#### → 6th ESA ADVANCED TRAINING COURSE ON LAND REMOTE SENSING

#### **SAR interferometry**

esa

**Ramon Hanssen** 

Delft University of Technology (TU Delft) The Netherlands e-mail: r.f.hanssen@tudelft.nl / Web: www.tudelft.nl/hanssen

14-18 September 2015 | University of Agronomic Science and Veterinary Medicine Bucharest | Bucharest, Romania



## SAR SLC observations





SLC: Single-Look Complex data

 Single-look: no averaging, finest spatial resolution

•Complex: both real and imaginary (In-phase and quadrature phase) stored Coherent imaging

 $y_1 = \frac{|y_1|}{|y_1|} \exp(j\psi_1)$ 

- Amplitude

#### Phase

Uninterpretable, due to scattering mechanism





# Model of observation equations (1) Functional model:

$$\begin{array}{ll} \partial \phi_p = -\frac{4\pi}{\lambda} (D_p + \frac{B_\perp}{R_1 \sin \theta^\circ} H_p) \\ \hline \mbox{Observation} & \mbox{Unknowns} \\ \hline \mbox{Rank deficiency!} & \mbox{Often treated opportunistically} \\ \hline \mbox{Stochastic model:} \\ Q_\phi = \sigma_\phi^2 \, I_n & \mbox{Based on thermal (instrumental) noise} \end{array}$$

This is too much simplified, let's make it more realistic!



## Model of observation equations (2)

- Add unknown parameter:
  - Phase ambiguity

Integer valued unknown

$$\partial \phi_p = -\frac{4\pi}{\lambda} \left( D_p + \frac{B_\perp}{R_1 \sin \theta^\circ} H_p \right) + 2\pi \frac{k}{R_1}$$

- Add error signal to stochastic model:
  - Atmosphere (troposphere, ionosphere)



#### Main condition for interferometry:

# Coherence!



# Phase contributions

The phase  $\Psi_{1,obs}$  of a resolution cell in SAR image 1 is composed of two parts:

1. Geometric phase (dependent on distance antenna-scatterer):

 $\Psi_{1,geom}$ 

$$\psi_{1,geom} = \frac{2\pi}{\lambda} 2R = \frac{4\pi}{\lambda}R$$





-6

# 1. Geometric Phase

Geometric phase: distance dependent.



**T**UDelft

# Phase contributions

The phase  $\Psi_{1,obs}$  of a resolution cell in SAR image 1 is composed of two parts:

1. Geometric phase (dependent on distance antenna-scatterer):

 $\psi_{1,geom}$ 

2. Scattering phase (dependent on interaction of EM wave with objects on the ground,

 $\psi_{1,scat}$ 

This is a random number: uniform distribution







# Phase contributions

The phase  $\Psi_{1,obs}$  of a resolution cell in SAR image 1 is composed of two parts:

1. Geometric phase (dependent on distance antenna-scatterer):

#### $\psi_{1,geom}$

2. Scattering phase (dependent on interaction of EM wave with objects on the ground,

#### $\psi_{1,scat}$

The observed phase  $\psi_{1,obs}$  is the <u>sum</u> of both components:

$$\psi_{1,obs} = \psi_{1,geom} + \psi_{1,scat}$$

Due 'to the wrapping, the observed phase has a uniform random distribution too!







# emporal Scattering changes



11 June 1992

7 January 1993

22 April 1993



# ERS-2 SAR in false colours (RGB)



11 June 1992

7 January 1993

22 April 1993









#### Temporal decorrelation

September 17, 2015

**TU**Delft

#### Temporal decorrelation







#### Coherence loss as function of time 1 day interval 3.5 year interval



0.2

0

0.4

0.6





1

0

0.2

0.4

0.6

0.8

90

1

0.8

#### Phase variance estimation: Coherence

•Optics equivalent to correlation:

$$\gamma = \frac{E\{y_1 y_2^*\}}{\sqrt{E\{|y_1|^2\} \cdot E\{|y_2|^2\}}}$$

•Estimation of coherence:

$$|\hat{\gamma}| = \frac{|\sum_{n=1}^{N} y_{1}^{(n)} y_{2}^{(n)}|}{\sqrt{\sum_{n=1}^{N} |y_{1}^{(n)}|^{2} \sum_{n=1}^{N} |y_{2}^{(n)}|^{2}}}$$



complex

number!

Coherence corrected for interferometric phase

Interferometric phase

•Optics equivalent to correlation:

$$\begin{split} \gamma &= \frac{E\{y_1y_2^*\}}{\sqrt{E\{|y_1|^2\} \cdot E\{|y_2|^2\}}} = \frac{|E\{y_1y_2^*\}|\exp(j\phi)}{\sqrt{E\{|y_1|^2\} \cdot E\{|y_2|^2\}}}\\ \text{•Estimation of coherence:} & \text{Removal of the (non-ergodic) interferometric phase}\\ &|\hat{\gamma}| = \frac{|\sum_{n=1}^{N} y_1^{(n)} y_2^{(n)} \exp(-j\phi^{(n)})|}{\sqrt{\sum_{n=1}^{N} |y_1^{(n)}|^2 \sum_{n=1}^{N} |y_2^{(n)}|^2}} & \text{Biased estimate!}\\ &|\text{ (over-estimation)} \end{split}$$





#### **Biased** estimation



**TU**Delft

# Coherence, multilooks, and phase PDF



**T**UDelft





# Coherence as function of wavelength



T Dolft

Source: H.Zebker

# Results SIR-C mission, Simultaneous C and L band $\Delta$ T=6 months

C-Band  $\lambda = 5.6$  cm



20 km



Ν

0 Correlation 1 1 Vegetation 0

#### Coherence loss as function of time 1 day interval 3.5 year interval



0.2

0

0.4

0.6





1

0

0.2

0.4

0.6

0.8

97

1

0.8

#### Coherence estimation bias

#### 3.5 year interferogram



$$|\hat{\gamma}| = \frac{|\sum_{n=1}^{N} y_1^{(n)} y_2^{(n)}|}{\sqrt{\sum_{n=1}^{N} |y_1^{(n)}|^2 \sum_{n=1}^{N} |y_2^{(n)}|^2}}$$
**T**UDelft

Spatial coherence estimation requires large spatial window: Trade-off resolution and precision

#### Coherence vs SNR

The absolute value of the coherence can be related to the signal-to-noise ratio:

$$|\gamma| = \frac{SNR}{SNR+1} = \frac{1}{1+SNR^{-1}} = \frac{S}{S+N}$$

Signal to clutter ratio:

$$\sigma_{\varphi} = \frac{1}{\sqrt{2 \cdot SCR}}$$



#### Error sources

- Decorrelation
- Atmosphere
- Orbit error
- DEM error



#### Structure of Atmosphere



**T**UDelft

## Ionospheric refractivity

 $N(x,z,t) = -4.03 \cdot 10^7 n_e/f^2$ 

- $n_e$  = number of electrons f = electromagnetic free
  - = electromagnetic frequency

- Delay due to free electrons
- Dispersive (frequency-dependent): ✓ How many times worse is L-band than C-band?



#### Ionospheric Delay

IONOSPHERIC PROPAGATION ERROR (EUROPE) at 10.01.97



#### Wenchuan Earthquake, L-Band



lonospheric fringes?

# Ding et al, ALOS Symposium, 2008

#### **Coregistration Offsets**



Range offsets

Azimuth offsets



### High-Latitude Azimuth offsets



Meyer and Nicoll, Fringe 2007

**T**UDelft

#### Structure of Atmosphere



**T**UDelft

### **Tropospheric Refractivity**

$$N(\mathbf{x}, z, t) = \frac{P}{k_1 \frac{P}{T}} + \left(\frac{e}{k_2 \frac{e}{T}} + \frac{e}{k_3 \frac{e}{T^2}}\right) + 1.4W$$

•P=Pressure

•T=Temperature

•e=Partial water vapour pressure

•W=Liquid water

Most spatial variability

Hydrostatic term from surface measurements
Wet delay term (sensitivity 4-20 times higher for WV than for T)
Liquid term limited (<5%)</li>







#### Spatial variability of water vapour



## Tropospheric signal



**T**UDelft

#### Temporal variability in water vapour

In the presence of topography, changes in the refractivity between the two acquisitions will cause an interferometric phase even if no spatial variability





#### Change in refractivity profile



✓ A difference between  $I_2$  and  $I_1$  will result in a phase offset between p and q



#### Error sources

- Decorrelation
- Atmosphere
- Orbit error
- DEM error







#### **Orbit Error Components**



#### **Orbit Error Correction**







Interferogram

Orbit Correction Estimate

**Remaining Phase** 

Courtesy Herman Baehr



## InSAR data processing



### Coregistration

Sampling is different for the two acquisitions



Master



Slave

Use amplitude cross-correlation



#### Master-Slave Offsets



**T**UDelft

Fit a polynomial, and remove outliers

# Resampling



- Use polynomial to calculate position of each master pixel in slave
- Interpolate value in slave



#### Phase ambiguity estimation

(AKA Phase unwrapping. Essentially means counting fringes)



**TU**Delft



September 17, 2015

#### Unwrapping Phase Images



## General approach

- Strictly: phase unwrapping is ill-posed problem (not possible to obtain unique solution)
- Heuristic approach: assumption of Nyquist criterion: sampling rate is high enough to avoid aliasing
- In other words:

True (unwrapped) phase values of neighboring pixels assumed to lie with one-half cycle



## Forward problem

• Define the <u>Wrapping operator</u>:

$$\psi = W\{\phi\} = \operatorname{mod}\{\phi + \pi, 2\pi\} - \pi \qquad \in [-\pi, \pi).$$

# Inverse problem

• Main condition for wrapped phase gradients:

 $|\Delta \psi(x)| = |\psi(x+1) - \psi(x)| < \pi$ 

• Phase unwrapping is the integration of phase gradients



## One-dimensional example

Nyquist criterion: phase differences between adjacent samples are element of [-0.5, 0.5) cycles

Wrapped data (modulo 1 cycle):



**T**UDelft

- Key to phase unwrapping:
  - not: directly estimating unwrapped phase, but...
  - Estimating the phase differences between them (phase gradients)
- Problems occur due to additive phase noise (decorrelation) or high spatial frequency phase variation



### 2D phase unwrapping

define discrete equivalents to partial derivatives of a function F as

$$\Delta_i F(i,k) = F(i+1,k) - F(i,k)$$
$$\Delta_k F(i,k) = F(i,k+1) - F(i,k)$$

and compact them into gradient notation:

$$\nabla F(i,k) = \begin{pmatrix} \Delta_i F(i,k) \\ \Delta_k F(i,k) \end{pmatrix}$$





Suppose 2D vector field  $A = \begin{pmatrix} A_i \\ A_k \end{pmatrix}$ 

Definition of *curl* :

$$\begin{pmatrix} \Delta_i \\ \Delta_k \end{pmatrix} \times \begin{pmatrix} A_i(i,k) \\ A_k(i,k) \end{pmatrix} = \Delta_i A_k(i,k) - \Delta_k A_i(i,k)$$
  
=  $[A_k(i+1,k) - A_k(i,k)] - [A_i(i,k+1) - A_i(i,k)]$   
=  $A_k(i+1,k) - A_k(i,k) - A_i(i,k+1) + A_i(i,k)$ 

September 17, 2015



Suppose 2D vector field 
$$\mathbf{A} = \begin{pmatrix} A_i \\ A_k \end{pmatrix}$$
  $\nabla F(i, k) = \begin{pmatrix} \Delta_i F(i, k) \\ \Delta_k F(i, k) \end{pmatrix}$ 

Definition of *curl* :

$$\begin{pmatrix} \Delta_i \\ \Delta_k \end{pmatrix} \times \begin{pmatrix} A_i(i,k) \\ A_k(i,k) \end{pmatrix} = \Delta_i A_k(i,k) - \Delta_k A_i(i,k)$$
$$= \begin{bmatrix} A_k(i+1,k) - A_k(i,k) \end{bmatrix} - \begin{bmatrix} A_i(i,k+1) - A_i(i,k) \end{bmatrix}$$
$$= A_k(i+1,k) - A_k(i,k) - A_i(i,k+1) + A_i(i,k)$$

Assume that  $A = \nabla F$ 

From vector analysis (and potential field theory) it is known that the curl of a gradient field is equal to zero. The gradient field is therefore a **<u>conservative field</u>**.

$$\nabla \times \nabla F = 0$$



$$\nabla \times \nabla F = \begin{pmatrix} \Delta_i \\ \Delta_k \end{pmatrix} \times \begin{pmatrix} \Delta_i F(i,k) \\ \Delta_k F(i,k) \end{pmatrix} = \Delta_i \Delta_k F(i,k) - \Delta_k \Delta_i F(i,k) \qquad \nabla F : \forall F = \Delta_i F(i,k) = \Delta_i F(i,k) = \Delta_i F(i,k) = 0$$



Curl of vector gradient of scalar potential *F* is identically zero.



 In phase unwrapping: the vector gradient field of the <u>unwrapped</u> <u>phase</u> is necessarily zero (every closed loop integral is zero)

$$\nabla \times \nabla F = 0$$

•The unwrapped phase field is thus completely specified, up to an additive constant

•However, the vector gradient field of the <u>wrapped</u> phase can be nonconservative (closed-loop integrals can give non-zero results)

 $\nabla \times \hat{\nabla} \psi \neq 0$ 



Ascending and descending, by M.C. Escher

**TUDelft** e.g. a true gradient outside  $[-\pi,+\pi)$  interval will be wrapped into it



#### Neutral

#### Result is path independent



#### Example residue



#### Positive residue

#### Result is path dependent











#### Unloaded residue pair

Positive residue Negative residue





Figure 11. Wrapped phase (grey), residues (green, red), and branch-cuts (blue, multiple cuts: pink) found by a minimum cost flow algorithm. Left: minimization of total branch-cut length (constant costs); note the unrealistic long straight branch-cuts. Centre: minimization of a cost function derived from the phase gradient and its variance; the branch-cuts are guided along the ridges of the mountains (visible as bright areas in the intensity SAR image of the same area (right)).

