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SAR Interferometry:
Introduction
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Land Environment Subsidence

Traffic Reconnaissance



http://www-radar.jpl.nasa.gov/sect323/InSar4crust/HME/geo_flat90m+fltsS1.JPG
http://vulcan.wr.usgs.gov/Imgs/Jpg/Sisters/WestUplift/ssis_InSAR_may2001.jpg

SAR Basic Principle




SAR Raw and Image Data

SAR
raw data




SAR Processing: Two-Dimensional Matched Filter
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SAR as a linear system

reflectivity SAR raw data SAR | focused image
acquisition processing
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Phase and impulse response details

- Due to the band-pass characteristic of the IRF, the final signal can be
thought as the convolution between the modulated reflectivity and a 2-D
impulse response function

- The reflectivity itself is really the integration of the reflectivity along the
elevation angle (cylindrical geometry):
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A SAR image has a 2-D cylindrical geometry (but the world

is 3-D at least) 2 4
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—l
a or
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Single scatterer contribution

- Every scatterer (target) contributes to the image with its complex amplitude and a
propagation phase
s=aexp| —|] 4z r
A

- Within one pixel (resolution cell) the phase oscillates fast (e.g. 100 times for
TerraSAR-X)

— The wavelength is typically in the order of a few centimeters / decimeters
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The propagation phase
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Interferometry Principle

SAR Interferometry

- Two or more complex-valued SAR images are combined

- Information about the imaged objects (compared to a single image) are
derived by exploiting the phase differences ...

- Therefore the images must differ in at least one aspect (= “Baseline™)

Baseline Type
Ag

At=ms ... s
At = days

At = days ... years

At=ms ... years

Name
Across-Track
Along-Track

Differential

Differential

Coherence Estimator

Measurements and Applications

Topography, digital elevation models (DEMSs)

ocean currents, moving object detection
glacier / ice fields, lava flows, hydrology

subsidence, seismic events, volcanic activities,
crustal displacements

sea surface decorrelation times, land cover
classification




Interferometry Principle
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Interferometry Principle

—- Phase of a complex SAR pixel
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range”

dependent

Phase is always ambiguous
SAR Image 1 w.r.t. integer multiples of 2x
= phase unwrapping required!

Interferogram
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Applications:
Across-Track Interferometry (XTI)
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Across-Track Interferometry Principle

SAR 1
SAR 2

Phase of SAR Image 1: ¢, =—

Phase of SAR Image 2: ¢, =—

4r
7r1

477[(r1+Ar)

A

Interferogram: Ag=¢ —¢ .= 7Ar

Height: h=H —r, cosd:

T

Needs to be
estimated!



\

Interferometry allows to locate targets in the third
dimension (elevation or cross-range)

Master \

Slave

azimuth

X




Across-Track Interferometry as a Measurement of Angle

SAR 1 . :
SAR 2 _ i’ +B*—(r, +Ar)
\ ) Law of Cosine: cos(90°—a +0) = s
- ’: 1

H, B and o are known,
r, and Ar (<« Ag)
are measured
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Example: Interferogram of Cotopaxi, Acquired with SRTM

SAR image

DEM

\ Fringes

Interferogram



TerraSAR-X Repeat Pass Interferogram of Paris
(HS 300 MHz 16.1.-27.1.2008)

by Remote Sensing Technology Institute



12 mm LOS displacement r’ azimuth
(270°)

Tour Eiffel and Pont Mirabeau

range

360° 325 m

0° by Remote Sensing Technology Institute



TerraSAR-X
DEM (RP-InSAR)

SRTM
DEM



Coherence: measure of interferometric quality

Coherence

E[ms*
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557]

Sample coherence

a correlation coefficient,

sometimes just called correlation

0<y <1

Z m(k)s * (k) averaged. over
y = k a small window
\/Z m(k)m*(k)z s(k)s* (k) of N pixels
k ‘ k=1,2,.,N




Coherence 0.68

Coherence 0.24



Coherence: phase variance

—- Coherence is linked to phase variance in a neighborhood
—- More coherence = less phase variance
- The absolute value of the coherence is what matters
- Cramér-Rao Bound for phase estimates (averages)

@ =arg
Summing complex Number of
numbers independent samples
(looks)
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Interferometric phase quality: coherence

—- Coherence is a measure of how much two “pixels” look alike. It takes
values between 0 and 1.

yint = ytemp .ygeo .7/V01 .yDoppler .7/cor .yamb .yquant .7/SNR

— Sources of decorrelation:
- Temporal decorrelation (things change: A, Vegetation, Water, Ice, Dry soil, Urban)
- Geometric decorrelation: due to variations of the interferometric phase within
a resolution cell
— Causes range spectral shift
- Increases with baseline (critical baseline causes total coherence loss)
— Decreases if we increase the pulse bandwidth (=improve range resolution)
— Leads to trade off between height sensitivity and interferometric quality
- Volume decorrelation: due multiple targets with different interferometric
phase at the same exact range
- Increases with baseline, and with penetration depth



Interferometric phase quality: coherence

—- Coherence is a measure of how much two “pixels” look alike. It takes
values between 0 and 1.

7/int :ytemp.ygeo.yvol.Q/Doppler.ycor.yamb.yquant.ySNR

— Sources of decorrelation:

— ,Doppler decorrelation®: Due to acquistions under different squint/Doppler
Centroid. Implies that resolution cell is being observed from a different
direction.

- Can be mitigated by ,common band filtering” at the expense of resolution.
- Doppler Centroid difference = Doppler bandwidth

Complete decorrelation
- Co-registration errors.
- Ambiguities, quantization and thermal/system noise.















DEM Error/Performance High-pass filtered DEM
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Height of ambiguity and cross-track baseline

! _________________ height of
ambiguity
H (21T phase

change)



Height of ambiguity and cross-track baseline

height of
------------------ “H ambiguity
4.-------------_____5__ (21 phase



Height of ambiguity

JAXA (PALSAR)



Height of ambiguity: vertical baseline
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Height of ambiguity: horizontal baseline

BhOT = 4 km
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Further Across-Track Interferometry Applications

Topography Navigation

Crisis management Glaciology

Hydrology

Urban areas

Oceanography

Land cover



Applications:
Along-Track Interferometry (ATI)
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Along-Track Interferometry Principle

- X (azimuth)

At ... temporal baseline
Vies --- line-of-sight velocity



Along-Track Interferometry Principle

—V, Range Difference
- X (azimuth) Ar = h—nr = VlosAt

Interferometric Phase:

A= ar =2y At
A A

For “Ground Moving Target
Indication” (GMT]) in general
an antenna array mounted on a
single platform is used!

= At=ms

At ... temporal baseline
Vies --- line-of-sight velocity




Along-Track Interferometry for GMTI
Along-Track Interferometry (ATI) Displaced Phase Center Antenna (DPCA)

v" ATl phase ~ line-of-sight velocity v Real clutter suppression
* No clutter suppression = erroneous | | x  Qnly two channels: No remaining
velocity and position estimation ATI| phase information for parameter
estimation = additional channels
required !

b hd
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4r Amplitude proportional
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Along-Track Interferometry for GMTI
Along-Track Interferometry (ATI) Displaced Phase Center Antenna (DPCA)

v" ATl phase ~ line-of-sight velocity v Real clutter suppression
% No clutter suppression = erroneous | | x QOnly two channels: No remaining
Ve|OClty and pOSItlon eStImatlon ATl nhacn infarmatinn far naramaotar

n Polar Plot of ATl Phases —
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Additional Effects Caused by a Moving Vehicle

range

a

oving point
% target @ bégm center

, yantenna

stationary target moving targe

azimuth
moving target

Doppler

stationary target

Doppler of moving point

illuminated target @ beam center
area 7y
X _ , foc
moving point : >
azimuth

where the target is imaged
after conventional SAR
processing

target on road
road

- Moving vehicle <> stationary target
- Doppler shift (caused by across-track velocity)
- Change of Doppler slope («— along-track velocity + across-track acceleration)




Rotation fringes (20 km ATI, 3 seconds, +- 0.005 deg)

Processing: Rolf Scheiber, DLR



Observation of Sea Ice Drift & Rotation: . i—
East Greenland rAr 2O r

TanDEM-X interferogram (20 km formation):

Estimated ice rotation in 3 seconds:

0.005°

-0.005°

Accuracy better than 10-° deg/s !



Water Currents Measured With E-SAR

0 mls B 2ns Overlay of SAR image and velocity of water currents
Wadden Sea, Ameland, NL



Further Along-Track Interferometry Applications

Ocean Coastline
Currents Surveillance
Drift of Traffic
Sea Ice Monitoring




Dual Beam Interferometry (DBI) concept

- ATI provides direct estimation of radial velocity component
- Thus 1 component out of 3 possible
- Assumption that targets have v, = O is usually more or less valid

— But at least 2 components are needed
- DBI:



Dual Beam Interferometry (DBI) concept

- ATI provides direct estimation of radial velocity component
- Thus 1 component out of 3 possible
o ) ont] | =0 I | i
- But at least 2 components are needed???
- DBI:



Dual Beam Interferometry (DBI) concept
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OSCM (AKA Wavemill)

Rx-1

H-pol. fore
V-pol. fore

H-pol. aft
C-pol. fore V-pol. aft

H-pol. fore C-pol. aft
V-pol. fore

H-pol. aft
V-pol. aft



ATl Phase

Effective line-of-sight Doppler velocity

Effective along-track Doppler velocity









Date

AT physical
baseline

AT lag

Height of
ambiguity

Sep. 13th, 2013
53m—>73m

~4 ms
> 300 m




L2 Product



Amplitude



Coherence



Phase



Effective Doppler velocities

------- |
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: Land
|
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Land



Interpretation
Wrong hypothesis 1: we are seeing only real horizontal surface velocities

,scurrent“ field

RN 2

ZDD mn 50 0
Azimuth [km]

Range [k

,Wind“ field

RN 2

IDD 50 0
Azimuth [km]

Range [k
'—l
oL r:u

GMF (sea state, O;pc, s — Po) = A - cos(pg — Po)



Effective Doppler velocities

Land

Land

N -2

IDD 50 0
Azimuth [km]




Orkney Island Currents (TSX & TDX)

+ Temporal baselines
0 February (20120226): +6.6 ms
0 March (20120319): -10.7 ms












Applications:
Differential SAR Interferometry (D-InSAR)
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Differential SAR Interferometry Principle (— Repeat Pass)

t=t, Interferometric Phase: A¢ =4, + @y By = 4_7[Ardiﬁ

At least 3 complex SAR images are necessary if no
DEM is available for topography compensation

terrain motion
or subsidence




DINSAR

Main Errors
— Residual topography. Small baselines are therefore better.

- Atmospheric Phase Screen (APS).
- Spatially smooth
- Random in time

- Phase unwrapping

- Decorrelation

Stacks

- DInSAR processing chains use long time series (stacks) of images.

- Linear motion models allow estimation of deformation rates down to
mm/year (in some cases, sub-millimetric precisions).

- In cities thermal dilation effects become visible.
- Non-linear / fast motions are still a challenge.



Interferometric phase

temporal baseline

Proportional to

SNR dependent

track baseline

Proportional to cross-

Phase due to atmospheric
phase screen (variations).
Can only be avoided in
single-pass

Interferometric phase suffers from 2 ambiguity and (usually) from random

offset.
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-8  deformation [nm]  +8 Las Vegas Convention Center

by Remote Sensing Technology Institute



Persistent scatterers (PS-Interferometry, PSI)

- Accurate deformation measurements rely on the identification of “stable”
targets.

— Targets with no temporal decorrelation so that phase variations can be
attributed to position changes.

- Many features in urban environment result in persistent scatterers.

- Typically identified in time-series by their constant amplitude (good calibration
required).

- PS density increases rapidly with improved spatial resolution.
- PS are much less frequent in natural environment.
- We can use coherent pixels (for example due to areas with rocks).
- Good PS density required to avoid phase unwrapping problems.

- We should be seeing improvement now with Sentinel-1



Subsidence Monitoring over Urban Areas

Berlin,
63 Images
(1991 — 2000)

-

‘_g‘_-'-’:;"": = Ty o o

Movement in mmly:
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Glacier Movements

(CSA/NASA/JPL/ASF, Antarctic Mapping Mission)



Subsidence
ERS-1/2

(F. Amelung, Stanford)






Acquisition Geometry of a TerraSAR-X cross-orbit experiment

= Shorter revisit times than
the repeat pass cycle of 11
days

= Close orbit constellation
possible after 1 and 5(6)
days at high and low
latitudes:

- North: 84.5° to 88°,
South: -75° to -80°

= Squinted azimuth beams
necessary to compensate
crossing angles

- Crossing angles: 2.1°

(5d/6d) and 4.2° (1d)
Note: Orbits are

crossing only in
earth fixed

coordinates!

Yellow: Orbit 6

Courtesy of Steffen Wollstadt



5d

3N2
1d

Courtesy of Steffen Wollstadt

Everything is relative!



Multi-angle geometries

Projection of motion along LoS

2 LoS -> 2D motion (e.g. Ascending/Descending)

3 LoS -> 3D motion (Ascending/Descending/Squinted or Left/Right)
Geological models (subsidence, etc.)

Along-track displacements with reduced sensitivity

N N N NN

Orbit #2
Orbit #1 “



Interferometric processing




Interferometric processing

(Acquisition)

(Focusing)

Coregistration (phase robustness to mis-registration)
Filtering (Spectral shift)

Interferogram generation

Flattening (to simplify the next steps)

Multilooking (Averaging, Filtering)
- Output: Phase and Coherence

A AN AN AN BN BN

N

Phase unwrapping
Specific processing

N

- Geocoding (a change of coordinates)



Co-registration: master and slave have different geometries

master slave

-2

azimuth

range



Interferogram generation (pixel by pixel)

U =X+ jyl = G, |'eXp(j¢1)

u, =X, +Jy, =G, |-exp(jo,)
real part imaginary part

U, 'uz* = (Xl + jyl)'(xz B jyz) :(X1X2 + y1y2}+ j(xzy1 _le)
=G, |-G, |-expl j(¢, —,)]

SAR Image 1

u1:‘G1‘eXp(j(P1)

Interferogram

s L v=|G||G,|exp| j(@ ,—@ Ad=@ —
SAR Image 2 ® GilG:lexeL il 2)]: arg() P=9, Pe,

* ... means complex conjugated



Slopes correspond to frequencies in the interferogram




Flath-Earth phase



Interferogram flattening (ellipsoid)

1nt( r, a) * cXp (_ J ¢predicted ( I, a))

il’lt flattened ( r ” a)

@, nterf - (Dpredicted (Dresidual mod 27

Original interferogram Flattening phase (ellipsoid) Residual phase



Interferogram flattening (ellipsoid)

range_> /
Similar to contour lines:

Constant phase = constant height

Mt. Etna, JAXA (PALSAR)



Interferogram flattening: ellipsoid + available DEM (e.qg.
SRTM)

lnt( r, a) * cXp (_ J ¢predicted ( r, a)) int flattened ( r, a)

@, nterf - ¢predicted (Dresidual mod 27

Original interferogram Flattening phase (with SRTM) Residual phase



JAXA (PALSAR)



JAXA (PALSAR)



Averaging or Filtering or Multilooking

- Complex numbers are averaged before extracting the phase

Master

Coreg. Slave

Y

Abs()

)

Interferogram

Flattening

—>

Averaging

|

Arg()

(@ = arctan

coherence

phase

Im[» "z, (K)Z, (k)]

Re[D 2, (K)Z,(K)]




Phase unwrapping

- Assigning each phase the correct number of “missing” 2 1T

(Dunwrapped = (Dwrapped + k ) 2 T

- 1-D phase unwrapping

wrapped unwrapped
47 7 200
2 15
=) =)
B 2
> 0 > 10
w w
o (=]
L =
a (=8
-7 5
-4 ] 0
0 200 400 600 800

(=]

200 400 600 800

ronge [pixels] range [pixels]



Phase Unwrapping

Ar
* Interferometric phase values belong to the
interval ¢;,,; € [0, 27|
* The range differences Ar will be mapped to
this interrval
Qint = 2m/A) - Ar mod 27 Dint
« The information on the distance is thus
ambiguous
Ar = (A/21) - Qine + k- A1/2 kel
» If the sampling is fine enough and there are
enough well behaved regions, the

ey Qounwrap
ambiguities can be solved

-> ,phase unwrapping"”



Geocoding

- From SAR coordinates to “usual” coordinates (UTM or Lat/Lon)

SAR Geodetic
coordinates coordinates

(r,a,@) <> (X,Y,2) <> (lat,lon, height) <> (E, N, height)
‘ ECEF \ ‘ Local \
coordinates coordinates

- Geocoding is essentially a change of coordinates & resampling
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