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Good Interferogram

%

2011 Tohoku earthquake

« Good correlation (low
noise)

 Signal is dominated by
deformation

—

ALOS data supplied by JAXA: each
colour fringe represents 11.6 cm of
displacement away from satellite
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Unwarpped Good Interferogram

Line-of- snght
Dlspiacement_(m)

L
2 -1 0

« Can be easily unwrapped

 Deformation dominates

Integrated phase cycles
giving 2.5 m relative
displacment
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Typical interferograms

Signal dominated by
amosphere, orbit and
DEM errors

(larger than
deformation for low
strains and short
intervals)
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Typical interferograms

Signal dominated by
amosphere, orbit and
DEM errors

High
:f;5 Decorrelation

(especially for

(larger than ' long intervals)

deformation for low
strains and short
intervals)
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Persistent Scatter (PS) InSAR

Motivation!

e Allows better selection of coherent
pixels

e DEM error estimation possible

* More reliable phase unwrapping
possible (3-D)

e Other errors can be reduced by
filtering in space and time

e Sub-pixel resolution possible A time series analysis approach
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Improvement of coherence

InSAR (80 looks) Persistent Scatterer InSAR
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After unwrapping and reduction of

non-deformation signals
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High resolution PS Processing

Barcelona Olympic Port (Institut de Geomatica)
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Cause of Decorrelation

The echos sum to _
give one phase value If scatterers move with respect

for the pixel to each other, the phase sum
changes

Acquisition

Distributed scatterer pixel

(similar effect if incidence angle changes)
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Persistent Scatterer (PS) Pixel

One Scatterer
dominates

The echos sum to
give one phase value

for the pixel
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Acquisition Acquisition

Distributed scatterer pixel “Persistent scatterer” (PS) pixel
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PS Interferogram Processing

» All interferograms with respect to same “master” image
* No spectral filtering applied (maximise resolution)
e Oversampling is preferred to avoid PS being at edge of pixel

e Coregistration can be difficult - use DEM/orbits or slave-slave
coregistration

» Reduction of interferometric phase using a priori DEM to
minimize ambiguities
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Interferograms formed

a) 600f Q

400 |

N

=)
o &
OO
O
OO

=200 | &) O o)

-1000 | ©)

UNIVERSITY OF LEEDS




ixample: single-master interferograms

4638
04—JUN—1992
428.5 m

22016
30=SEP—1925
436.9 m

16872
12—JUL—1288
—451.5 m

24387
19—-DEC—1999
188.8 m

6141
17—SEP—1992
572.5 m

2844
D5—NOV—-1925
522.0 m

F737.3
16-AUG—1998
—120.4 m

27393
16—-JUL—-2000
— 399,357

11151

D2-SEP—-1993
73.8 m

5850
02—-JUN—1996
-506.8 m

17874
20—SEP—1998
—233.4 m

27894
20—AUG—2000
282.2 m

12153
11—-NOV—-1993
—83.3 m

11862
27 %JUL—1997
1202 m

22383
01=AUG—1992
227.0 m

20513
17=JUN—1995
—-124.7 m

12363
31-AUG—1997
473.7 m

22884
05-SEP=1999
—-358.5 m

21014
22—-JUL—1985
241.2 m

13385
D9 —NOV—-1997
—335.5 m

23886
14—-NOV-1999
351.6 m
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Interferometric Phase

For each pixel in each interferogram:

(I)lnt W{q)defo + q)atmos T A(I)Ol‘blt-l- A(I)topo'|'@

Atmospheric DEM
Delay Error

Deformation Orbit Error “Noise”
in LOS

W{e} = wrapping operator
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PS Processing Algorithms

PS
Methods
Temporal Spatial
Model Correlation

» Relying on model of deformation in time: e.g. “Permanent
Scatterers” (Ferretti et al. 2001), Delft approach (Kampes et al.,
2005)

» Relying on correlation in space: StaMPS (Hooper et al. 2004)
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PS Processing Algorithms

PS
Methods
Temporal Spatial
Model Correlation

» Relying on model of deformation in time: e.g. “Permanent
Scatterers” (Ferretti et al. 2001), Delft approach (Kampes et al.,
2005)

» Relying on correlation in space: StaMPS (Hooper et al. 2004)
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“Permanent Scatterer Technigue

Range-change
rate (mm/yr)

11.3

2 San.Francisco Bay Area,

o €, A

Ferretti et al, 2004
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Double-difference phase

For each pair of pixels in each interferogram:

6(I)int = 6(I)defo + 6(I)atmos+ A(I)orbit'l' 6A(l)topo + 6(l)noise
Atmospheric DEM
Delay Error

Deformation Orbit Error “Noise”
in LOS
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Double-difference phase

If pixel pairs are nearby:

6(I)int = 6(I)defo +0 mos+ A bit+ 6A(I)topo + 6(l)noise

Atmospheric DEM
Delay Error
Deformation Orbit Error “Noise”

in LOS
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Double-difference phase

If pixel pairs are nearby:

6(l)intz 6(I)defo T 6@ 6(I)noise

* model these two term

DEM
Error

Deformation
in LOS

“Noise”
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Preliminary Network

;:-:_.;_- 1: SELECTION
: _" nEo _* ¥'e % Only consider point (-like) scatterers.
o [ . -.1"| Selectthe best points (% in each grid cell
m|, | " eeem| " (ca. 250x250 m).
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Initial selection

» Initial selection based on amplitude dispersion (Ferretti et al.,
2001)

Imag

O’nz UA

— Gn ~ GA =D
- | Ha
RHa I
Real v Phase noise

Reasonable proxy for small phase noise (<0.25 rad)
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Preliminary Network

Only consider point (-like) scatterers.
Select the best points (= in each grid cell
(ca. 250x250 m).

2: ESTIMATION

Construct a "network " to estimate
displacement parameters and DEM error
differences between nearby points in
order to reduce atmospheric signal.
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Estimation in Time

e Linear deformation model
e Phase is function of time
dit)=a * t
e Observed is wrapped phase
-t < phase <«
e Goallis to unwrap the phase
time series, supported by the
model

Time _—
e There are many possibilities.

(for each arc between 2 pOintS) e A norm must be used to
decide which solution best.
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Simultaneous Estimation of D. rrors

APhase

Perpendicular Baseline (B, )

Constant for each
interferogram (AT Bperpsin (6)Ah

T

@ is incidence angle, Ah is DEM error,
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Preliminary Network

&,

Only consider point (-like) scatterers.
Select the best points (= in each grid cell
(ca. 250x250 m).

Construct a "network " to estimate
displacement parameters and DEM error
differences between nearby points in
order to reduce atmospheric signal.

3: INTEGRATION

L. N S Obtain the parameters at the points by LS
integration w.r.1. a reference point (X).

N R |dentify incorrect estimates and/or incoherent

i points using alternative hypothesis tests.
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Integrated results (Las Vegas)

DEM error

Linear deformation rate
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Next steps...

« Estimation and interpolation of atmospheric delay
from initial network. This is subtracted from all pixels

» Testing of all other pixels by forming arcs to initial
network

» Filtering in time and space to try and separate
unmodelled deformation from atmosphere
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Corner Reflector ]

Okr

Osr
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Corner Reflector InSAR vs Leveling

|Le\.'elirlu_:| and II’SI reSll.l[tS conl'lparisoln

35 I 1 I 'l I 1 I 1 1 I 1 l 1 I 1
304 ---} ' [ ILeveling n
5. —s— ENVISAT PSI|[

Displacement [mm,vertical]

Mar03 Aug03 Dec03 May04 Sep04 Feb05 Juld5 Nov05 Apr06 Aug06 Jan07 Jun07 Oct07 Mar08
Time [months]

Marinkovic et al, CEOS SAR workshop, 2004
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Results: Bay Area, California

Range-change
rate (mm/yr)

.......

San rancisco Bay Area (Ferrtti et I., 2004)

» Works well in urban areas, but not so well in areas
without man-made structures. \Why?
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Initial Selection

> T >
All pixels Best candidates Bad candidates
picked rejected using
e.g. Amplitude phase model

for pixel pairs
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Why few pixels picked in rural areas

All pixels Too few “best” Difference in atmospheric
candidates noise between pixels is
large, so unable to reliably

estimate velocity and DEM
error: All pixels rejected

 Lowering the bar for candidate pixels also leads to failure:
too many “bad” pixels for network approach.
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Results for Castagnola, Italy

Landshde
-1 to 20 cml/year

Castagnola, Northern Italy (from Paolo Farina)

» Algorithm rejects pixels whose phase histories deviate too much
from a predetermined model for how deformation varies with time
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Why few pixels picked when
deformation rate is irregular

> T >
All pixels Best candidates Phase model
picked Inadequate
e.g. Amplitude due to

deformation
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Example of rural area with irregular
deformation

Long Valley Volcanic
Caldera
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Usmg Temporal Model Algonthm
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StaMPS PS Approach

Developed for more general applications, to work:

a) inrural areas without b) when the deformation rate is
buildings (lOW amplltude) very irregu|ar

181.1H © Leveling
GPS

- EDM

PS InNSAR

181

180.9F

Vertical Difference (m)

é

1986 1988 1990 1992 1994 1996 1998 2000
Year
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PS Processing Algorithms

PS
Methods
Temporal Spatial

Model Correlation

 Relying on correlation in space: StaMPS Hooper et al. (2004, 2007,
2012)
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Series of single-master interferograms

e Pre-Processing as for Temporal Model Algorothm

4638
04—JUN—1992
428.5 m

22016
30-SEP—1995
4389 m

16872
12—JUL—1288
—451.5 m

24387
19—-DEC—1999
188.8 m

6141
17—SEP—-1992
572.5 m

2844
D5—NOV—-1925
522.0 m

F737.3
16-AUG—1998
—120.4 m

27393
16—-JUL—-2000
— 399,357

11151

D2-SEP—-1993
73.8 m

5850
02—-JUN—1996
-506.8 m

17874
20—SEP—1998
—233.4 m

27894
20—AUG—2000
282.2 m

12153
11—-NOV—-1993
—83.3 m

11862
27 %JUL—1997
1202 m

22383
01=AUG—1992
227.0 m

20513
17=JUN—1995
—-124.7 m

12363
31-AUG—1997
473.7 m

22884
05-SEP=1999
—-358.5 m

21014
22—-JUL—1985
241.2 m

13385
D9 —NOV—-1997
—335.5 m

23886
14—-NOV-1999
351.6 m
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Spatial Correlation PS Algorithm

Exploits spatial correlation of the deformation signal.

Interferometric phase terms as before:

(I)int = (I)defo T ¢atmos+ A(I)orbit t Aq)topo +@

Atmospheric DEM
Delay Error

Deformation Orbit Error “Noise”
in LOS
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Spatial Correlation PS Algorithm

Exploits spatial correlation of the deformation signal.

Interferometric phase terms as before:

(I)int = (I)defo T ¢atmos+ A(I)orbit t Aq)topo T (I)noise
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Spatial Correlation PS Algorithm

Exploits spatial correlation of the deformation signal.

Interferometric phase terms as before:

uncorr
A(I) topo 0
corr noise

(I)Int (I)defo T (I)atmos T A(l)orblt
T Aq)topo

» Correlated spatially - estimate by iterative spatial bandpass
filtering

44
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Estimation of Spatially Correlated Terms

," +| = crude low-pass filter

In spatial domain
(Hooper et al., 2004)

Frequency response

Better (Hooper et al., 2007)

 Low frequencies plus
dominant frequencies in
surrounding patch are

passed.

Example frequency response

e.g., low-pass + adaptive “Goldstein” filter (Goldstein and

Werner, 1998)
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Spatial Correlation PS Algorithm

A(I)ugco(gr
(plnt (I)defo'l' q)atmos'l' (l)orblt + A(I)COE: +
topo

» Correlated spatially - estimate by iterative spatial bandpass
filtering
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Spatial Correlation PS Algorithm

Aq)ucr;co(;r
(plnt (I)defo'l' q)atmos'l' (l)orblt + A(I)COE: +
topo

» Correlated spatially - estimate by iterative spatial bandpass
filtering

» Correlated with perpendicular baseline - estimate by inversion
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Spatial Correlation PS Algorithm

(l)int N (I)filtered

Perpendicular Baseline (B, )

 1-D problem (as opposed to 2-D with temporal model approach)

Temporal coherence is then estimated from residuals
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Re-estimation of Spatially Correlated
Terms

oersties o Wi nat. . . .
"',j" .52 [ Contribution of each pixel weighted based
b2 <2\ | on its estimated temporal coherence

* Followed by restimation of DEM error and
temporal coherence

* |terated several times
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Selecting PS

B PS candidates PDF
Random phase PDF

95% threshold
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Results in Long Valley
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Wrapped PS Phase

> Interferogram phase, corrected for topographic error
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Phase unwrapping

)

&

» With temporal model, phase is unwrapped by finding model
parameters that minimise the wrapped residuals between double
difference phase and the model

o If we do not want to assume a temporal model of phase evolution
we need another strategy
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hase unwrapping

i

(Points represent PS)

- Integrate phase differences
between neighboring pixels

* Avoid paths where phase
difference > half cycle

: ‘
o o %
- .

Ae ® o
o o o ® - o

Residues lie on branch cuts
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2D Inverse Problem

» Connect 1

® =
+
=
= )
|
&
@ @
"esidues to maximise probability or minimise some norm
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3D Problem (Sparse)

L

— 1 ) L N <
e — -:' ’
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Unwrapped PS Phase

e . > Not linear in time
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Estimation of Atmospheric Signal
And Orbit Errors

» Filtering in time and space, as for temporal model approach

= — Zrea 20
},.-;17—Sep—1992; 02-Sep-1993  11-Nov-1993 17-J
E
8
c
g
5
£
8
038
2]
@)
-
Bkt 4 T » b ¥
Estimate of atmospheric and orbit errors subtracted, leaving deformation
estimate (not necessarily linear).
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Comparison of approaches

V wWred .;_L;O'S V_(,‘l()(ll[‘\/

() mmjyear - 120

Temporal model approach Spatial correlation approach

Long valley caldera
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Validation with Ground Truth

g 1 | I I I I I I

o 181.11 Leveling { _
0 GPS o
2 g4l - EDM |
2 o PSInSAR

-

T 180.9f ]
_2 v =0 Yman, adijharmccia

t

Q

> 180.8

1986 1988 1990 1992 1994 1996 1998 2000
Year

» PS show good agreement
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Eyjafjallajokull PS time series

T132
cumulative
line-of-sight
displacement

eEarthquake
epicentres for each
epoch (Iceland Met
Office)
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& < g " ‘
> y 4
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Error estimation

» Because no temporal model was assumed, probability density
functions can be estimated by repeatedly fitting a temporal model
using the percentile bootstrapping method.

0.6

Vertical rate (mm year—l)
Standard deviation vertical rate (mm year ')

=30 6.0

Subsidence rates in Bangkok  Standard deviatios of rates
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Comparison PS Algorithms

PS
Methods
Model Correlation

eSpatial correlation algorithm works in more general case,
but may miss PS with non-spatially correlated deformation

eTemporal model algorithm more rigorous in terms of PS
reliability evaluation, but may not work in rural areas, or
where deformation is irregular in time.
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Compar1son PS Algorithms
e (Sousa et al, 2010)

Temporal model approach
(DePSl, Ketelaar thesis, 2008)

Spatial coherence approach
(StaMPS, Hooper et al, JGR 2007)

Mean LOS velocity [mm/yr]

= -
-10 -5 0 5

T Housing development near Granada, Spain
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Persistent Scatterer (PS) InSAR

Summary

» Relies on pixels that exhibit low decorrelation with time
and baseline

* Non-deformation signals are reduced by modelling and
filtering

* PS techniques work best in urban environments, but can
also be applied in rural environments
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Interpretation of PS observations

Consider what is actually moving

(ofl, [ (il [fof (ol | o [l
\ \ \ o\ R N\ \
A\ \ N \ \ \ Noi N \
"". \ \ \ \ X \. \ \ \ \. \ \.\
\ \ \ \ \\ \"\ \ \ \ \
X N \ % \ O\ \ G \ O\ \ \ "\
AR P T~ N | P i N \ \ % \
\ I‘."x ; h \\I"\ l.\'. .-} h \ \\ l"f’ - =
\ \ I\.I '.\\ o
s \ \\ \
- - i \ N\ - - -
- - —\ . l’ -
Compaction
Stable layer Stable layer Stable layer
=R ~
i e s
{ Gas ) C Gas >
\\»-__*_ __ == «-—-’/ P o __ &
,°

g
COMET+
Cel for the
Observation and Modelling
of Earthquakes, Volcanoes and Tectonics

UNIVERSITY OF LEEDS




