

→ 6th ESA ADVANCED TRAINING COURSE ON LAND REMOTE SENSING

Advanced Thermal/Optical: Fire Applications

E. Chuvieco (Univ. of Alcala, Spain)

RS is a basic tool to retrieve fire information

692

→ 6th ESA ADVANCED TRAINING COURSE ON LAND REMOTE SENSING 14–18 September 2015 | University of Agronomic Science and Veterinary Medicine Bucharest | Bucharest, Romania

osa

Questions RS may answer

- When will a fire occur? How much potential negative impact?
- Is there an active fire? Where? When did it start? How is it growing? How much energy? How many gas emissions?
- How much area is burned? How often? When in the year? How much biomass is consumed? Are fire characteristics changing?

Questions RS may answer

- When will a fire occur? How much potential negative impact?
- Is there an active fire? Where? When did it start? How is it growing? How much energy? How many gas emissions?
- How much area is burned? How often? When in the year? How much biomass is consumed? Are fire characteristics changing?

When - where?

682

→ 6th ESA ADVANCED TRAINING COURSE ON LAND REMOTE SENSING

osa

When - where?

682

→ 6th ESA ADVANCED TRAINING COURSE ON LAND REMOTE SENSING

osa

Methods to estimate FMC from RSsa

Effects of FMC on leaf reflectancesa

Fig. 1. Reflectance spectra for vegetation canopies with different LFMC values. Spectra were collected by the Airborne Visible Infrared Imaging Spectrometer (AVIRIS) over a plot dominated by *Adenostoma fasciculatum* in southern California, U.S.A. The approximate spectral extent of the first seven MODIS bands is also shown in gray.

→ 6th ESA ADVANCED TRAINING COURSE ON LAND REMOTE SENSING
14 小台 September 2015 「 つの ersty Ri Spectra and Veterinary Medicine Bucharest | Bucharest, Romania

Examples of FMC maps

osa

Fuel parameters

esa

	Passive optical	Lidar	Radar
Horizontal continuity	some	some	some
Vertical distribution	no	yes	some
Biomass loads	no	yes	some
Surface conditions	no	some	some
Crown bulk density	no	yes	no

• 6th ESA ADVANCED TRAINING COURSE ON LAND REMOTE SENSING 14–18 September 2015 | University of Agronomic Science and Veterinary Medicine Bucharest | Bucharest, Romania

rosa

Fuel characterization from Lidaresa

11

Variable	Lidar Parameter	r ² (P<0.001)	Equations
Foliar Biomass FB	Tree height (CH)	0.85	FB=0.39*e ^(MLH*0.15)
Crown Volume (CV)	(P99- P1)*CH%	0.92	CV=1.11*(P99-P1)*CH%-1.71
CBD	FB/CB	0.81	CBD=1.52*FB/CB-0.12

Generation of CBD

657

13

→ 6th ER alvocetralini2004se BS To Remote Sensing

osa

Estimation of Biomass fractions esa

Fig. 4. Scatterplots of observed versus LiDAR-predicted biomass fractions.

ON LAND REMOTE SENSING

Garcia et al., 2010, RSE

osa

omic Science and Veterinary Medicine Bucharest | Bucharest, Romania

Multi-sensor: Fuel classification esa

Remote Sensing Environment

Remote Sensing of Environment 115 (2011) 1369-1379

Contents lists available at ScienceDirect

Remote Sensing of Environment

journal homepage: www.elsevier.com/locate/rse

Multispectral and LiDAR data fusion for fuel type mapping using Support Vector Machine and decision rules

Mariano García a,*, David Riaño b,c, Emilio Chuvieco a, Javier Salas a, F. Mark Danson d

* Department of Geography, University of Alcalá, Alcalá de Henares, 28801 Madrid, Spain

^b Institute of Economics and Geography, Spanish National Research Council (CSIC), Albasanz 26-28 28037 Madrid, Spain

^c Center for Spatial Technologies and Remote Sensing (CSTARS), University of California, 250-N, The Barn, One Shields Avenue, Davis, CA 95616-8617, USA

Table 5

confusion matrix of the fuel types classification after applying decision rules.

		Reference data					Total	User's accuracy	Error of commission			
		FT 0	FT 1	FT 3	FT 4	FT 5	FT 6	FT 7		(%)	(%)	
Classified data	FT 0	10	0	0	0	0	0	0	10	100	0	
	FT 1	1	12	0	0	0	0	0	13	92.31	7.69	
	FT 3	0	0	9	0	0	0	0	9	100	0	
	FT 4	0	0	0	10	0	0	0	10	100	0	
	FT 5	2	0	0	0	15	1	4	22	66.67	33.33	
	FT 6	0	0	0	0	0	8	0	8	100	0	
	FT 7	0	1	1	1	0	1	27	31	87.1	12.9	
Total		13	13	10	11	15	10	31	103			
Producer's accura	cy	76.92	92.31	90	90.91	100	80	87.1				
Error of omission	(%)	23.08	7.69	10	9.09	0	20	12.9				

Multi-scale: fuel parameters esa

rosa

Global fuel parameters

Pettinari et al., 2014, IJWF

6

Questions RS may answer

- When will a fire occur? How much potential negative impact?
- Is there an active fire? Where? When did it start? How is it growing? How much energy? How many gas emissions?
- How much area is burned? How often? When in the year? How much biomass is consumed? Are fire characteristics changing?

esa

Detection of active fires

esa

• 6th ESA ADVANCED TRAINING COURSE ON LAND REMOTE SENSING 14–18 September 2015 | University of Agronomic Science and Veterinary Medicine Bucharest | Bucharest, Romania

osa

093

→ 6th ESA ADVANCED TRAINING COURSE ON LAND REMOTE SENSING

osa

MODIS thermal anomalies Aqua satellite of fires across Angola, Central Africa on June 16th 2007

→ 6th ESA ADVANCED TRAINING COURSE ON LAND RE 14-18 September 2015 | University of Agronomic Science a

Dedicated fire detection systemses

Average fire density (2000-2006)esa

Chuvieco et al., 2008, GCB

Length of fire season (2000-2006) sa

Chuvieco et al., 2008b

Interanual variability (2000-2006) sa

Chuvieco et al., 2008b

^{• 6}th ESA ADVANCED TRAINING COURSE ON LAND REMOTE SENSING 14–18 September 2015 | University of Agronomic Science and Veterinary Medicine Bucharest | Bucharest, Romania

Diurnal cycle

esa

Estimation of Fire Radiative Powersa

http://viirsfire.geog.umd.edu/pages/AFPE.php

Fire radiative power from MODIS active fires (2000-2005)

Giglio et al., 2006, JGR

rosa

Questions RS may answer

- When will a fire occur? How much potential negative impact?
- Is there an active fire? Where? When did it start? How is it growing? How much energy? How many gas emissions?
- How much area is burned? How often? When in the year? How much biomass is consumed? Are fire characteristics changing?

rosa + + o rosa

How much area is burned?

Average area of forest annually affected by fire by country, 2005

From official FAO statistics (FRA2010): 0.6 Mkm². Based on information from 78 countries

1 000-2 000

10

100

GFED v3

> 2 000

No data

< 100

100-500

500-1 000

From satellite images •L3JRC: 3.5 - 4.5 Mkm² (2000-07) •MCD45 c5: 3.3 - 3.6 Mkm² (2000–2006) •GFED v2: 2.97 – 3.74 Mkm² (2001–2004) •GFED v3: 3.39 - 4.31 Mkm² (1997-2009). •Fire_CCI: 3.5-3.7 MKm²

→ 6th ESA ADVANCED TRAINING COURSE ON LAND RE

Total Burned Area (2008) from Fire_CCI

CHS-

→ 6th ESA ADVANCED TRAINING COURSE ON LAND REMOTE SENSING

Date of Detection (2008) from Fire CCI

→ 6th ESA ADVANCED TRAINING COURSE ON LAND REMOTE SENSING

Burned patch analysis

esa

4.0

3.5 3.0 2.5 2.0 1.5

1.0 0.5

P/A

Mouillot et al., 2015

Validation aspects / metrics esa

- Global accuracy.
- Error balance.
- Temporal stability.

Validation of the 2008 MODIS-MCD45 global burned area product using stratified random sampling

CrossMark

Marc Padilla^{a,*}, Stephen V. Stehman^b, Emilio Chuvieco^a

^a Environmental Remote Sensing Research Group, Department of Geography and Geology, Universidad de Alcalá, 2 Colegios St, Alcalá de Henares, Spain
^b Department of Forest and Natural Resources Management, College of Environmental Science and Forestry, State University of New York, Synacuse, NY 13210, USA

Remote Sens. 2014, 6, 2050-2068; doi:10.3390/rs6032050

OPEN ACCESS

remote sensing

www.mdpi.com/journal/remotesensing

Article

Assessing the Temporal Stability of the Accuracy of a Time Series of Burned Area Products

Marc Padilla ^{1,*}, Stephen V. Stehman ², Javier Litago ³ and Emilio Chuvieco ¹

- ¹ Department of Geology, Geography and Environment, University of Alcalá, C/ Colegios 2, Alcalá de Henares 28801, Spain; E-Mail: emilio.chuvieco@uah.es
- ² Department of Forest and Natural Resources Management, College of Environmental Science and Forestry, State University of New York, Syracuse, NY 13210, USA; E-Mail: svstehma@syr.edu
- ³ Departamento de Estadística y MGA, ETSI Agrónomos, Universidad Politécnica de Madrid, Ciudad Universitaria, Madrid 28040, Spain; E-Mail: javier.litago@upm.es
- * Author to whom correspondence should be addressed; E-Mail: marc.padilla@uah.es; Tel.: +34-91-885-4482; Fax: +34-91-885-4439.

ABSTRACT

The 2008 global burned area product MODE-MCD45 was validated and accuracy measures were estimated globally and for several terrestrial biomes. Stratified random sampling was used to select 102 non-overlapping Thiesen scene areas (TSA) and reference fire perimeters were determined from two multi-temporal Landsat TM/ETM + images for each sampled TSA. Error matrices and six accuracy measures were chosen to satisfy criteria specified by end-users of burned area products. Globally, MODIS-MCD45 had estimated commission and omission error rates of 46% and 72% respectively, and a Dice coefficient of 0.37. Burned area extent tended to be underestimated as the MODIS product detected an estimated 48% of the burned area as determined from the reference data. The two biomes with highest accuracy were Boreal Forest and Tropical & Subtropical savanna, two of the most fire-prone biomes. In general, accuracy slightly improved in those areas where burned area was more prevalent.

© 2014 Elsevier Inc. All rights reserved.

Sites for validation

66

- A new full dataset of fire perimeters was derived from multitemporal pairs of Landsat TM/ETM+ data.
- All files are documented following standard CEOS Cal-Val guidelines.
- → 6th ESA ADVANCED TRAINING COURSE ON LAND REMOTE SENSING 14-18 September 2015 | University of Agronomic Science and Veterinary Medicine Bucharest | Bucharest, Romania

Landsat images used for validationsa

- Blue=no data (clouds,...)
- Red=Burned

Spatial variation of accuracy (2008) a

→ 6th ESA ADVANCED TRAINING COURSI 14-18 September 2015 | University of Agra

Intercomparision

652

Intercomparision

esa

→ 6th ESA ADVANCE

rosa

BA trends of different products esa

• 6th ESA ADVANCED TRAINING COURSE ON LAND REMOTE SENSING 14–18 September 2015 | University of Agronomic Science and Veterinary Medicine Bucharest | Bucharest, Romania

rosa

Burn severity

esa

Comparison with empirical model results

rosa

Other sites

Validation results for the three study areas

osa

	Site 1	Site 2	Site 3
Linear regression	y=0.963x+0.032	y=0.495x+1.443	y = 1.046x - 0.062
R ²	0.43	0.69	0.96
RMSE	0.19	0.18	0.21

De Santis and Chuvieco, 2009, RSE

→ 6th ESA ADVANCED TRAINING COURSE ON LAND REMOTE SENSING 14-18 September 2015 | University of Agronomic Science and Veterinary Medicine Bucharest | Bucharest, Romania

656

Don miss the global approach! esa

Meterior in the second for the second

rosa

Source: Ward et-al., 201

"Implementation Plan for the Global Observing System for Climate in Support of the UNFCCC (2010 Update)"

Essential Climate Variables (ECV)esa

. PRODU	JCTS	. 15
3.1. Atr	nosphere	. 17
3.1.1.	ECV Surface Wind Speed and Direction	. 17
3.1.2.	ECV Precipitation	. 18
3.1.3.	ECV Upper-air Temperature	21
3.1.4.	ECV Upper-air Wind	. 24
3.1.5.	ECV Water Vapour	. 25
3.1.6.	ECV Cloud Properties	28
317	ECV Earth Radiation Budget	30

ECV Fire Disturbance

The following is required for this ECV:

- Burnt area (T.10)
- Active-fire maps (supplemental to T.10)
- Fire radiative power (FRP) (supplemental to T.10)

	3.3.7.	ECV FAPAR		
	3.3.8.	ECV LAI	83	
	3.3.9.	ECV Above-ground Biomass		
and the second	3 3 10	ECV Fire Disturbance	90	THE STREET
ADVA	3.3.11.	ECV Soil Moisture	96	
eptemb	3.3.12.	Land-surface Temperature	98	
A Allower			And a second of the second of	

ESA-CCI programme (ECV) esa

Connections of Fire and other ECVs a

Biomass emissions

082

• Bottom-up model: Seiler and Crutzen [1980] model:

Annual mean fire emissions 1997-2009 a

DM burned [g DM m-2 year-1]

+ 6th ESA ADVANCED TRATNING COURSE ON LAND REMOTE SENSING

Seasonal trends in carbon emissionsesa

Final remarks

C156

- Fire is a very relevant global and regional issue.
- RS can contribute to the three phases of fire management:
 - Pre-fire: Fuel conditions and amount.
 - Active fires: detecion and fire properties.
 - Post-fire: burned area, severity and emissions.

Emilio Chuvieco University of Alcalá (Spain) emilio.chuvieco@uah.es