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Introduction - The urban millennium

Source: United Nations
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Source: Small & Elvidge, 2012



Introduction — Urban remote sensing
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Introduction — Effects of impervious surfaces

Text

Source: Wikimedia Commons



Introduction — Effects of impervious surfaces

Urban surface type influences the micro climate and other environmental variables



Introduction — Urban remote sensing

With more than half of the world’s population living in cities and rapid urbanization
rates, remote sensing plays a pivotal role in monitoring urban environments.

Especially in less developed countries and for fast growing urban agglomerations
remote sensing is often the only reliable source of spatial information.

Most urban environmental models use remotely sensed maps as input.
Remote sensing analyses usually focus on

- mapping urban extent and growth
- mapping urban composition



Introduction — V-I-S conceptual framework
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Challenges of urban remote sensing

Urban areas are composites of many different surface types with greatly varying
environmental impacts.

Spectrally complex: high intra-class class variety and often no inter-class differences.

Landsat ETM+ (30 m; 6 spectral bands)



Challenges of urban remote sensing

High spatial and temporal dynamics require high spatial resolution



Challenges of urban remote sensing

High number of mixed pixels.
Complex 3-D-geometry and illumination.



Mapping urban growth from spectral and SAR data

Urban growth can be
mapped reliably by means
of remote sensing.
Taubenbéck et al. use data
from Terra-SAR and
Landsat to quantify urban
growth since 1975 in four
time steps.

Source: Taubenbock et al., 2014



Mapping urban growth ...

Major cities are mapped in
1975 — Landsat MSS

1990 — Landsat TM

2000 — Landsat ETM+
2010 — TerraSAR-X

Source: Taubenbock et al., 2014



Mapping urban growth from spectral and SAR data

Landsat and TerraSAR data are classified with different approaches.

Source: Taubenbéck et al., 2014



Mapping urban growth ...

For the 2010 TerraSar-X classification
the speckle divergence (c) is used to
identify areas with high vertical
structures.

These are transferred into urban seeds
(d), which are then generalized to
delineate the urban footprint.

Source: Taubenbock et al., 2014



Mapping urban growth from spectral and SAR data

Griffiths et al. monitor the growth of Dhaka, Bangladesh, for 1990, 2000 and 2006
based on Landsat TM/ETM+ and ERS-1/ASAR data.

By fusing the multispectral optical and the SAR data they can map urban extent
reliably in this heavily monsoon influenced area of rapid urbanization.

Both sensor types contribute to the high overall accuracy

Source: Griffiths et al., 2010



Mapping urban growth from spectral and SAR data scurce: crifiiths et al., 2010



Mapping urban growth from spectral and SAR data

Leinenkugel et al. map the percent impervious surface for the city of Can Tho, Vietham
using Terra-SAR X and Spot-5 data.

They use the high resolution SAR data to delineate urban surfaces and then use the
Spot-5 data and a regression approach to predict impervious surface within the pixels
of the delineated area.

The regression model is training using information from high resolution Quickbird
data.



Mapping urban growth ...

Object-based delineation of
settlement footprints from TerraSAR-X
data starting with the identification of

(a) distinct backscattering centres
(DBC) and

(b) (b) potential urban structures
(PUS)

(c) urban areas (UA),
(d) water surfaces (WS, WL)

(e) regions completely enclosed by
urban objects (EBU)

(f) of the urban footprint (GUF).

Source: Leinenkugel et al., 2011



Settlement Delineation

Training Data Generation
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Mapping urban composition from spectral data

Impervious
Ridd assumes, every pixel is composed of

. . . . @ @ Source: Ridd, 1996
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Mapping urban composition from spectral data

Small analyses more than 24
urban cities and concludes
that the spectral properties
working with Landsat ETM+
always relate to the degree of
brightness and the portion of
vegetation. This results in a
mixing triangle in the first two
PC components.

Source: Small, 2005



Mapping urban composition from spectral data

Source: Small, 2005
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Mapping urban composition from spectral data

Using higher spatial and spectral characteristics together with machine learning, van
der Linden and colleagues showed that urban more surface types may be mapped.

Source: van der Linden et al., 2007



Mapping urban composition from spectral data

Given the high number of mixed pixels, quantitative mapping appears more useful
than traditional classification to describe urban composition.

Concepts for quantitative mapping most often assume a linearly mixed spectrum,
which can be decomposed into “pure” components, e.g. by spectral mixture analysis

o



Mapping urban composition from spectral data

Okujeni and van der Linden introduced synthetically mixed training data to use

machine learning for unmixing.
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HyMap (9 m) Landsat (30 m)

EnMAP (30 m)
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Source: Okujeni et al.,

Impervious-Vegetation-Soil: RGB



Mapping urban composi

All VIS components can be
modelled at high accuracy
using SVR with synthetic
mixtures.

Impervious

The decrease in accuracy
from9mto30mis
relatively low.

EnMAP data leads to
slightly better results than
Landsat data.

Results for soils are
comparable.

\egetation

Soil

Source: Okujeni et al., 2015
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Landsat (30 m)

HyMap (9 m)

EnMAP (30 m)
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Source: Okujeni et al

Roof-Tree-Low vegetation: RGB



Mapping urban composition from spectral data

The SVR with synthetic mixtures allows
extending the VIS framework for two
vegetation and impervious types,
although a clear decrease in accuracies
can be observed for tree cover.

This time, the accuracy from EnMAP is
clearly better than for Landsat.
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Mapping urban composition from spectral data
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