

→ 6th ESA ADVANCED TRAINING COURSE ON LAND REMOTE SENSING

Atmospheric corrections - Fundamentals

Gastellu-Etchegorry Jean-Philippe CESBIO Paul Sabatier University, CNES, CNRS, IRD, France

14-18 September 2015 | University of Agronomic Science and Veterinary Medicine Bucharest | Bucharest, Romania

- Atmosphere and TPOA radiance
- Atmosphere (gas, aerosol) parameters for atmosphere correction
- Atmosphere correction of Sentinel 2 images

Pre-processing of satellite data

<u>Objective</u>: to remove the noise and distortion in the signal that is measured by the satellite when observing an Earth surface in order to compute a parameter (reflectance $\rho_{BOA}(\Omega_s, \Omega_v)$) that characterizes that surface.

- Radiometric calibration (noise removal,...): measured signal \rightarrow TOA radiance L_{TOA}
 - Pre-launch radiometric calibration to traceable standard (accepted reference)
 - Post launch calibration campaigns to maintain/monitor in flight calibration (vicarious)
 - On-board calibration (radiometric and spectral)
- Geometric correction: essential for multi-sensor, multi-temporal,... analyses
- Cloud screening: threshold on TOA reflectance and spectral slope $\frac{\partial \rho}{\partial \lambda}$
- Atmospheric correction
- Topographic correction

Atmospheric correction

<u>Objective</u>: to remove the impact of atmosphere in satellite measurements (TOA radiance L_{TOA}) in order to get a parameter (reflectance) that characterize the observed Earth surface.

Topography impacts also satellite signals with effects linked to atmosphere effects. It affects local direct and diffuse (atmosphere / sky) irradiance

• 6th ESA ADVANCED TRAINING COURSE ON LAND REMOTE SENSING 14–18 September 2015 | University of Agronomic Science and Veterinary Medicine Bucharest | Bucharest, Romania

Physical bases about radiation: Satellite signal (TOA radiance) $L_{TOA,\lambda}(\Omega)$ - short wavelengths

BOA: Bottom of the Atmosphere

 $\begin{array}{l} \mathsf{L}_{\mathsf{TOA},\lambda}(\Omega) = \mathsf{"Radiance} \ \mathsf{L}_{\mathsf{Earth},\mathsf{TOA},\lambda}(\Omega) \ \text{due to scattering of sun flux by the Earth, only"} \\ + \\ \mathsf{"Radiance} \ \mathsf{L}_{\mathsf{atm},\mathsf{TOA},\lambda}(\Omega) \ \text{due to scattering of sun flux by the Atmosphere, only} \\ + \\ \mathsf{"Radiance} \ \mathsf{L}_{\mathsf{mult},\mathsf{TOA},\lambda}(\Omega) \ \text{due to scattering of sun flux by {Earth + Atmosphere}}" \end{array}$

TOA radiance components: Earth and atmosphere scattering

The How does the relative influence of atmosphere change with (θ_v , θ_s , V, etc.)?

Parameters used to characterize the atmosphere

Gasses

1) Gas vertical distribution

 6th ESA ADVANCED TRAINING COURSE ON LAND REMOTE SENSING 14–18 September 2015 | University of Agronomic Science and Veterinary Medicine Bucharest | Bucharest, Romania

Parameters used to characterize the atmosphere

2) Gas capacity to intercept radiation:

Extinction coefficient α_e = absorption α_e + scattering α_e

Extinction coefficient (m⁻¹) = Cross section for interception per molecule (m²/mol) XDensity of molecules (mol / m³)

Optical depth of a medium over a distance $\Delta r: \Delta \tau(\lambda) = \int_{\Delta r} \alpha_e(\lambda, r) dr$

Transmittance of a medium over a distance Δr : T(λ , Δr) = $e^{-\Delta \tau(\lambda)}$

This expression is usually accepted. It is not exact for spectral bands $\Delta\lambda$. Why?

Parameters used to characterize the atmosphere

Usual approximation: at λ , gas either absorbs (H₂O, O₃, O₂,...) or scatters radiation

 \Rightarrow Transmittances of absorbing gas $T_{abs}(\lambda, \Delta r)$ & scattering gas $T_{scat}(\lambda, \Delta r)$ are independent

For satellite applications, one uses the gas optical depth $\Delta \tau_{gas}(\lambda)$ of total atmosphere along the vertical direction, and the associated transmittance $T_{gas}(\lambda)=e^{-\Delta \tau(\lambda)}$

For an oblique direction
$$\Omega(\theta, \phi)$$
: $\Delta \tau_{gas}(\lambda, \Omega) = \frac{\Delta \tau(\lambda)}{\cos \theta}$ and $T_{gas}(\lambda, \Omega) = e^{-\frac{\Delta \tau(\lambda)}{\cos \theta}}$

This expression becomes more and more inexact with oblique view and /or sun directions. Why?

Gas transmittance (mid latitude summer atmosphere, without aerosols & clouds)

Atmosphere transmittance = Product of gas transmittances. Transmittance = 1 in VIS?

Gas transmittance: H₂O, CO₂

BOA and TOA spectra of water, ground and vegetation

 \Im For all surfaces, with λ < 0.55 μ m, TOA reflectance is larger than BOA reflectance. Why?

For ground, TOA reflectance is larger than BOA reflectance for $\lambda < 0.55 \mu m$, and smaller for $\lambda > 0.65 \mu m$, whereas TOA water reflectance is always larger than BOA water reflectance. Why?

Parameters used to characterize the scattering gasses

Optical depth $\Delta \tau(\lambda)$: very variable for absorbing gasses. For non absorbing gasses , $\Delta \tau(\lambda) \equiv \lambda^{-4} \implies$ blue color of the sky, etc.

Normalized phase function (for scattering): $\frac{P(\Omega_s, \Omega_v)}{4\pi}$

Scattering gas: scattering phase function: $\frac{P_{gas}(\Omega_s, \Omega_v)}{4\pi}$

Scattering of a photon along incident direction $\Omega_{\rm s} \rightarrow$ Sensor Phase angle: $\Psi_{\rm sv}$. Scattering angle: π - $\Psi_{\rm sv}$

Forward scattering: Ψ_{sv} = 0. Backward scattering: Ψ_{sv} = π .

<u>*Empirical expressions*</u> (λ : μ m), for P = 1atm :

- $\tau(\lambda) \approx 0.0088 \ \lambda^{-4.15+0.2\lambda}$ (Arpège model of Météo France: $\tau \approx 0.00879 \ \lambda^{-4.09}$)
- $\tau(\lambda) \approx 0.008569.\lambda^{-4}.(1+0.0113.\lambda^{-2}+0.00013.\lambda^{-4})$

 \Rightarrow blue color of sky

Fire in Corsica

 $\Delta \tau(\lambda)$ and $\omega(\lambda)$, and their spectral variation, depend on the type of aerosols

	AVHRR		TM					
	1	2	1	2	3	4	5	6
- Min λ (50%)	569.8	714.3	452.4	528.0	626.4	776.4	1567.4	2097.2
- Max λ (50%)	699.3	982.2	517.8	609.3	693.2	904.5	1784.1	2349.0
- Peak	680.0	760.0	503.0	594.0	677.0	800.0	1710.0	2200.0
- λ equivalent (λ_{eq})	639.0	844.6	486.2	586.9	662.7	837.3	1662.7	2188.6
- τ_m^d (gas scattering)	0.0540	0.0180	0.159	0.0841	0.0449	0.0176	0.0012	0.0004
- $\tau_{O_3}^{a}$ (absorption O ₃)	0.0240	0.00064	0.00663	0.0317	0.0174	0.0000	0.0000	0.0000
- $\tau_{H_2O}^{a}$ (absorption H ₂ O)	0.00605	0.0933	0.0000	0.0002	0.0068	0.0410	0.0957	0.0741
- $\tau_{CO_2}^{a}$ (absorption CO ₂)	0.00071	0.0146	0.0000	0.0000	0.0000	0.0021	0.0077	0.0091
Albedo of aerosols	0.941	0.911	0.948	0.943	0.940	0.913	0.829	0.865

• 6th ESA ADVANCED TRAINING COURSE ON LAND REMOTE SENSING 14–18 September 2015 | University of Agronomic Science and Veterinary Medicine Bucharest | Bucharest, Romania

Example of atmosphere model (from 6S model) and Atmosphere correction

$$\rho_{\text{sat}}(\Omega_{s};\Omega_{v}) = \frac{\pi.L_{\text{sat}}(\Omega_{v})}{\mu_{s}.E_{s}} = \left[\rho_{a}(\Omega_{s},\Omega_{v}) + \rho.\frac{\Gamma(\theta_{s}).e^{-t/\mu_{v}}}{1-\rho_{e}.s} + \rho_{e}.\frac{\Gamma(\theta_{s}).t(\theta_{v})}{1-\rho_{e}.s}\right].T_{g}(\theta_{s},\theta_{v})$$

Atmosphere correction:

- Need to know atmosphere parameters (τ_{aer} , $\tau_{gas,scat}$, P_{aer} , T_g , s....), if possible from the image to correct, depending on available spectral bands. They can be derived from in-situ measurements (Aeronet,...), MODIS, meteorological modeling (ECMWF,...),...
- Analytical inversion if we assume: environment reflectance ρ_{e} = target reflectance ρ

rosa *+

Example of atmospheric correction

(Moreno, 2014)

→ 6th ESA ADVANCED TRAINING COURSE ON LAND REMOTE SENSING 14-18 September 2015 | University of Agronomic Science and Veterinary Medicine Bucharest | Bucharest, Romania

Simulation of level 1C, 2A, 3A products with FORMOSAT 2 images

Preparation of MACCS (atmospheric correction, cloud screening) for Sentinel 2 (Hagolle, 2015).

Level 1C: Top of tmosphere reflectances calibrated and orthorectified.

Level 2A: Single date surface reflectance after cloud masking and atmospheric correction. Level 3A: 15 days time composite of surface reflectance produced every week

(Hagolle: the MACCS method)

• 6th ESA ADVANCED TRAINING COURSE ON LAND REMOTE SENSING 14–18 September 2015 | University of Agronomic Science and Veterinary Medicine Bucharest | Bucharest, Romania Mainly due to the high data volumes, the **atmospheric correction of Sentinel-2 data will not be performed by the ground segment**, but will rely on software packages to be run by the users on their data sets. (Guanter et al., 2012).

Sentinel-2 atmospheric correction is being developed, using algorithms of the Atmospheric/Topographic Correction for Satellite Imagery (**ATCOR**, Richter & Schlaepfer, 2011) and **libRadtran** radiative transfer model (Mayer & Kylling, 2005).

A large look-up table (**LUT**) created by libRadtran for a wide variety of atmospheric conditions, solar geometries and ground elevations is used as simplified model to invert the radiative transfer equation, and to calculate BOA reflectance.

The algorithm additionally generates an enhanced cloud-mask.

<u>Note</u>: present uncertainties on atmosphere modeling and parameter retrieval lead to a minimal RMSE on BOA reflectance $\approx 0.005 + 0.05 \rho_{surf}$ (Vermote & Kotchenova

- Orthoimage reflectance product (Level-2A)
- Classification map: quality indicators for cloud (Cirrus: 1380nm) and snow (Δ =60m)
- Aerosol map: use of short wavebands with
- Adaptation of the dark target method (Richter et al., 2011) to Sentinel 2: it uses the correlation of blue, red and shortwave infrared reflectance of dense vegetation.

MODIS:
$$\rho_{0.47} = 0.25 \rho_{2.13}$$
 and $\rho_{0.66} = 0.5 \rho_{2.13}$

Landsat 5: $\rho_{\text{blue}} = 0.409 \rho_{\text{swir}} - 0.007$, $\rho_{\text{red}} = 0.766 \rho_{\text{swir}} - 0.026$, $\rho_{\text{blue}} = 0.568 \rho_{\text{red}} + 0.002$ Landsat 7: $\rho_{\text{blue}} = 0.32 \rho_{\text{swir}}$, $\rho_{\text{red}} = 0.671 \rho_{\text{swir}} - 0.016$, and $\rho_{\text{blue}} = 0.479 \rho_{\text{red}} + 0.007$

- Multi-temporal aerosol retrieval algorithms that use a "clean" image as a reference to quantify the impact of aerosol extinction on the rest of the images in the series, thanks to the Sentinel-2 high revisit time (Hagolle et al., 2015).
- Water vapor map: the ratio between the MSI spectral channels in 865 and 940 nm can be used as a proxy for water vapor transmittance, which can be converted to a measure of columnar water vapor after inversion against look-up tables

Normalized filter transmissions and modeled TOA radiances for deciduous forests.

Example of atmosphere correction

Simulated Sentinel-2 scene containing cirrus clouds. True color coding: R/G/B = bands 4/3/1 (665, 560, 443 nm). Left: original scene, center: cirrus band (1.375 μ m), right: after cirrus and atmospheric correction. (Dursch et al, 2011)