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Outline

SAR Interferometry
Introduction
Cross-track interferometry (InSAR)
Along-track interferometry (ATI)
Differential InSAR (DInSAR)
Typical processing chain

(Advanced topics)
(Bistatic SAR)
(SAR Tomography)
(Circular SAR)
(High Resolution Wide Swath (HRWS))
…

(Interferometric missions & sensors)
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SAR Interferometry:
Introduction
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Earthquakes Volcanoes

Ocean

Land & Sea Ice

Subsidence

Traffic

Land Environment

ReconnaissanceDisaster 

http://www-radar.jpl.nasa.gov/sect323/InSar4crust/HME/geo_flat90m+fltsS1.JPG
http://vulcan.wr.usgs.gov/Imgs/Jpg/Sisters/WestUplift/ssis_InSAR_may2001.jpg
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SAR Raw and Image Data

SAR 
raw data

SAR 
image
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SAR Processing: Two-Dimensional Matched Filter
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SAR as a linear system

SAR

acquisition

SAR

processing
reflectivity raw data focused image

SAR

end-to-end

IRF

reflectivity focused image
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Phase and impulse response details

Due to the band-pass characteristic of the IRF, the final signal can be 
thought as the convolution between the modulated reflectivity and a 2-D 
impulse response function

The reflectivity itself is really the integration of the reflectivity along the 
elevation angle (cylindrical geometry): 
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modulated reflectivity

(cilindrically integrated)

2-D IRFrange (R)

elevation (θ)


azimuth

SAR
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A SAR image has a 2-D cylindrical geometry (but the world 
is 3-D at least)

azimuth

range

All these targets are 
imaged in the same 
range/azimuth pixel

r

a

elevation (θ)

Each target is taken 
with its propagation 

phase
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Single scatterer contribution

Every scatterer (target) contributes to the image with its complex amplitude and a 
propagation phase

Within one pixel (resolution cell) the phase oscillates fast (e.g. 100 times for 
TerraSAR-X)

The wavelength is typically in the order of a few centimeters / decimeters

4exps a j r




 
  

 

~3 cm

~6 cm

~22 cm

~76 cm
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The propagation phase 

Imaginary part

Real part

Im

Re
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180 deg = π
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Interferometry Principle

SAR Interferometry
Two or more complex-valued SAR images are combined
Information about the imaged objects (compared to a single image) are 
derived by exploiting the phase differences …
Therefore the images must differ in at least one aspect ( “Baseline”)

Baseline Type Name Measurements and Applications
 Across-Track Topography, digital elevation models (DEMs)
t = ms … s Along-Track ocean currents, moving object detection
t = days Differential glacier / ice fields, lava flows, hydrology

t = days … years Differential subsidence, seismic events, volcanic activities, 
crustal displacements

t = ms … years Coherence Estimator sea surface decorrelation times, land cover 
classification
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Interferometry Principle

SAR Interferometry
Two or more complex-valued SAR images are combined
Information about the imaged objects (compared to a single image) are 
derived by exploiting the phase differences …
Therefore the images must differ in at least one aspect ( “Baseline”)

Baseline Type Name Measurements and Applications
 Across-Track Topography, digital elevation models (DEMs)
t = ms … s Along-Track ocean currents, moving object detection
t = days Differential glacier / ice fields, lava flows, hydrology

t = days … years Differential subsidence, seismic events, volcanic activities, 
crustal displacements

t = ms … years Coherence Estimator sea surface decorrelation times, land cover 
classification

single-pass:

B

repeat-pass:

B

second pass 
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first pass

single-pass:

B

single-pass:

B

repeat-pass:

B

second pass 
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first pass
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B

second pass 
(after days ... months)

first pass

Along-Track

baseline

Across-Track



ESA SAR Course > Paco López-Dekker >  September 7th, 2010

Page 1717

Interferometry Principle

Phase of a complex SAR pixel
4

r
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
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SAR Image 1

range
dependent

SAR Image 2
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Interferogram

Phase is always ambiguous
w.r.t. integer multiples of 2

 phase unwrapping required!
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Applications:
Across-Track Interferometry (XTI)

baseline
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Across-Track Interferometry Principle
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Master

Slave

Interferometry allows to locate targets in the third 
dimension (elevation or cross-range)


azimuth
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Across-Track Interferometry as a Measurement of Angle
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Example: Interferogram of Cotopaxi, Acquired with SRTM

SAR image

Interferogram

Fringes

DEM
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range
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TerraSAR-X Repeat Pass Interferogram of Paris 

(HS 300 MHz 16.1.-27.1.2008)

by Remote Sensing Technology Institute 
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ra
ng

e

azimuth12 mm LOS displacement 
(270°)

0°

360° 325 m 

Tour Eiffel and Pont Mirabeau

by Remote Sensing Technology Institute 
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IMF

TerraSAR-X
DEM (RP-InSAR)

SRTM
DEM

Only over non-vegetated areas good quality 
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Coherence: measure of interferometric quality
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coherence

Coherence 0.68Coherence 0.24
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Coherence: phase variance

Coherence is linked to phase variance in a neighborhood
More coherence = less phase variance
The absolute value of the coherence is what matters
Cramér-Rao Bound for phase estimates (averages)
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Interferometric phase quality: coherence

Coherence is a measure of how much two “pixels” look alike. It takes 
values between 0 and 1.

Sources of decorrelation:
Temporal decorrelation (things change: λ, Vegetation, Water, Ice, Dry soil, Urban)
Geometric decorrelation: due to variations of the interferometric phase within
a resolution cell

Causes range spectral shift
Increases with baseline (critical baseline causes total coherence loss)
Decreases if we increase the pulse bandwidth (=improve range resolution)
Leads to trade off between height sensitivity and interferometric quality

Volume decorrelation: due multiple targets with different interferometric 
phase at the same exact range

Increases with baseline, and with penetration depth

int temp geo vol Doppler cor amb quant SNR               
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Interferometric phase quality: coherence

Coherence is a measure of how much two “pixels” look alike. It takes 
values between 0 and 1.

Sources of decorrelation:
„Doppler decorrelation“: Due to acquistions under different squint/Doppler 
Centroid. Implies that resolution cell is being observed from a different 
direction.

Can be mitigated by „common band filtering“ at the expense of resolution.
Doppler Centroid difference = Doppler bandwidth

Complete decorrelation
Co-registration errors.
Ambiguities, quantization and thermal/system noise.

int temp geo vol Doppler cor amb quant SNR               
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TanDEM-X first DEM
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Coherence
to point-to-point

error

High-pass filtered DEM

Scaling to restore
white noise 

powe

DEM Error/Performance
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Height of ambiguity and cross-track baseline

height of 
ambiguity       
(2π phase 
change)

isorange

H
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Height of ambiguity and cross-track baseline

height of 
ambiguity       
(2π phase 
change)

isorange

H



ESA SAR Course > Paco López-Dekker >  September 7th, 2010

Page 3838

Height of ambiguity

JAXA (PALSAR)

range
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Height of ambiguity: vertical baseline

𝜗𝑙𝑜𝑜𝑘

𝜗𝑖𝑛𝑐

𝐵𝑣𝑒𝑟𝑡 = 4 𝑘𝑚

ℎ2𝜋 =
𝑅 sin(𝜗𝑖𝑛𝑐)𝜆

2𝐵𝑣𝑒𝑟𝑡 sin(𝜗𝑙𝑜𝑜𝑘)

ϑinc 24.8 deg 44.8 deg

ϑlook 22.0 deg 39.0 deg

ℎ2𝜋 27.8 m 34.2 m
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Height of ambiguity: horizontal baseline

𝜗𝑙𝑜𝑜𝑘

𝜗𝑖𝑛𝑐

𝐵ℎ𝑜𝑟 = 4 𝑘𝑚

ℎ2𝜋 =
𝑅 sin(𝜗𝑖𝑛𝑐)𝜆

2𝐵ℎ𝑜𝑟 cos(𝜗𝑙𝑜𝑜𝑘)

ϑinc 24.8 deg 44.8 deg

ϑlook 22.0 deg 39.0 deg

ℎ2𝜋 11.2 m 27.7 m
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Vulkan Eyjafjalla

Eyjafjallajökull - Island
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Further Across-Track Interferometry Applications

Topography                           Navigation                             Urban areas

Crisis management               Glaciology                            Oceanography

Geology                                  Hydrology                            Land cover
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Applications:
Along-Track Interferometry (ATI)
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vp

t  baseline

vp

Along-Track Interferometry Principle

x (azimuth)

t1

r1

vlos

t … temporal baseline
vlos … line-of-sight velocity
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vp

t  baseline

vp

Along-Track Interferometry Principle

t … temporal baseline
vlos … line-of-sight velocity

x (azimuth)

t1

r1

t2

r2

tvr los









44

tvrrr los 21

Interferometric Phase:

Range Difference

For “Ground Moving Target
Indication” (GMTI) in general
an antenna array mounted on a
single platform is used!

 t = ms

vlos
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Along-Track Interferometry for GMTI
Along-Track Interferometry (ATI)

 ATI phase  line-of-sight velocity
 No clutter suppression  erroneous 

velocity and position estimation

SAR ForeSAR Aft

*

arg()

tvrad





4

 Real clutter suppression
 Only two channels: No remaining

ATI phase information for parameter
estimation  additional channels
required !

Displaced Phase Center Antenna (DPCA)

SAR ForeSAR Aft
-

| |

+

Amplitude proportional
to vrad
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Along-Track Interferometry for GMTI

 Real clutter suppression
 Only two channels: No remaining

ATI phase information for parameter
estimation  additional channels
required !

Displaced Phase Center Antenna (DPCA)Along-Track Interferometry (ATI)
 ATI phase  line-of-sight velocity
 No clutter suppression  erroneous 

velocity and position estimation

SAR ForeSAR Aft

*

arg()

tvrad





4

SAR ForeSAR Aft
-

| |

+

Amplitude proportional
to vrad

clutter

moving object

Polar Plot of ATI Phases

1,2,3 … moving targets

3

3

1

2
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Additional Effects Caused by a Moving Vehicle

azimuth

range

Doppler

azimuth
x

z

swath

antenna

illuminated
areay

road

moving point
target on road

fDC

Doppler of moving point 
target @ beam center

position of moving point 
target @ beam center

ka

Moving vehicle  stationary target
Doppler shift (caused by across-track velocity)
Change of Doppler slope ( along-track velocity + across-track acceleration)

where the target is imaged
after conventional SAR

processing

moving target

moving target

stationary target

stationary target
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Rotation fringes (20 km ATI, 3 seconds, +- 0.005 deg)

range

Processing: Rolf Scheiber, DLR 



ESA SAR Course > Paco López-Dekker >  September 7th, 2010

Page 5050

Observation of Sea Ice Drift & Rotation: 
East Greenland

TanDEM-X interferogram (20 km formation):

Estimated ice rotation in 3 seconds:

Accuracy better than 10-5 deg/s !

-0.005°

0.005°

r+r r

t+t t
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0 m/s 2 m/s Overlay of SAR image and velocity of water currents

Wadden Sea, Ameland, NL  

range

Water Currents Measured With E-SAR

Processing: Rolf Scheiber, DLR 
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Ocean

Currents

Coastline

Surveillance

Drift of

Sea Ice

Traffic

Monitoring

Further Along-Track Interferometry Applications
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Dual Beam Interferometry (DBI) concept

ATI provides direct estimation of radial velocity component
Thus 1 component out of 3 possible
Assumption that targets have vz = 0  is usually more or less valid
But at least 2 components are needed
DBI:
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Dual Beam Interferometry (DBI) concept

ATI provides direct estimation of radial velocity component
Thus 1 component out of 3 possible
Assumption that targets have vz = 0  is usually more or less valid
But at least 2 components are needed???
DBI:
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Dual Beam Interferometry (DBI) concept

Antenna squint Projected squint
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OSCM (AKA Wavemill)

Rx-1

Rx-2

Tx

H-pol. aft
V-pol. aft

H-pol. fore
V-pol. fore

H-pol. aft
V-pol. aft

H-pol. fore
V-pol. fore

C-pol. aft

C-pol. fore
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Effective line-of-sight Doppler velocity

Effective along-track Doppler velocity

ATI Phase
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Date Sep. 13th, 2013
AT physical
baseline

53 m  73 m

AT lag ~ 4 ms
Height of
ambiguity

> 300 m
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L2 Product
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Amplitude
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Coherence
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Phase
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Effective Doppler velocities

Land

Land
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Wrong hypothesis 1: we are seeing only real horizontal surface velocities
𝑣𝑥𝑡 =

𝑣𝑟
sin 𝜃𝑖𝑛𝑐

Too simple hypothesis 2: we are seeing wind-related biases
𝑣𝑟 = 𝐺𝑀𝐹 𝑠𝑒𝑎 𝑠𝑡𝑎𝑡𝑒, 𝜃𝑖𝑛𝑐 , 𝜙𝑠 − 𝜙0

෤𝑣𝑎𝑡 = ቤ
𝜕𝑣𝑟
𝜕Ψ𝑠 Ψ𝑠=0

= ቤ
𝜕𝑣𝑟
𝜕𝜙𝑎

𝜕𝜙𝑎
𝜕Ψ𝑠 Ψ𝑠=0

=
1

sin 𝜃𝑖𝑛𝑐
ቤ

𝜕𝑣𝑟
𝜕𝜙𝑎 𝜙𝑎=0

Zero order assumtion: 
GM𝐹 𝑠𝑒𝑎 𝑠𝑡𝑎𝑡𝑒, 𝜃𝑖𝑛𝑐 , 𝜙𝑠 − 𝜙0 = 𝐴 ⋅ cos(𝜙𝑎 − 𝜙0)

„Wind“ field

„Current“ field

Interpretation
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Land

Land

Land

Effective Doppler velocities
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Orkney Island Currents (TSX & TDX)

 Temporal baselines
 February (20120226): +6.6 ms
 March (20120319): -10.7 ms
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Applications:
Differential SAR Interferometry (D-InSAR)

Te
m

po
ra

l b
as

el
in

e

Spatial baseline

topo diff    
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Differential SAR Interferometry Principle ( Repeat Pass)

B

B

r



r2=r1+r

r1

t = t1

h

Interferometric Phase: topo diff    

H



4
diff diffr





 t = t2

t = t1

t = t2
rdiff

terrain motion
or subsidence 

At least 3 complex SAR images are necessary if no
DEM is available for topography compensation 
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DInSAR

Main Errors
Residual topography. Small baselines are therefore better.
Atmospheric Phase Screen (APS).

Spatially smooth
Random in time

Phase unwrapping
Decorrelation

Stacks
DInSAR processing chains use long time series (stacks) of images.
Linear motion models allow estimation of deformation rates down to 
mm/year (in some cases, sub-millimetric precisions).
In cities thermal dilation effects become visible.
Non-linear / fast motions are still a challenge.
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Interferometric phase

noiseatmdifftopo   int

Proportional to cross-
track baseline

Proportional to 
temporal baseline

Phase due to atmospheric 
phase screen (variations). 

Can only be avoided in 
single-pass

SNR dependent

Interferometric phase suffers from 2π ambiguity and (usually) from random
offset. B

Δφint,A

Δφint,BA
ΔΔφint
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- 8 +8deformation [mm]

Differential SAR Interferometry With

TerraSAR-X 

by Remote Sensing Technology Institute 

Las Vegas Convention Center
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Persistent scatterers (PS-Interferometry, PSI)

Accurate deformation measurements rely on the identification of “stable” 
targets.

Targets with no temporal decorrelation so that phase variations can be 
attributed to position changes.
Many features in urban environment result in persistent scatterers.

Typically identified in time-series by their constant amplitude (good calibration 
required).
PS density increases rapidly with improved spatial resolution.

PS are  much less frequent in natural environment.
We can use coherent pixels (for example due to areas with rocks).

Good PS density required to avoid phase unwrapping problems.
We should be seeing improvement now with Sentinel-1
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Subsidence Monitoring over Urban Areas

- 4 + 40
Movement in mm/y:

ca. 2.5 mm/y

1991 2000

Berlin, 

63 Images

(1991 – 2000)
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Glacier Movements
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Subsidence
ERS-1/2
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BAM Earthquake (Envisat/ASAR)

+31 cm

-17 cm
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Red: Orbit 1, Blue: Orbit 5, Yellow: Orbit 6

Acquisition location: 

Ronne ice-shelf, Antarctica

 Shorter revisit times than 
the repeat pass cycle of 11 

days
 Close orbit constellation 

possible after 1 and 5(6) 
days at high and low 

latitudes:
 North: 84.5° to 88°, 

South: -75° to -80°
 Squinted azimuth beams 

necessary to compensate 
crossing angles

 Crossing angles: 2.1°
(5d/6d) and 4.2° (1d)

Note: Orbits are

crossing only in 

earth fixed

coordinates!

Courtesy of Steffen Wollstadt

Acquisition Geometry of a TerraSAR-X cross-orbit experiment
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1d

5d

Everything is relative!

3λ/2

Courtesy of Steffen Wollstadt
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Multi-angle geometries

Projection of motion along LoS
2 LoS -> 2D motion (e.g. Ascending/Descending)
3 LoS -> 3D motion (Ascending/Descending/Squinted or Left/Right)
Geological models (subsidence, etc.)
Along-track displacements with reduced sensitivity

LoS #1 LoS #2

Orbit #2

Orbit #1
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Interferometric processing
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Interferometric processing

(Acquisition)
(Focusing)
Coregistration (phase robustness to mis-registration)
Filtering (Spectral shift)
Interferogram generation
Flattening (to simplify the next steps)
Multilooking (Averaging, Filtering)

Output: Phase and Coherence
Phase unwrapping
Specific processing
Geocoding (a change of coordinates)



ESA SAR Course > Paco López-Dekker >  September 7th, 2010

Page 9191

Co-registration: master and slave have different geometries

master slave

azimuth

ra
ng

e
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Interferogram generation (pixel by pixel)

1 1 1 1 1

2 2 2 2 2

1 2 1 1 2 2 1 2 1 2 2 1 1 2

1 2 1 2

| | exp( )
| | exp( )

* ( ) ( ) ( ) ( )
| | | | exp[ ( )]

u x jy G j

u x jy G j

u u x jy x jy x x y y j x y x y

G G j





 

   

   

        

   

real part imaginary part

SAR Image 1

SAR Image 2

 1 1 1expu G j

 2 2 2expu G j

*

 1 2 1 2expv G G j     
arg()

1 2    

* … means complex conjugated

Interferogram
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Slopes correspond to frequencies in the interferogram
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Flath-Earth phase
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Interferogram flattening (ellipsoid)

Original interferogram Flattening phase (ellipsoid) Residual phase

interf predicted residual mod2 

int( , )r a

=

predictedexp( ( , ))j r a flattenedint ( , )r a

-

* =
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Interferogram flattening (ellipsoid)

range

Mt. Etna, JAXA (PALSAR)

Similar to contour lines:

Constant phase = constant height
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Interferogram flattening: ellipsoid + available DEM (e.g. 
SRTM)

Original interferogram

interf predicted residual mod2 

int( , )r a

=

predictedexp( ( , ))j r a flattenedint ( , )r a

-

* =

Flattening phase (with SRTM) Residual phase
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Averaging or Filtering or Multilooking

Complex numbers are averaged before extracting the phase

Interferogram

Master

Coreg. Slave

Flattening Averaging

Arg()Im

Re

 1

1

Im[ ( ) ( )]
arctan

Re[ ( ) ( )]

L

m s

k

L

m s

k

z k z k

z k z k

 



 
 
 
 
 
 





Abs()

phase

coherence
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Phase unwrapping

Assigning each phase the correct number of “missing” 2 π

1-D phase unwrapping

unwrapped wrapped 2k    

wrapped unwrapped
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Phase Unwrapping

• Interferometric phase values belong to the
interval 𝜑𝑖𝑛𝑡 𝜖 0, 2𝜋

• The range differences ∆𝑟 will be mapped to
this interrval

𝜑𝑖𝑛𝑡 = Τ2𝜋 𝜆 ∙ ∆𝑟 mod 2𝜋

• The information on the distance is thus
ambiguous

∆𝑟 = Τ𝜆 2𝜋 ∙ 𝜑𝑖𝑛𝑡 + 𝑘 ∙ Τ𝜆 2 𝑘 𝜖 ℤ

• If the sampling is fine enough and there are
enough well behaved regions, the
ambiguities can be solved

 „phase unwrapping“

∆𝑟

𝜑𝑖𝑛𝑡

𝜑𝑢𝑛𝑤𝑟𝑎𝑝
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Geocoding

From SAR coordinates to “usual” coordinates (UTM or Lat/Lon)

Geocoding is essentially a change of coordinates & resampling

( , , ) ( , , ) (lat, lon,height) (E,N,height)r a x y z   

SAR
coordinates

ECEF 
coordinates

Geodetic 
coordinates

Local 
coordinates



ESA SAR Course > Paco López-Dekker >  September 7th, 2010

Page 104104

References
• SAR Basics and Processing:

- J. C. Curlander, R. N. McDonough, Synthetic Aperture Radar: Systems and Signal Processing. New York: 
Jon Wiley & Sons, 1991.

- I. Cumming, F. Wong, Digital processing of synthetic aperture radar data: signal processing algorithms. 
Boston: Artech House, 2005.

- F. Henderson (Ed.), Manual of Remote Sensing: Principles and Applications of Radar Imaging, Wiley, 1999.
• Interferometry, Tomography

- R. Hanssen, Radar interferometry: data interpretation and error analysis, Dordrecht, Kluwer Academic 
Publishers, 2001.

- A. Reigber, A. Moreira, “First demonstration of airborne SAR tomography using multibaseline L-band data”, 
IEEE Trans. Geosc. and Remote Sens., Vol. 38, No. 5, pp. 2142-2152, 2000.

• SRTM, TerraSAR-X, TanDEM-X
- T. Farr et al.  "The Shuttle Radar Topography Mission", Reviews of Geophysics, vol. 45, 2007.
- M. Stangl, R. Werninghaus, B. Schweizer, C. Fischer, M. Brandfass, J. Mittermayer, H. Breit, "TerraSAR-X 

technologies and first results", IEE Proceedings - Radar, Sonar and Navigation, vol. 153, pp. 86-95, 2006.
- G. Krieger, A. Moreira, H. Fiedler, I. Hajnsek, M. Younis, C. Werner, and M. Zink, "The TanDEM-X mission: a 

satellite formation for high resolution SAR interferometry", to appear in IEEE Transactions on Geoscience 
and Remote Sensing, 2007.


