Terrain Motion and Persistent Scatterer InSAR

Andy Hooper University of Leeds

ESA Land Training Course, Bucharest, 14-18th September, 2015

Good Interferogram

Observation and Modelling

of Earthquakes, Volcanoes and Tectonics

2011 Tohoku earthquake

- Good correlation (low noise)
- Signal is dominated by deformation

ALOS data supplied by JAXA: each colour fringe represents 11.6 cm of displacement away from satellite

Unwarpped Good Interferogram

Observation and Modelling

of Earthquakes, Volcanoes and Tectonics

- Can be easily unwrapped
- Deformation dominates

Integrated phase cycles giving 2.5 m relative displacment

Typical interferograms

Signal dominated by amosphere, orbit and DEM errors

(larger than deformation for low strains and short intervals)

Typical interferograms

Signal dominated by amosphere, orbit and DEM errors

(larger than deformation for low strains and short intervals)

High Decorrelation

(especially for long intervals)

Persistent Scatter (PS) InSAR

Motivation!

- Allows better selection of coherent pixels
- DEM error estimation possible
- More reliable phase unwrapping possible (3-D)
- Other errors can be reduced by filtering in space and time
- Sub-pixel resolution possible

A time series analysis approach

Improvement of coherence

InSAR (80 looks)

Persistent Scatterer InSAR

After unwrapping and reduction of non-deformation signals

High resolution PS Processing

Barcelona Olympic Port (Institut de Geomatica)

Cause of Decorrelation

Distributed scatterer pixel

If scatterers move with respect to each other, the phase sum changes

(similar effect if incidence angle changes)

Persistent Scatterer (PS) Pixel

Distributed scatterer pixel

"Persistent scatterer" (PS) pixel

PS Interferogram Processing

- All interferograms with respect to same "master" image
- No spectral filtering applied (maximise resolution)
- Oversampling is preferred to avoid PS being at edge of pixel
- Coregistration can be difficult use DEM/orbits or slave-slave coregistration
- Reduction of interferometric phase using a priori DEM to minimize ambiguities

Interferograms formed

Example: single-master interferograms

4638	6141	11151	12153	20513	21014
04-JUN-1992	17-SEP-1992	02-SEP-1993	11-NOV-1993	17-JUN-1995	22-JUL-1995
428.5 m	572.5 m	73.8 m	-63.3 m	-124.7 m	241.9 m
22016	2844	5850	11862	12363	13365
30-SEP-1995	05-NOV-1995	02-JUN-1996	27-JUL-1997	31-AUG-1997	09-N0V-1997
436.9 m	522.0 m	-506.8 m	120.9 m	473.7 m	-335.5 m
16872	17373	17874	22383	22884	23886
12-JUL-1998	16-AUG-1998	20-SEP-1998	01-AUG-1999	05-SEP-1999	14-NOV-1999
-451.5 m	-120.4 m	-233.4 m	227.0 m	-358.5 m	351.6 m
24387	27393	27894	= "Master"		
19-DEC-1999	16-JUL-2000	20-AUG-2000			
188.8 m	-399.3 m	282.2 m			

Interferometric Phase

For each **pixel** in each **interferogram**:

 $W{\bullet} = wrapping operator$

UNIVERSITY OF LEEDS

PS Processing Algorithms

- Relying on model of deformation in time: e.g. "Permanent Scatterers" (Ferretti et al. 2001), Delft approach (Kampes et al., 2005)
- Relying on correlation in space: StaMPS (Hooper et al. 2004)

PS Processing Algorithms

- Relying on model of deformation in time: e.g. "Permanent Scatterers" (Ferretti et al. 2001), Delft approach (Kampes et al., 2005)
- Relying on correlation in space: StaMPS (Hooper et al. 2004)

Ferretti et al, 2004

Double-difference phase

For each pair of pixels in each interferogram:

Double-difference phase

If pixel pairs are nearby:

Double-difference phase

If pixel pairs are nearby:

Preliminary Network

1: SELECTION

Only consider point (-like) scatterers. Select the **best points** (•) in each grid cell (ca. 250x250 m).

Initial selection

Initial selection based on **amplitude dispersion** (Ferretti et al., 2001)

Reasonable proxy for small phase noise (<0.25 rad)

Preliminary Network

1: SELECTION

Only consider point (-like) scatterers. Select the **best points** (•) in each grid cell (ca. 250x250 m).

2: ESTIMATION

Construct a "network" to estimate displacement parameters and DEM error differences **between nearby points** in order to reduce atmospheric signal.

Estimation in Time

Time

(for each arc between 2 points)

- Linear deformation model
- Phase is function of time
 d(t) = a * t
- Observed is wrapped phase $-\pi < phase < \pi$
- Goal is to unwrap the phase time series, supported by the model
- There are many possibilities.
- A norm must be used to decide which solution best.

Simultaneous Estimation of DEM Errors

Preliminary Network

1: SELECTION

Only consider point (-like) scatterers. Select the **best points** (•) in each grid cell (ca. 250x250 m).

2: ESTIMATION

Construct a "network" to estimate displacement parameters and DEM error differences **between nearby points** in order to reduce atmospheric signal.

3: INTEGRATION

Obtain the *parameters at the points* by LS integration w.r.t. a reference point (**X**). Identify incorrect estimates and/or incoherent points using alternative hypothesis tests.

Integrated results (Las Vegas)

DEM error

Linear deformation rate

[m]

Next steps...

- Estimation and interpolation of atmospheric delay from initial network. This is subtracted from all pixels
- Testing of all other pixels by forming arcs to initial network
- Filtering in time and space to try and separate unmodelled deformation from atmosphere

Corner Reflector Experiment

Corner Reflector InSAR vs Leveling

Marinkovic et al, CEOS SAR workshop, 2004

Results: Bay Area, California

San Francisco Bay Area (Ferretti et al., 2004)

Works well in urban areas, but not so well in areas without man-made structures. Why?

Initial Selection

e.g. Amplitude

Bad candidates rejected using phase model for pixel pairs

Why few pixels picked in rural areas

All pixels

Too few "best" candidates

Difference in atmospheric noise between pixels is large, so unable to reliably estimate velocity and DEM error: All pixels rejected

• Lowering the bar for candidate pixels also leads to failure: too many "bad" pixels for network approach.

Results for Castagnola, Italy

Castagnola, Northern Italy (from Paolo Farina)

Algorithm rejects pixels whose phase histories deviate too much from a predetermined model for how deformation varies with time

Why few pixels picked when deformation rate is irregular

All pixels

Best candidates picked e.g. Amplitude Phase model inadequate due to deformation

Example of rural area with irregular deformation

California

Long Valley Volcanic Caldera

Using Temporal Model Algorithm

StaMPS PS Approach

Developed for more general applications, to work:

a) in rural areas without buildings (low amplitude)

b) when the deformation rate is very irregular

PS Processing Algorithms

Relying on correlation in space: StaMPS Hooper et al. (2004, 2007, 2012)

Series of single-master interferograms

• Pre-Processing as for Temporal Model Algorothm

41

Exploits spatial correlation of the deformation signal.

Interferometric phase terms as before:

Exploits spatial correlation of the deformation signal.

Interferometric phase terms as before:

$$\phi_{int} = \phi_{defo} + \phi_{atmos} + \Delta \phi_{orbit} + \Delta \phi_{topo} + \phi_{noise}$$

Exploits spatial correlation of the deformation signal.

Interferometric phase terms as before:

$$\phi_{\text{int}} = \phi_{\text{defo}} + \phi_{\text{atmos}} + \Delta \phi_{\text{orbit}} + \Delta \phi_{\text{topo}}^{\text{uncorr}} + \phi_{\text{noise}} + \phi_{\text{noise}}$$

Correlated spatially - estimate by iterative spatial bandpass filtering

44

Estimation of Spatially Correlated Terms

- = crude low-pass filter in spatial domain
 - (Hooper et al., 2004)

Frequency response

Better (Hooper et al., 2007)

 Low frequencies plus dominant frequencies in surrounding patch are passed.

Example frequency response

e.g., low-pass + adaptive "Goldstein" filter (Goldstein and Werner, 1998)

$$\phi_{\text{int}} = \phi_{\text{defo}} + \phi_{\text{atmos}} + \Delta \phi_{\text{orbit}} + \Delta \phi_{\text{topo}}^{\text{uncorr}} + \phi_{\text{noise}} + \phi_{\text{noise}}$$

Correlated spatially - estimate by iterative spatial bandpass filtering

$$\phi_{\text{int}} = \phi_{\text{defo}} + \phi_{\text{atmos}} + \Delta \phi_{\text{orbit}} + \Delta \phi_{\text{topo}}^{\text{corr}} + \phi_{\text{noise}} + \phi_{\text{noise}}$$

- Correlated spatially estimate by iterative spatial bandpass filtering
- Correlated with perpendicular baseline estimate by inversion

• 1-D problem (as opposed to 2-D with temporal model approach)

Temporal coherence is then estimated from residuals

Re-estimation of Spatially Correlated Terms

Contribution of each pixel weighted based on its estimated temporal coherence

- Followed by restimation of DEM error and temporal coherence
- Iterated several times

Selecting PS

Where γ_x is the temporal coherence

Results in Long Valley

Wrapped PS Phase

Interferogram phase, corrected for topographic error

Phase unwrapping

- With temporal model, phase is unwrapped by finding model parameters that minimise the wrapped residuals between double difference phase and the model
- If we do not want to assume a temporal model of phase evolution we need another strategy

Unwrapped PS Phase

Not linear in time

Estimation of Atmospheric Signal And Orbit Errors

Filtering in time and space, as for temporal model approach

Estimate of atmospheric and orbit errors subtracted, leaving deformation estimate (not necessarily linear).

Comparison of approaches

Temporal model approach

Spatial correlation approach

Long valley caldera

Validation with Ground Truth

PS show good agreement

Eyjafjallajökull PS time series

01 Aug 2009 18 Jun 2009 29 Jun 2009 10 Jul 2009 21 Jul 2009 12 Aug 2009 03 Sep 2009 25 Sep 2009 06 Oct 2009 17 Oct 2009 1 120 20 Mar 2010 28 Oct 2009 04 Feb 2010 08 Nov 2009 19 Nov 2009 3. 31 Mar 2010 11 Apr 2010 03 May 2010 22 Apr 2010 05 Jun 2010 epicentres for each epoch (Iceland Met 16 Jun 2010 19 Jul 2010 30 Jul 2010 10 Aug 2010 01 Sep 2010 -9.7 (cm)

T132

cumulative

line-of-sight

•Earthquake

Office)

11.0

displacement

Error estimation

 Because no temporal model was assumed, probability density functions can be estimated by repeatedly fitting a temporal model using the percentile bootstrapping method.

Subsidence rates in Bangkok

Standard deviations of rates

Comparison PS Algorithms

•Spatial correlation algorithm works in more general case, but may miss PS with non-spatially correlated deformation

•Temporal model algorithm more rigorous in terms of PS reliability evaluation, but may not work in rural areas, or where deformation is irregular in time.

Comparison PS Algorithms

-10

-5

0

(Sousa et al, 2010)

Temporal model approach (DePSI, Ketelaar thesis, 2008)

Spatial coherence approach (StaMPS, Hooper et al, JGR 2007)

Housing development near Granada, Spain

Persistent Scatterer (PS) InSAR Summary

- Relies on pixels that exhibit low decorrelation with time and baseline
- Non-deformation signals are reduced by modelling and filtering
- PS techniques work best in urban environments, but can also be applied in rural environments

Interpretation of PS observations

Consider what is actually moving

