

PECS Radar Remote Sensing Course ESA – UNIVERSITY OF MARIBOR 10th September 2015 – Maribor

SAR Interferometry

Dr. Paco López-Dekker (DLR, German Aerospace Center)

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Outline

- → SAR Interferometry
 - Introduction
 - Cross-track interferometry (InSAR)
 - → Along-track interferometry (ATI)
 - → Differential InSAR (DInSAR)
 - → Typical processing chain
- → (Advanced topics)
 - → (Bistatic SAR)
 - → (SAR Tomography)
 - → (Circular SAR)
 - → (High Resolution Wide Swath (HRWS))
 - 7 ...
- → (Interferometric missions & sensors)

SAR Interferometry: Introduction

Deutsches Zentrum DLR für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Earthquakes

Volcanoes

Land & Sea Ice

Subsidence

Ocean

Land Environment

Traffic

Reconnaissance

SAR Basic Principle

SAR Raw and Image Data

SAR raw data

SAR image

Deutsches Zentrum für Luft- und Raumfahrt e.V. DLR in der Helmholtz-Gemeinschaft

SAR Processing: Two-Dimensional Matched Filter

SAR as a linear system

Deutsches Zentrum R für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Phase and impulse response details

→ Due to the band-pass characteristic of the IRF, the final signal can be thought as the convolution between the modulated reflectivity and a 2-D impulse response function

 \neg The reflectivity itself is really the integration of the reflectivity along the elevation angle (cylindrical geometry):

A SAR image has a 2-D cylindrical geometry (but the world is 3-D at least)

Single scatterer contribution

Every scatterer (target) contributes to the image with its complex amplitude and a propagation phase

$$s = a \exp\left(-j\frac{4\pi}{\lambda}r\right)$$

- Within one pixel (resolution cell) the phase oscillates fast (e.g. 100 times for TerraSAR-X)
- → The wavelength is typically in the order of a few centimeters / decimeters

The propagation phase

Deutsches Zentrum R für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Interferometry Principle

SAR Interferometry

- Two or more complex-valued SAR images are combined
- Information about the imaged objects (compared to a single image) are derived by exploiting the phase differences ...
- → Therefore the images must differ in at least one aspect (\Rightarrow "Baseline")

Baseline Type	Name	Measurements and Applications
$\Delta \phi$	Across-Track	Topography, digital elevation models (DEMs)
∆ <i>t</i> = ms s	Along-Track	ocean currents, moving object detection
Δt = days	Differential	glacier / ice fields, lava flows, hydrology
Δt = days years	Differential	subsidence, seismic events, volcanic activities, crustal displacements
Δt = ms years	Coherence Estimator	sea surface decorrelation times, land cover classification

CSA PLR Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

16

Interferometry Principle

Phase of a complex SAR pixel 7

SAR Image 1

Phase is always ambiguous w.r.t. integer multiples of 2π \Rightarrow phase unwrapping required!

Applications: Across-Track Interferometry (XTI)

Deutsches Zentrum IR für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Across-Track Interferometry Principle

esa 1

Deutsches Zentrum
R für Luft- und Raumfahrt e.V.
in der Helmholtz-Gemeinschaft

Interferometry allows to locate targets in the third dimension (elevation or cross-range)

Across-Track Interferometry as a Measurement of Angle

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Example: Interferogram of Cotopaxi, Acquired with SRTM

TerraSAR-X Repeat Pass Interferogram of Paris (HS 300 MHz 16.1.-27.1.2008)

esa

Deutsches Zentrum DLR für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft.

by Remote Sensing Technology Institute

12 mm LOS displacement (270°)

ange

Tour Eiffel and Pont Mirabeau

360°

by Remote Sensing Technology Institute

TerraSAR-X DEM (RP-InSAR)

Only over non-vegetated areas good quality

DLR

Coherence: measure of interferometric quality

Coherence

$$\gamma = \frac{E[m \ s \ *]}{\sqrt{E[m \ m \ *]E[s \ s \ *]}}$$

a correlation coefficient, sometimes just called *correlation* $0 \le |\gamma| \le 1$

esa 4

Deutsches Zentrum für Luft- und Raumfahrt e.M. in der Helmholtz-Gemeinschaft

Coherence: phase variance

- ✓ Coherence is linked to phase variance in a neighborhood
 - \neg More coherence = less phase variance

in der Helmholtz-Gemeinschaft

- → The absolute value of the coherence is what matters
- → Cramér-Rao Bound for phase estimates (averages)

Interferometric phase quality: coherence

Coherence is a measure of how much two "pixels" look alike. It takes values between 0 and 1.

 $\gamma_{\rm int} = \gamma_{\rm temp} \cdot \gamma_{\rm geo} \cdot \gamma_{\rm vol} \cdot \gamma_{\rm Doppler} \cdot \gamma_{\rm cor} \cdot \gamma_{\rm amb} \cdot \gamma_{\rm quant} \cdot \gamma_{\rm SNR}$

- → Sources of decorrelation:
 - \neg Temporal decorrelation (things change: λ , Vegetation, Water, Ice, Dry soil, Urban)
 - Geometric decorrelation: due to variations of the interferometric phase within a resolution cell
 - → Causes range spectral shift
 - → Increases with baseline (critical baseline causes total coherence loss)
 - Decreases if we increase the pulse bandwidth (=improve range resolution)
 - ✓ Leads to trade off between height sensitivity and interferometric quality
 - Volume decorrelation: due multiple targets with different interferometric phase at the same exact range
 - → Increases with baseline, and with penetration depth

Interferometric phase quality: coherence

Coherence is a measure of how much two "pixels" look alike. It takes values between 0 and 1.

 $\gamma_{\text{int}} = \gamma_{\text{temp}} \cdot \gamma_{\text{geo}} \cdot \gamma_{\text{vol}} \cdot \gamma_{\text{Doppler}} \cdot \gamma_{\text{cor}} \cdot \gamma_{\text{amb}} \cdot \gamma_{\text{quant}} \cdot \gamma_{\text{SNR}}$

- → Sources of decorrelation:
 - "Doppler decorrelation": Due to acquisitons under different squint/Doppler Centroid. Implies that resolution cell is being observed from a different direction.
 - → Can be mitigated by "common band filtering" at the expense of resolution.
 - Doppler Centroid difference = Doppler bandwidth

Complete decorrelation

- \neg Co-registration errors.
- → Ambiguities, quantization and thermal/system noise.

TanDEM-X first DEM

Height of ambiguity and cross-track baseline

Height of ambiguity and cross-track baseline

esa

Height of ambiguity

Deutsches Zentrum DLR für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

JAXA (PALSAR)

Height of ambiguity: vertical baseline

Height of ambiguity: horizontal baseline

Eyjafjallajökull - Island

Vulkan Eyjafjalla

Further Across-Track Interferometry Applications

Topography

Crisis management

Deutsches Zentrum R für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Navigation

Urban areas

Oceanography

Land cover

Glaciology

Hydrology

Applications: Along-Track Interferometry (ATI)

Deutsches Zentrum DLR für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Along-Track Interferometry Principle

 Δt ... temporal baseline v_{los} ... line-of-sight velocity

Deutsches Zentrum IR für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Along-Track Interferometry Principle

Range Difference $\Delta r = r_1 - r_2 = v_{los} \Delta t$

Interferometric Phase:

$$\Delta \phi = \frac{4\pi}{\lambda} \Delta r = \frac{4\pi}{\lambda} v_{los} \Delta t$$

For "Ground Moving Target Indication" (GMTI) in general an antenna array mounted on a single platform is used!

 $\Rightarrow \Delta t = ms$

 Δt ... temporal baseline v_{los} ... line-of-sight velocity

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Along-Track Interferometry for GMTI

Along-Track Interferometry (ATI)

- ✓ ATI phase ~ line-of-sight velocity
- ➤ No clutter suppression ⇒ erroneous velocity and position estimation

Displaced Phase Center Antenna (DPCA)

- ✓ Real clutter suppression
- ➤ Only two channels: No remaining ATI phase information for parameter estimation ⇒ additional channels required !

Along-Track Interferometry for GMTI

Additional Effects Caused by a Moving Vehicle

- \neg Moving vehicle \leftrightarrow stationary target
 - Doppler shift (caused by across-track velocity)
 - → Change of Doppler slope (← along-track velocity + across-track acceleration)

Rotation fringes (20 km ATI, 3 seconds, +- 0.005 deg)

Cesa 🕫

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft Processing: Rolf Scheiber, DLR

Observation of Sea Ice Drift & Rotation: East Greenland

TanDEM-X interferogram (20 km formation):

Estimated ice rotation in 3 seconds:

Accuracy better than 10⁻⁵ deg/s !

Water Currents Measured With E-SAR

0 m/s

2 m/s

Overlay of SAR image and velocity of water currents Wadden Sea, Ameland, NL

Further Along-Track Interferometry Applications

Ocean Currents

Coastline Surveillance

Traffic Monitoring

Deutsches Zentrum R für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Dual Beam Interferometry (DBI) concept

- ATI provides direct estimation of radial velocity component 7
 - Thus 1 component out of 3 possible 7
 - → Assumption that targets have $v_z = 0$ is usually more or less valid
 → But at least 2 components are needed

Fore Beam

Aft Beam

DBI: $\overline{\mathbf{z}}$

für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Dual Beam Interferometry (DBI) concept

- → ATI provides direct estimation of radial velocity component
 - Thus 1 component out of 3 possible 7

Aft Beam

→ Assumption that targets have $v_z = 0$ is usually more or less valid
→ But at least 2 components are needed???

Fore Beam

- DBI: 7

Effective line-of-sight Doppler velocity

Effective along-track Doppler velocity

US Dept of State Geographer © 2014 Google Image Landsat Data SIQ, NOAA, U.S. Navy, NGA, GEBCO

0

77°08'39:02" N 76°02'50.49" E elev -803 ft

Date	Sep. 13th, 2013
AT physical baseline	53 m → 73 m
AT lag	~ 4 ms
Height of ambiguity	> 300 m

G

© 2014 Google Image Landsat Image IBCAO

76°44'10.53" N 66°57'08.30" E elev -2 ft

L2 Product

Deutsches Zentrum für Luft- und Raumfahrt e.V. DLR in der Helmholtz-Gemeinschaft

Amplitude

Coherence

2

à

Phase

Effective Doppler velocities

Deutsches Zentrum Für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Interpretation

Wrong hypothesis 1: we are seeing only real horizontal surface velocities

Effective Doppler velocities

Orkney Island Currents (TSX & TDX)

Temporal baselines

- □ February (20120226): +6.6 ms
- □ March (20120319): -10.7 ms

Deutsches Zentrum R für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Applications: Differential SAR Interferometry (D-InSAR)

$$\Delta \phi = \phi_{topo} + \phi_{diff}$$

Deutsches Zentrum IR für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Differential SAR Interferometry Principle (→ Repeat Pass)

in der Helmholtz-Gemeinschaft
DInSAR

Main Errors

- → Residual topography. Small baselines are therefore better.
- → Atmospheric Phase Screen (APS).
 - → Spatially smooth
 - → Random in time
- Phase unwrapping
- → Decorrelation

Stacks

- \neg DInSAR processing chains use long time series (stacks) of images.
- Linear motion models allow estimation of deformation rates down to mm/year (in some cases, sub-millimetric precisions).
- ✓ In cities thermal dilation effects become visible.
- \neg Non-linear / fast motions are still a challenge.

Interferometric phase

Interferometric phase suffers from 2π ambiguity and (usually) from random offset.

 $\Delta \phi_{in}$

 $\Delta \phi_{int,B}$

Deutsches Zentrum R für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

φ_{int,A}

......

Las Vegas Convention Center

Deutsches Zentrum DLR für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

by Remote Sensing Technology Institute

Persistent scatterers (PS-Interferometry, PSI)

- Accurate deformation measurements rely on the identification of "stable" targets.
 - Targets with no temporal decorrelation so that phase variations can be attributed to position changes.
 - ✓ Many features in urban environment result in persistent scatterers.
 - Typically identified in time-series by their constant amplitude (good calibration required).
 - → PS density increases rapidly with improved spatial resolution.
 - → PS are much less frequent in natural environment.
 - \neg We can use coherent pixels (for example due to areas with rocks).
- → Good PS density required to avoid phase unwrapping problems.
- → We should be seeing improvement now with Sentinel-1

Deutsches Zentrum R für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Subsidence Monitoring over Urban Areas

Glacier Movements

(CSA/NASA/JPL/ASF, Antarctic Mapping Mission)

Le Charles a

0 m/

Subsidence ERS-1/2

Subsidence [cm]

10

20

0

(F. Amelung, Stanford)

Las Vegas, Nevada Subsidence 1992-1997

Acquisition Geometry of a TerraSAR-X cross-orbit experiment

in der Helmholtz-Gemeinschaft

 Shorter revisit times than the repeat pass cycle of 11 days

- Close orbit constellation possible after 1 and 5(6) days at high and low latitudes:
 - → North: 84.5° to 88°, South: -75° to -80°
- Squinted azimuth beams necessary to compensate crossing angles
 - → Crossing angles: 2.1° (5d/6d) and 4.2° (1d)

Courtesy of Steffen Wollstadt85

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Everything is relative!

Courtesy of Steffen Wollstadt

Multi-angle geometries

- Projection of motion along LoS
- → 2 LoS -> 2D motion (e.g. Ascending/Descending)
- → 3 LoS -> 3D motion (Ascending/Descending/Squinted or Left/Right)
- → Geological models (subsidence, etc.)
- Along-track displacements with reduced sensitivity

 Deutsches Zentrum
 für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Interferometric processing

Deutsches Zentrum DLR für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Interferometric processing

- → (Acquisition)
- → (Focusing)
- Coregistration (phase robustness to mis-registration)
- → Filtering (Spectral shift)
- → Interferogram generation
- → Flattening (to simplify the next steps)
- → Multilooking (Averaging, Filtering)
 - → Output: Phase and Coherence
- Phase unwrapping
- Specific processing
- → Geocoding (a change of coordinates)

Co-registration: master and slave have different geometries

Deutsches Zentrum IR für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft Interferogram generation (pixel by pixel)

$$u_{1} = x_{1} + jy_{1} = |G_{1}| \cdot \exp(j\varphi_{1})$$

$$u_{2} = x_{2} + jy_{2} = |G_{2}| \cdot \exp(j\varphi_{2})$$
real part imaginary part
$$u_{1} \cdot u_{2}^{*} = (x_{1} + jy_{1}) \cdot (x_{2} - jy_{2}) = (x_{1}x_{2} + y_{1}y_{2}) + j(x_{2}y_{1} - x_{1}y_{2})$$

$$= |G_{1}| \cdot |G_{2}| \cdot \exp[j(\varphi_{1} - \varphi_{2})]$$

SAR Image 1

Slopes correspond to frequencies in the interferogram

es

93

Flath-Earth phase

Interferogram flattening (ellipsoid)

in der Helmholtz-Gemeinschaft

Interferogram flattening (ellipsoid)

Mt. Etna, JAXA (PALSAR)

für Luft- und Raumfahrt e.V. DLR in der Helmholtz-Gemeinschaft.

Interferogram flattening: ellipsoid + available DEM (e.g. SRTM)

für Luft- und Raumfahrt e.V.

in der Helmholtz-Gemeinschaft

Contraction of the Contraction

Averaging or Filtering or Multilooking

→ Complex numbers are averaged before extracting the phase

Phase unwrapping

 \neg Assigning each phase the correct number of "missing" 2 π

$$\varphi_{\text{unwrapped}} = \varphi_{\text{wrapped}} + k \cdot 2\pi$$

→ 1-D phase unwrapping

Deutsches Zentrum Für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Phase Unwrapping

- Interferometric phase values belong to the interval $\varphi_{int} \in [0, 2\pi[$
- The range differences Δr will be mapped to this interrval

 $\varphi_{int} = (2\pi/\lambda) \cdot \Delta r \mod 2\pi$

• The information on the distance is thus ambiguous

 $\Delta r = (\lambda/2\pi) \cdot \varphi_{int} + k \cdot \lambda/2 \quad k \in \mathbb{Z}$

- If the sampling is fine enough and there are enough well behaved regions, the ambiguities can be solved
 - → "phase unwrapping"

Geocoding

→ From SAR coordinates to "usual" coordinates (UTM or Lat/Lon)

→ Geocoding is essentially a change of coordinates & resampling

Deutsches Zentrum R für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft.

References

• SAR Basics and Processing:

- J. C. Curlander, R. N. McDonough, Synthetic Aperture Radar: Systems and Signal Processing. New York: Jon Wiley & Sons, 1991.
- I. Cumming, F. Wong, Digital processing of synthetic aperture radar data: signal processing algorithms. Boston: Artech House, 2005.
- F. Henderson (Ed.), Manual of Remote Sensing: Principles and Applications of Radar Imaging, Wiley, 1999.
- Interferometry, Tomography
 - R. Hanssen, Radar interferometry: data interpretation and error analysis, Dordrecht, Kluwer Academic Publishers, 2001.
 - A. Reigber, A. Moreira, "First demonstration of airborne SAR tomography using multibaseline L-band data", IEEE Trans. Geosc. and Remote Sens., Vol. 38, No. 5, pp. 2142-2152, 2000.

• SRTM, TerraSAR-X, TanDEM-X

- T. Farr et al. "The Shuttle Radar Topography Mission", Reviews of Geophysics, vol. 45, 2007.
- M. Stangl, R. Werninghaus, B. Schweizer, C. Fischer, M. Brandfass, J. Mittermayer, H. Breit, "TerraSAR-X technologies and first results", IEE Proceedings Radar, Sonar and Navigation, vol. 153, pp. 86-95, 2006.
- G. Krieger, A. Moreira, H. Fiedler, I. Hajnsek, M. Younis, C. Werner, and M. Zink, "The TanDEM-X mission: a satellite formation for high resolution SAR interferometry", to appear in IEEE Transactions on Geoscience and Remote Sensing, 2007.

Deutsches Zentrum IR für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft