

PECS Radar Remote Sensing Course ESA – UNIVERSITY OF MARIBOR 10th September 2015 – Maribor

Advanced topics

Dr. Francisco López-Dekker (DLR, German Aerospace Center)

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

QUILL (National Reconaissence Office)

Spaceborne SAR Missions since 1978

SEASAT NASA/JPL (USA) L-Band, 1978

RADARSAT-1

Canadian Space Agency (CSA) C-Band, 1995-today

SAR Lupe

BWB Germany

ERS-1/2

European Space Agency (ESA)

C-Band, 1991-2000 & 1995-2011

SRTM

NASA/JPL (C-Band), DLR/ASI (X-Band) February 2000

CosmoSkymed

ASI / Alenia

X-Band (dual), 2007

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft.

J-ERS-1

Japanese Space Agency (NASDA) L-Band, 1992-1998

ENVISAT / ASAR

European Space Agency (ESA) C-Band (dual), 2002-today

TerraSAR-X

German Aerospace Center (DLR) / Astrium X-Band (quad), 2007

SIR-C/X-SAR NASA/JPL, L- and C-Band (quad) DLR / ASI, X-band

ALOS / PALSAR

Japanese Space Agency (JAXA) L-Band (quad), 2005-2011

RADARSAT-2

Canadian Space Agency (CSA) C-Band (quad), 2007

First Civilian SAR Satellite: Seasat (1978)

Launch	June 26, 1978	Wavelength	0,235 m	
Altitude	~780 km	Bandwidth	19 MHz	
Weight	2300 kg	Antenna	10,74 m x 2,16 m	
Incident Angle	~ 23°	Size		
Swath Width	100 km	Resolution	25 m x 25 m	

Deutsches Zentrum DLR für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

RADARSAT-2 Imaging Modes

All modes will be available in selective single or dual polarization.

All modes will be available on either side of the satellite.

TerraSAR-X Satellite

✓ Multi-polarization capability
 ✓ Left Looking Mode (roll maneuver of S/C)
 ✓ Dual Receive Antenna Mode ⇒ ATI, GMTI, Quad. Pol
 ✓ 300 MHz transmit bandwidth ⇒ 1 m range resolution
 ✓ Repeat Pass Interferometry (±250 m orbit tube)
 ✓ Prepared for TanDEM-X operation (synchronization)

Dusk/down orbit
 514.8 km altitude at equator
 Inclination 97.44°;
 Sun-synchronous repeat orbit
 Repeat period 11 days
 Revisit time: 4.5 days (100%)
 2.5 days (95%)
 15 2/11 Orbits per day

TanDEM-X *TerraSAR-X ad-on for Digital Elevation Measurments*

- Acquisition of a global DEM according to HRTI-3 standard
- Generation of local DEMs with HRTI-4 like quality
- Demonstration of innovative techniques (formation flying, bistatic acquisiton, Pol-InSAR)

aunched June 2010

TanDEM-X Orbit Configuration

HELIX satellite formation allows safe operation

- Horizontal cross-track separation at equator by different ascending nodes
- Vertical separation at poles by orbits with different eccentricity vectors
- No crossing of single orbits
- Variation of baselines in cross-track and along-track easily achievable

NGA (NIMA) Standards for Digital Elevation Models

	Spatial Resolution	Absolute Vertical Accuracy (90%)	Relative Vertical Accuracy (point-to-point in 1° cell, 90%)
DTED-1	90 m x 90 m	< 30 m	< 20 m
DTED-2	30 m x 30 m	< 18 m	< 12 m
HRTI-3	12 m x 12 m	< 10 m	< 2 m
HRTI-4	6 m x 6 m	< 5 m	< 0.8 m

in der Helmholtz-Gemeinschaft

Relative Vertical Accurracy

9

NGA (NIMA) Standards for Digital Elevation Models

	Spatial Resolution	Absolute Vertical Accuracy (90%)	Relative Vertical Accuracy (point-to-point in 1° cell, 90%)
DTED-1	90 m x 90 m	< 30 m	< 20 m
DTED-2	30 m x 30 m	< 18 m	< 12 m
HRTI-3	12 m x 12 m	< 10 m	< 2 m
HRTI-4	6 m x 6 m	< 5 m	< 0.8 m

Deutsches Zentrum DLR für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

1 SRTM 90m pixel = 7.52 TanDEM-X pixels (1D) 56 times finer (2D)

Deutsches Zentrum R für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Eyjafjallajökull - Island

Vulkan Eyjafjalla

Future Developments: Bistatic SAR

Deutsches Zentrum DLR für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Bistatic SAR Imaging

Enhanced Observation Space

- Improved detection, segmentation and classification (bistatic scattering)
- New image and object parameters
 (bistatic Doppler, multiple shadows, ...)

Hybrid Bistatic Radar Experiment with Satellite and Aircraft

- First hybrid X-band experiment worldwide
- Kaufbeuren, 5 November 2007
- TerraSAR-X transmits (Spotlight-Mode)
- F-SAR (airplane) receives (2 channels)

Deutsches Zentrum DLR für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

- Bandwidth: 100 MHz
- Synchronization via direct signal and point target response

- Coherent Integration: 2.77 s
- Processing via bistatic backprojection algorithm

Deutsches Zentrum IR für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

esa Deutsches Zer DLR Deutsches Zer

DLR für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

bistatic

optic

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

esa

Future Developments: SAR Tomography

Deutsches Zentrum DLR für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

SAR Tomography: Experiment with E-SAR

First Demonstration of Airborne SAR Tomography 1)

Upper image: Polarimetric color composite (L-band) of a tomographic slice in the height/azimuth-direction HH+VV, HH-VV, 2*HV

Lower image: Schematic view of the imaged area

¹⁾ A. Reigber, A. Moreira, "First Demonstration of Airborne SAR Tomography using Multibaseline L-Band Data", IEEE TGRS, 2000

Measurement of 3D Structures: Tomography

(Courtesy of A. Reigber)

Frequency Dependent Depth of Penetration

- Dependent on 7 wavelength
- Different sensitivity on 7 scatterer dimension
- Highest Backscatter 7 for dimensions similar to wavelength

wavelength

Wavelength	Main Scatterer	Penetration in Vegetation
X Band 3 cm	n Leaves, Twigs	
C Band 6 cm	n Leaves, Twigs, small Branche	es
L Band 22 c	m Branches, stem	•
P Band 76 c	m large Branches, stem	Increases with

25

Future Developments: Circular SAR

Deutsches Zentrum DLR für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Circular Synthetic Aperture Radar (CSAR)

y

Super high resolution of $\lambda/4$

2-D IRF Stripmap 2-D IRF CSAR

CSAR vs Strimap SAR

E-SAR L-band, 94MHz bandwidth

1500m x 1500m

Deutsches Zentrum DLR für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Courtesy of Octavio Ponce

Future Developments: High Resolution Wide Swath (HRWS) Imaging

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Development of new SAR Techniques: Motivation

State of the	Imaging Mode		
Art: TerraSAR-X	ScanSAR	Stripmap	Spotlight
Resolution	16 m	3 m	1 m
Swath Width	100 km	30 km	10 km

Resolution - Swath Width - Repeat Cycle

84	Mode Z
- Mode X	Mode Y

Future	Imaging Mode		
Requirements	Mode X	Mode Y	Mode Z
Resolution	5 m	1 m	<< 1 m
Swath Width	400 km	100 km	30 km

Deutsches Zentrum ILR für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Limitation of Conventional SAR

für Luft- und Raumfahrt e.V.

in der Helmholtz-Gemeinschaft

- Unambiguous swath width and high azimuth resolution: \geq
- Contradicting requirements in SAR system design \rightarrow

New SAR Techniques: Digital Beamforming

OSA Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

(Courtesy of G. Krieger)

34

für Luft- und Raumfahrt e.V. DLR in der Helmholtz-Gemeinschaft

Digital Beamforming on Receive

Deutsches Zentrum DLR für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

(Courtesy of G. Krieger)

esa **Deutsches Zentrum** für Luft- und Raumfahrt e.V. DLR in der Helmholtz-Gemeinschaft.

38

für Luft- und Raumfahrt e.V. DLR in der Helmholtz-Gemeinschaft

in der Helmholtz-Gemeinschaft

Deutsches Zentrum DLR für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft (Courtesy of G. Krieger)

Potentials of Digital Radar

High Resolution and Coverage

- Suppression of interferences
- Increased sensivity
- Measurement of motions
- Resolving of ambiguities
- Adaptive & hybride SAR Modes

Deutsches Zentrum DLR für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Avoidance of User Conflicts

Frequent Observations

Potentials of Digital Radar

High Resolution and Coverage

- Suppression of interferences
- Increased sensivity
- Measurement of motions
- Resolving of ambiguities
- Adaptive & hybride SAR Modes

Frequent Observations

Avoidance of User Conflicts

Many disciplines could be served by Tandem-L

New Mission Proposals: Additional Concepts and Analysis

Deutsches Zentrum DLR für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

- And - And

-

Continuous Monitoring of a Dynamic Earth

FEE

Thanks for your attention!

Deutsches Zentrum DLR für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

References

SAR Basics and Processing:

- J. C. Curlander, R. N. McDonough, Synthetic Aperture Radar: Systems and Signal Processing. New York: Jon Wiley & Sons, 1991.
- I. Cumming, F. Wong, Digital processing of synthetic aperture radar data: signal processing algorithms. Boston: Artech House, 2005.
- F. Henderson (Ed.), Manual of Remote Sensing: Principles and Applications of Radar Imaging, Wiley, 1999.

Interferometry, Polarimetric SAR Interferometry, Tomography

- R. Hanssen, Radar interferometry: data interpretation and error analysis, Dordrecht, Kluwer Academic Publishers, 2001.
- K. Papathanassiou, S. Cloude, "Single-baseline polarimetric SAR interferometry", IEEE Transactions on Geoscience and Remote Sensing, Vol. 39, No. 11, pp. 2352-2363, 2001.
- A. Reigber, A. Moreira, "First demonstration of airborne SAR tomography using multibaseline L-band data", IEEE Trans. Geosc. and Remote Sens., Vol. 38, No. 5, pp. 2142-2152, 2000.

• SRTM, TerraSAR-X, TanDEM-X

- T. Farr et al. "The Shuttle Radar Topography Mission", Reviews of Geophysics, vol. 45, 2007.
- M. Stangl, R. Werninghaus, B. Schweizer, C. Fischer, M. Brandfass, J. Mittermayer, H. Breit, "TerraSAR-X technologies and first results", IEE Proceedings Radar, Sonar and Navigation, vol. 153, pp. 86-95, 2006.
- G. Krieger, A. Moreira, H. Fiedler, I. Hajnsek, M. Younis, C. Werner, and M. Zink, "The TanDEM-X mission: a satellite formation for high resolution SAR interferometry", to appear in IEEE Transactions on Geoscience and Remote Sensing, 2007.

References

Bistatic and Multistatic SAR

- N. Willis, Bistatic radar, Artech House, Boston, 1991.
- A. Moccia, N. Chiacchio, A. Capone, "Spaceborne bistatic synthetic aperture radar for remote sensing applications", Int. J. Remote Sens., Vol. 21, No. 18, pp. 3395-3414, 2000.
- P. Dubois-Fernandez, H. Cantalloube, B. Vaizan, G. Krieger, R. Horn, M. Wendler, and V. Giroux, "ONERA-DLR bistatic SAR campaign: Planning, data acquisition, and first analysis of bistatic scattering behavior of natural and urban targets", IEE Proc. - Radar, Sonar, Navigation, vol. 153, pp. 214-223, 2006.
- G. Krieger, A. Moreira, "Spaceborne bi- and multistatic synthetic aperture SAR: potential and challenges", IEE Proceedings on Radar Sonar and Navigation, vol. 153, pp. 184-198, 2006.
- M. Cherniakov (editor), Bistatic radars: emerging technology (2 volumes), John Wiley & Sons, 2007.

High Resolution Wide Swath Imaging and Digital Beamforming SAR

- A. Currie and M. A. Brown, "Wide-swath SAR", IEE Proceedings F Radar and Signal Processing, vol. 139, pp. 122-135, 1992.
- G. D. Callaghan and I. D. Longstaff, "Wide-swath space-borne SAR using a quad-element array", Radar, Sonar and Navigation, IEE Proceedings Radar, Sonar, Navigation, vol. 146, pp. 159-165, 1999.
- M. Suess, B. Grafmueller, and R. Zahn, "A novel high resolution, wide swath SAR system", in Proc. IEEE Geoscience and Remote Sensing Symposium, Sydney, Australia, pp. 1013-1015, 2001.
- G. Krieger, N. Gebert, A. Moreira, "Multidimensional Waveform Encoding: A New Digital Beamforming Technique for Synthetic Aperture Radar Remote Sensing", to appear in IEEE Transactions on Geoscience and Remote Sensing, 2007.

Airborne SAR Systems

AES1 AeroSensing (D) GulfStream Commander

PHARUS TNO - FEL (NL)

CESSNA – Citation II

AIRSAR NASA / JPL (USA) DC8 P, L, C-Band (Quad)

EMISAR DCRS (DK) G3 Aircraft L, C-Band (Quad)

PISAR

NASDA / CRL (J)

GulfStream

L, X-Band (Quad)

Deutsches Zentrum für Luft- und Raumfahrt e.V.

in der Helmholtz-Gemeinschaft.

DOSAR EADS / Dornier GmbH (D) DO 228 (1989), C160 (1998), G222 (2000) S, C, X-Band (Quad), Ka-Band (VV)

AER II-PAMIR FGAN (D) Transal C160 Ka, W-Band (Quad) / X-Band (Quad)

RENE UVSQ / CETP (F) Écureuil AS350 S, X-Band (Quad)

STORM UVSQ / CETP (F) Merlin IV C-Band (Quad)

RAMSES ONERA (F) Transal C160

P, L, S, C, X, Ku, Ka, W-Band (Quad)

SAR580 CCRS (CA) Convair CV-580 C, X-Band (Quad)

54

E-SAR on Bord the Do-228

- → Flexible multi-channel SAR-system
- → Frequency bands: X, C, S, L and P
- → Fully-polarimetric in L- and P-band

 Typical flight geometry

 ¬ flight altitude: 3000 m above ground

 ¬ flight speed: 90 m/s

 ¬ cruising range: 3 h (ca. 2.5 h measurement)

 ¬ sensor weight: 700 kg

 ¬ no. of operators: 2

D-CFFU

Dual-polarimetric in C-band

- → interferometric in X-Band
- → azimuth resolution up to 0.2 m
 - → innovative imaging modes

F-SAR Concept

- → Successor of DLR's E-SAR
- Multi-functional SAR system
- Multi-spectral & fully polarimetric in X-, C-, S-, L- and P-band
- → Range bandwidth 800 MHz
- \neg Currently: PRF_{max} = 5 kHz
- ✓ Incidence angle 25.. 60°
- → Altitude up to 6000 MSL
- Development is ongoing

CIS

Deutsches Zentrum DLR für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

