance retrievals from actual satellite data (CHRIS/PROBA) and simultaneous measurements of reflectance at the surface over soil and vegetation targets

Atmospheric correction gives proper surface reflectance !

→ 7th ADVANCED TRAINING COURSE ON LAND REMOTE SENSING
 4-9 September 2017 | Szent István University | Gödöllő, Hungary

VALIDATION OF DERIVED PRODUCTS

- Statistical representativity of measurements used for validation (spatial sampling)
- Statistical extrapolation of results (sample versus population)
- Adaptation of validation methodology for each biophysical parameter retrieval
- Examination of results in view of the expected limitations
- Adaptability to the application
- Critical review of actual achievements
 - Always provide and error estimate (for a given confidence level) for each information retrieved.
 - If posible, decouple the error estimate between bias and random contributions

→ 7th ADVANCED TRAINING COURSE ON LAND REMOTE SENSING

Great expectation from Sentinels !

→ 7th ADVANCED TRAINING COURSE ON LAND REMOTE SENSING