

Sentinel-1 Toolbox

TOPS Interferometry Tutorial Issued May 2014

Copyright © 2015 Array Systems Computing Inc. http://www.array.ca/ https://sentinel.esa.int/web/sentinel/toolboxes TOPS Interferometry Tutorial

TOPS Interferometry Tutorial

Pico de Fogo in Cape Verde off the coast of Africa

Opening a Pair of SLC Products

In order to perform interferometric processing, the input products should be two or more Single Look Complex (SLC) products over the same area acquired at different times.

Step 1 - Open the products: Use the ^{COD} **Open Product** button in the top toolbar and browse for the location of the **Sentinel-1 Interferometric Wide (IW) swath** products.

Select the **manifest.safe** file from each Sentinel-1 product folder and press **Open Product**. Press and hold the Ctrl button on the keyboard to select multiple products at a time.

If the product is zipped, you may also select the zip file.

	L Fogo		•	🕫 📂 🖽 +
ent Items	S1A_IW_S S1A_IW_S	.C_1SSV_20141103T195043_20141103T195057_003122_00395A_F396.zrp .C_1SSV_20141127T195042_20141127T195056_003472_004117_2B48.zrp		
esktop				
Docum				
1				
omputer			-	
inputer	File name:	"S1A_IW_SLC1SSV_20141127T195042_20141127T195056_003472_004117_2B48	.zip"	Open Product

Opening a Product

Step 2 - View the product: In the **Products View** you will see the opened products. Within the product bands, you will find two bands containing the real (i) and imaginary (q) parts of the complex data. The i and q bands are the bands that are actually in the product. The virtual Intensity band is there to assist you in working with complex data.

Products View

In Sentinel-1 IW SLC products, you will find 3 subswaths IW1, IW2, IW3. Each subswath is for an adjacent acquisition by the TOPS mode. Fogo Island can be seen in IW3.

Footprint of Subswaths on World Map

Step 3 - View a band: To view the data, double-click on the **Intensity_IW3_VV** band. Zoom in using the mouse wheel and pan by clicking and dragging the left mouse button.

Intensity IW3 Band

Within a subswath, TOPS data is acquired in bursts. Each burst is separated by demarcation zones. Any 'data' within the demarcation zones can be considered invalid and should be zero-filled but may contain garbage values.

Coregistering the Data

For interferometric processing, two or more images must be coregistered into a stack. One image is selected as the master and the other images are the slaves. The pixels in slave images will be moved to align with the master image to sub-pixel accuracy.

Coregistration ensures that each ground target contributes to the same (range, azimuth) pixel in both the master and the slave image.

For TOPS InSAR, S-1 TOPS Coregistration should be used.

Step 4 - Coregister the images into a stack: Select S-1 TOPS Coregistration in the SAR Processing menu.

Apply Orbit File				
Radiometric				
Speckle Filtering	- 14			
Coregistration		InSAR Optimized Coregistration		
Interferometric		S-1 TOPS Coregistration	*	S-1 TOPS Coregistration
Geometric		Automatic Coregistration		S-1 Back Geocoding
Polarimetric	- 14	Cross InSAR resampling		C 1 Pango Shift
Ocean Tools	1.61	Stack Tools		5-1 Kange Smit
ASAR WSS		20000 1000	-	S-1 Azimuth Shift
Sentinel-1 TOPS	- (A)			

Select S-1 TOPS Coregistration

TOPS Coregistration consists of a graph that reads two products, select a single subswath with **TOPSAR-Split**, applies a precise orbit correction with **Apply-Orbit-File** and performs a DEM assisted **Back-Geocoding** coregistration.

-				
PSAR-Solit				
ny-orbit-File				1
Back-Geo	ocoding		Write	
y-Orbit-File(2)				
SAR-Split(2)				
4				
Read(2)				
				+
Read(2) TOPSAR-Sr	lit TOPSAR-Split	(2) Apply-Orbit-	File Apply-Orbit-F	ile(2) 11+1
rce Product			The second	
ie:				
S1A_IW_SLC1SSV_2	20141103T195043	_20141103T1950	057_003122_00395	A 👻 📖
				_

S-1 TOPS Coregistration

In the first Read operator, select the first product [1]. This will be your **master** image. In Read(2) select the other product. This will be your **slave** image.

In the TOPSAR-Split tab, select the IW3 subswath for each of the products.

Select a Subswath and Polarisation

In the Apply-Orbit-File tab, select **Sentinel Precise Orbits**. Orbit auxiliary data contain information about the position of the satellite during the acquisition of SAR data.

The Precise Orbit Determination (POD) service for SENTINEL-1 provides Restituted orbit files and Precise Orbit Ephemerides (POE) orbit files. POE files cover approximately 28 hours and contain orbit state vectors at fixed time steps of 10 seconds intervals. Files are generated one file per day and are delivered within 20 days after data acquisition.

If Precise orbits are not yet available for your product, you may select the Restituted orbits which may not be as accurate as the Precise orbits but will be better than the predicted orbits available within the product.

Orbit files for Sentinel-1 are automatically downloaded by the Toolbox.

Read Read(2) TO	OPSAR-Split TOPSAR-Split(2) Apply-Orbit-File Apply-Orbit-File(2) , +	· J
Orbit State Vectors:	Sentinel Precise (Auto Download)	
Polynomial Degree:	3	
		1

Select Sentinel Precise Orbits

In the Back-Geocoding tab, select the Digital Elevation Model (DEM) to use and the interpolation methods.

Areas outside the DEM or in the sea may be optionally masked out.

Select to output the Deramp and Demod phase if you require Enhanced Spectral Diversity to improve the coregistration.

2) TOPSAR-Split TOPSAR-Split(2) A	pply-Orbit-File Apply-Orbit-File(2) Back-Geocoding
Digital Elevation Model:	SRTM 3Sec (Auto Download)
DEM Resampling Method:	BICUBIC_INTERPOLATION
Resampling Type:	BISINC_5_POINT_INTERPOLATION
Mask out areas with no elevation	
Output Deramp and Demod Phase	
1	

Back-Geocoding Parameters

In the Write tab, specify the output folder and the target product name.

SAR-Split Target Pr	TOPSAR-Split(2) Apply-Orbit-File Apply-Orbit-File(2) Back-Geocoding Write
Name:	
S1A_IW	_SLC1SSV_20141103T195043_20141103T195057_003122_00395A_F396_IW1
Save 🗹 🔽	as: BEAM-DIMAP
e:\ou	ıt
V Oper	in SENTINEL-1 TOOLBOX

Specify the output name, format and folder

Press **Process** to begin processing the coregistration.

The resulting coregistered stack product will appear in the **Products View**.

<u>i</u> 🗟 [[3] S1A_IW_SLC1SSV_20141103T195043_20141103T195057_003122_00395A_F396_IW
÷.	Jentification
÷.	📔 Metadata
÷	📙 Tie-point grids
<u> </u>	📙 Bands
	[] i_IW3_VV_mst_03Nov2014
	🛄 q_IW3_VV_mst_03Nov2014
	Intensity_mst_03Nov2014
	i_IW3_VV_slv1_27Nov2014
	q_IW3_VV_slv1_27Nov2014
	Intensity_slv1_27Nov2014

Coregistered Stack Product

Interferogram Formation and Coherence Estimation

The interferogram is formed by cross multiplying the master image with the complex conjugate of the slave. The amplitude of both images is multiplied while the phase represents the phase difference between the two images.

The interferometric phase of each SAR image pixel would depend only on the difference in the travel paths from each of the two SARs to the considered resolution cell.

The interferometric phase variation $\Delta \phi$ is then proportional to ΔR divided by the transmitted wavelength λ .

Step 5 - Form the Interferogram: Select the stack and select Interferogram Formation from the InSAR Products menu.

Apply Orbit File				
Radiometric				
Speckle Filtering				
Coregistration	×.			
Interferometric		InSAR Stack Overv	iew	
Geometric		Products		Interferogram Formation
Polarimetric	- 16	Filtering	() ()	Coherence Estimation
Ocean Tools		Unwrapping		
ASAR WSS				Topographic Phase Removal
Sentinel-1 TOPS	10			Three-pass Differential InSAR
Complex to Detected GR	C 1			Phase to Height
Multilooking				DEM Generation

Select Interferogram Formation

The phase difference can have contributions from five different sources:

- $\Delta \phi flat$ is called flat Earth phase which is the phase contribution due to the earth curvature.
- $\Delta \phi e levation$ is the topographic contribution to the interferometric phase.
- $\Delta \phi$ displacement is the surface deformation contribution to the interferometric phase.
- Δφatmosphere is the atmospheric contribution to the interferometric phase. It is introduced due to the atmospheric humidity, temperature and pressure change between the two acquisitions.
- Δφnoise is the phase noise introduced by temporal change of the scatterers, different look angle, and volume scattering.

TOPS Interferometry Tutorial

0 Parameters Processing Parameters		
Subtract flat-earth phase from inter	ferogram	
egree of "Flat Earth" polynomial:	5	-
imber of 'Flat earth' estimation points:	501	+
rbit interpolation degree:	3	-
Include coherence estimation		
oherence Azimuth Window Size:		10
herence Range Window Size:		10
herence Azimuth Window Size: herence Range Window Size:		10

Interferogram Dialog

The interferogram product produced will contain a band for the interferometric phase.

Interferometric Phase Band

If you open the interferometric phase band, you will still see the demarcation zone between two bursts. This will be removed once TOPS Deburst is applied.

Interferometric Phase

Interferometric fringes represent a full 2π cycle. Fringes appear on an interferogram as cycles of arbitrary colours, with each cycle representing half the sensor's wavelength. Relative ground movement between two points can be calculated by counting the fringes and multiplying by half of the wavelength. The closer the fringes are together, the greater the strain on the ground.

Flat terrain should produce a series of regularly spaced, parallel fringes. Any deviation from a parallel fringe pattern can be interpreted as topographic variation.

With the same operator, you may also generate the coherence estimation in the same processing step as the interferogram.

The coherence between master and slave images can show you if the images have strong similarities and are therefore good candidates for generating a DEM. Loss of coherence can produce poor interferometric results.

Loss of coherence could be caused by temporal (time between acquisitions), geometric (orbit errors), volumetric (vegetation) or processing.

Coherence Contribution

The coherence band shows how similar each pixel is between the slave and master images in a scale from 0 to 1. Areas of high coherence will appear bright. Areas with poor coherence will be dark. In the image, vegetation is shown as having poor coherence and buildings have very high coherence.

TOPS Deburst and TOPS Merge

To seamlessly join all burst data into a single image, apply the **TOPS Deburst** operator from the Sentinel-1 TOPS menu.

SAR Processing		
Apply Orbit File	- 1	
Radiometric		
Speckle Filtering		
Coregistration	10	
Interferometric	16	
Geometric	18	
Polarimetric		
Ocean Tools	19	
ASAR WSS		
Sentinel-1 TOPS		S-1 SLC to GRD
Complex to Detected GR		S-1 Slice Assembly
Multilooking		S-1 TOPS Deburst
		S-1 TOPS Split
		S-1 TOPS Merge

Select TOPS Deburst

Open the resulting deburst interferometric phase band and deburst coherence band.

Interferometric Phase

Coherence

To process multiple swaths, repeat steps 4 & 5 selecting the other subswaths in the TOPS Split operator. To merge the results of the processing from all subswaths, use the **TOPS Merge** operator.

Note: In the September 2015 release of the Toolbox, it should be possible to process all subswaths all at once.

Topographic Phase Removal

The Interferogram can then be flattened by removing the topographic phase. The operator will simulate an interferogram based on a reference DEM and subtract it from the processed interferogram.

Step 6 - Remove Topographic Phase: Select the Interferogram product and go to the **InSAR Products** menu. Select **Topographic Phase Removal**.

Select Topographic Phase Removal

I/O Parameters Processin	ng Parameters
Orbit Interpolation Degree	:]3
Digital Elevation Model:	SRTM 3Sec 🔹
Topo Phase Band Name:	topo_phase
Tile Extension [%]	100 🗸

Topographic Phase Removal Dialog

The resulting product will have an interferogram with topographic phase removed and a band for the topographic phase.

Topographic Phase Removed

Phase Filtering

Interferometric phase can be corrupted by noise from:

- Temporal decorrelation
- Geometric decorrelation
- Volume scattering

• Processing error

Where there is loss of coherence, the interference pattern is lost.

To be able to properly unwrap the phase, the signal-to-noise ratio needs to be increased by filtering the phase.

Step 7 - Phase Filtering: Select the Interferogram product and go to the **InSAR Tools** menu. Select **Goldstein Phase Filtering**.

SAR Processing	<u> </u>				
Apply Orbit File	•				
Radiometric	•				
Speckle Filtering	g 🔸				
Coregistration	+				
Interferometric	•	InSAR Stack Overv	view		
Geometric	+	Products	•		
Polarimetric	•	Filtering	۱.	Spectral Filtering	F
Ocean Tools	•	Unwrapping	•	Goldstein Phase Filte	ring
ASAR WSS	•				

Select Phase Filtering

VO Parameters Processing Parar	meters
Adaptive Filter Exponent in (0,1]:	1.0
FFT Size:	64 💌
Window Size:	3 💌

Phase Filtering Dialog

Filtered Phase Band