

→ 6th ESA ADVANCED TRAINING COURSE ON LAND REMOTE SENSING

rosa

Advanced Optical

Gastellu-Etchegorry Jean-Philippe CESBIO Paul Sabatier University, CNES, CNRS, IRD, France

14-18 September 2015 | University of Agronomic Science and Veterinary Medicine Bucharest | Bucharest, Romania

- Major remote sensing configurations
- Reflectance configuration: Radiometric variables & Components of TOA radiance
 Hot spot, penumbra, 2D display of reflectance, albedo
- Thermal emission: Radiometric quantities and TOA radiance components
- The atmosphere: TOA radiance (UV \rightarrow TIR)
- Modelling remote sensing signals
- Interpretation of VIS/IR and TIR satellite images
- Angular anisotropy of remote sensing signals
- Satellite / airborne sensors with finite FOV
- Lidar

• 6th ESA ADVANCED TRAINING COURSE ON LAND REMOTE SENSING 14–18 September 2015 | University of Agronomic Science and Veterinary Medicine Bucharest | Bucharest, Romania

Remote sensing ($\lambda \in [0.25 \mu m \ 100 \mu m]$)

14–18 September 2015 | University of Agronomic Science and Veterinary Medicine Bucharest | Bucharest, Romania

Information about Earth surfaces in remote sensing signals:

- **Spectral signature**: signal variation with wavelength \Leftrightarrow spectrometers
- Angular signature: signal variation with view (sun) direction \Leftrightarrow multi-view sensor,...
- **Spatial signature**: signal variation with space \Leftrightarrow high / mid spatial resolution
- **Temporal signature**: signal variation with time \Leftrightarrow sensor acquisition repetitivity
- Architecture / distance signature: backscattering of LiDAR pulse
- Fluorescence emission (specific spectral bands), polarization, etc.

• 6th ESA ADVANCED TRAINING COURSE ON LAND REMOTE SENSING 14–18 September 2015 | University of Agronomic Science and Veterinary Medicine Bucharest | Bucharest, Romania-

Perception vs. spectral domain: GOES12 Sounder ⇒ Brightness temperature at several altitudes

- Signal is null in the visible band (0.65µm). Why?
- In thermal infrared (TIR) bands:
 - The low (-50C) and large (20C) signals (brightness temperature T_B) correspond to?
 - The atmosphere thermal emission changes with spectral band (*i.e.*, lower/higher T_B). Why?

Perception vs. spectral domain: AVIRIS images of forest clearing fire (Cuiaba - Brazil, 25/08/1995)

True color

500.5 nm

1000.2 nm

1501.4 nm

2000.5 nm

Perception vs. spectral domain and passive vs. active sensor: G-LIHT images (NASA)

Airborne G-LIHT sensor:

Acquisition rate

	RGB color	Brightne
387 m (60°)	composite	temperat
10 cm (0.3 mrad)	CONTRACT AND	N. Carton
5 cm (2 σ)	1000 AT	Chine -
6 pulses m ⁻²		1
8	Golf	
	Course	5 3. 4
hemispheric (180°		and in
350 to 1,100 nm	and a	Carl
1.5 and 1.5 nm	1000	1000
1 Hz		2-2
	3990	11-12
310 m (50°)	Carried State	
1,004	Bldg	
420 to 950 nm	-	The second
1.5 and 5.0 nm		
50 Hz	CONTRACT.	Constant of the
	-	
173 m (30°)	M MERINGALSTIC	11 2 2797
384 × 288		1
8 to 14 µm	and the second second	100
>50 mK at 30°C	Provide State	Same P
	387 m (60°) 10 cm (0.3 mrad) 5 cm (2 σ) 6 pulses m ⁻² 8 hemispheric (180° 350 to 1,100 nm 1.5 and 1.5 nm 1 Hz 310 m (50°) 1,004 420 to 950 nm 1.5 and 5.0 nm 50 Hz 173 m (30°) 384 × 288 8 to 14 μm >50 mK at 30°C	$387 \text{ m} (60^\circ)$ 10 cm (0.3 mrad) $5 \text{ cm } (2 \sigma)$ 6 pulses m ⁻² 6 pulses m^{-2} 8 hemispheric (180° Golf $350 \text{ to } 1,100 \text{ nm}$ 1.5 and 1.5 nm 1 Hz 310 m (50°) $1,004$ 420 to 950 nm $1.5 \text{ and } 5.0 \text{ nm}$ 50 Hz $173 \text{ m} (30^\circ)$ 384×288 $8 \text{ to } 14 \ \mu\text{m}$ >50 mK at 30°C

25 Hz

River

Forest

← 170 m →

 Why brightness temperature is larger for grass than for trees?

- How 3D vegetation is obtained?
- What is LiDAR apparent ρ ?
- What is the usefulness of the irradiance spectrometer?

ess DSM \Rightarrow DEM, ure tree height,...

3D vegetation structure

20°

0 m

Physical bases about radiation: definitions

- Solid angle d Ω of direction $\Omega(\theta, \phi)$: $d\Omega = \sin\theta . \cos\phi . d\theta . d\phi$ with $\theta = \text{zenith}$ and $\phi = \text{azimuth}$
- Radiance $L_{\Sigma}(\Omega)$ of Σ along (Ω): $L_{\Sigma,\lambda}(\Omega)$: $W/m^2/sr/\mu m$ (/ effective m^2 !), $L_{\Sigma,\Delta\lambda}(\Omega)$: $W/m^2/sr$
- Irradiance E_{Σ} of Σ (in flux): $E_{\Sigma,\lambda} = \int_{2\pi^{-}} L_{\Sigma,\lambda}(\Omega) . |\cos\theta| . d\Omega W/m^2 / \mu m$ $E_{\Sigma,\Delta\lambda} = \int_{2\pi^{-}} L_{\Sigma,\Delta\lambda}(\Omega) . |\cos\theta| . d\Omega : W/m^2$
- Exitance M_{Σ} of Σ (out flux): $M_{\Sigma,\lambda} = \int_{2^{-1}} L_{\Sigma,\lambda}(\Omega) .\cos\theta .d\Omega \quad W/m^2/\mu m$ $M_{\Sigma,\Delta\lambda} = \int_{2^{-1}} L_{\Sigma,\Delta\lambda}(\Omega) .\cos\theta .d\Omega \quad W/m^2$

- **Reflectance factor** $\rho_{\Sigma}(\Omega)$ of Σ along (Ω) : $\rho_{\Sigma,\lambda}(\Omega) = \frac{\pi \cdot L_{\Sigma,\lambda}(\Omega)}{E_{\Sigma,\lambda}}$ if Σ is lambertian: $\rho_{\Sigma,\lambda}(\Omega) = cst$

The physical quantity that is measured by a satellite radiometer?

Physical bases about radiation: different reflectance factors (direct d, hemispherical h, conical c)

- In or Out 'direct' flux (index d): flux along a unique direction (*i.e.*, $d\Omega=0$).
- In or Out 'conical' flux (index c): flux within a cone (Ω , d $\Omega \neq 0$).
- In or Out 'hemispherical' flux (index h): flux within an hemisphere (*i.e.*, $d\Omega = 2\pi$).

Which reflectance is derived from the measurement of a satellite radiometer?
 Which reflectance is used for computing the albedo of our planet?

Physical bases about radiation: Satellite signal (TOA radiance) $L_{TOA,\lambda}(\Omega)$ - short wavelengths

BOA: Bottom of the Atmosphere

 $\label{eq:LTOA,lambda} \begin{array}{l} \mathsf{L}_{\mathsf{TOA},\lambda}(\Omega) = \mathsf{"Radiance} \ \mathsf{L}_{\mathsf{Earth},\mathsf{TOA},\lambda}(\Omega) \ \text{due to scattering of sun flux by the Earth, only"} \\ + \\ \mathsf{"Radiance} \ \mathsf{L}_{\mathsf{atm},\mathsf{TOA},\lambda}(\Omega) \ \text{due to scattering of sun flux by the Atmosphere, only} \\ + \\ \mathsf{"Radiance} \ \mathsf{L}_{\mathsf{mult},\mathsf{TOA},\lambda}(\Omega) \ \text{due to scattering of sun flux by {Earth + Atmosphere}}" \end{array}$

Physical bases about radiation: Lambertian and natural surfaces

How can there be hot spot? Indeed, a sensor with the sun behind it should see its own shadow...

Lambertian surface: $\rho_{dd} = \rho_{dh} = \rho_{hd} = \rho_{hh} = cst$.

- White lambertian surface: $\rho = 1$
- Grey lambertian surface: ρ = cst < 1).

Natural surface: $\rho_{dd}(\Omega)$ varies with (Ω) .

Here, ρ_{dd} is maximal for specular direction (water?) with local maximum (vegetation?) for sun direction (hot spot: the sensor does not see shadow)

The hot spot (backscattering effect): examples

Penumbra effect

Sun rays are not parallel

⇒ shadow is total at short distance and more and more partial as distance increases DART simulation

Parallel sun rays

Actual sun rays: $\Delta \Omega_{sun}$ = 32'

Physical bases about radiation: 1D, 2D (polar) and 3D plots of vegetation reflectance

For large view zenith angles θ_{view} , vegetation reflectance increases in near infrared (top) and decreases in the visible (bottom). Which simple landscape (tree + bare ground) can explain it?

Albedo and spectral reflectance of Earth surface elements

Albedo (A_{dh} or A_{hh}): integral of reflectance $\rho_{\lambda}(\Omega_{s}, \Omega_{v})$ weighted by incident flux L_{λ}(Ω_{s}) over scattering directions $(2\pi^+)$ and all / part of the spectrum. $\int_{2\pi} \int \rho_{dd}(\Omega_s, \Omega_v, \lambda) . \mu_v . E_{\lambda}(\Omega_s) . \mu_s . d\Omega_v . d\lambda$ $A_{dh}(\Delta \Omega_{s}=0, \Delta \lambda) = \frac{\text{Exitance: reflexion over } 2\pi^{+}}{1 + 1} = \frac{1}{\Delta \lambda}$ with $\Delta\lambda \approx [0.2 4 \,\mu\text{m}]$ Irradiance (d) along $\Omega_s = \pi^{\cdot}$ $\int E_{\lambda}(\Omega_{s}).\mu_{s}.d\lambda$ Λλ $A_{hh}(2\pi, \Delta\lambda) = \frac{\text{Exitance: reflexion over } 2\pi^+}{\pi}$ At the Earth surface, one uses often: Irradiance (h) along $2\pi^{-}$ Material Albedo (%) Planet Earth $\approx 33 ~(\approx 36 \text{ for Visible domain})$ 5-65 Cloud (stratus) : - depth \leq 200 m Very variable albedo - depth [200 1000 m] 30-85 reflectancevalues 75 - 90 / 45 - 70 *Snow:* fresh and dry / old 35 - 40; increases from blue to red Ground : - white sand 5 - 6/5 - 15; increases from blue to red - dark moist /dry 5 - 15 / 10; maximum in the green *Vegetation:* green crop / forest 2/2,2/6/13,4/35,8/≈60/>90 *Water*: sun zenith $0^{\circ}/30^{\circ}/60^{\circ}/70^{\circ}/80^{\circ}/85^{\circ}/87^{\circ}$

Physical bases about radiation: Thermal emission (Planck's law) and brightness temperature

Planck's law: $L_{B,\lambda}(\Omega) = \frac{2.h.c^2}{\lambda^5.(e^{\lambda kT}-1)}$ (W/m²/sr/m) with h = 6.63 10⁻³⁴ J.s, k = 1.3807 10⁻²³ J/K Wien law: M(λ) is maximal for $\lambda_m = \frac{a}{T}$ (a=2899 µm.K)

Stephan-Boltzmann law: M = $\int_{\infty} L_{B,\lambda} \cdot d\lambda = \sigma T^4$, with $\sigma = 5.6704 \ 10^{-8} \ W/m^2/K^4$

Emissivity $\varepsilon(\lambda,T,\Omega)$: natural body $\Rightarrow L_{\lambda}(T, \Omega) = \varepsilon(\lambda,T,\Omega).L_{B,\lambda}(T)$, with $\varepsilon(\lambda,T,\Omega) = 1 - \rho_{hd}(\lambda,T,\Omega)$

Brightness temperature T_B : temperature of the blackbody that emits the measured radiance L_m $L_{m,\lambda}(\Omega) = L_{B,\lambda}(T_B) \implies T_B = L_{B,\lambda}^{-1}(L_{m,\lambda}(\Omega)) = f(\lambda,T,\Omega)$

Physical bases about radiation: Satellite signal (TOA radiance) $L_{TOA,\lambda}(\Omega)$ - long wavelengths

Physical bases about radiation: TOA radiance vs. Blackbody radiance (Planck's law)

TOA and BOA sun spectral irradiance

TOA radiance components: Earth and atmosphere scattering / thermal emission

For which wavelengths can we consider that TOA radiance is mostly due to either Earth surface scattering or thermal emission?

TOA radiance components: Earth and atmosphere scattering

 \Im How does the relative influence of atmosphere change with (θ_v , θ_s , V, etc.)?

BOA and TOA spectra of water, ground and vegetation

 \Im For all surfaces, with λ < 0.55 μ m, TOA reflectance is larger than BOA reflectance. Why?

For ground, TOA reflectance is larger than BOA reflectance for $\lambda < 0.55 \mu m$, and smaller for $\lambda > 0.65 \mu m$, whereas TOA water reflectance is always larger than BOA water reflectance. Why?

Sky illumination: nadir image of a tropical forest (Sumatra, Indonesia) with 2 sky illuminations

a) SKYL=0, θ_s =35°. b) SKYL=1. SKYL= $\frac{Atmosphere\ irradiance}{Total\ irradiance}$. Simulations with DART model.

Toes a SKYL increase, makes the reflectance of Earth surfaces larger, more anisotropic?

TIR satellite spectra: Nimbus 4 Iris (Petty G., 2006; www.sundogpublishing.com/AtmosRad/index.html)

Atmosphere absorption bands: CO_2 : $\approx 15 \mu m$, O_3 : $\approx 9.5 \mu m$, H_2O : $\approx 7 \mu m$.

- I temperature of Earth surface and stratosphere (top of atmosphere) for each site?
 - is water vapor more important in Sahara or south of Irak?
 - the thunderstorm cloud spectra has no atmosphere absorption bands. Why?

Simulating satellite signals: physical modeling of landscapes and radiative transfer

• 6th ESA ADVANCED TRAINING COURSE ON LAND REMOTE SENSING 14–18 September 2015 | University of Agronomic Science and Veterinary Medicine Bucharest | Bucharest, Romania. Simulating satellite signals: physical modeling of landscapes and radiative transfer

Radiative Transfer Equation (RTE):

osa

 $\overline{\Omega}.\overline{\nabla}L(r,\Omega) = -\alpha(r,\Omega).L(r,\Omega) + \int L(r,\Omega').\alpha_d(r,\Omega' \to \Omega).d\Omega' + \mathcal{G}_{\acute{emis}}(r,\Omega)$

, N fluxes,...

 \equiv

4π

2 combined approaches to solve the RTE:

- Simplified description of radiation: 2 fluxes X, 4 fluxes

- Simplified landscape description: horizontal turbid layer

Spectral analysis: Aitutaki (Cook island) BOA radiance images (grey tone proportional to radiance)

<u>Hypotheses</u>: same water in ocean & lagoon, vegetated islands.

<u>Why</u> :

- Ocean: black tone in 3 images (blacker in NIR image)?
- Island: dark tone in "green" & "red", and light tone in "NIR"?
- Foam: light tone in 3 images, conversely to water surfaces?
- Lagoon: light tone in the "red", conversely to the ocean?

Spectral analysis: reflectance (ground, water, vegetation) and extinction coefficient (water)

Spectral analysis: Optical properties of Earth surface elements

Spectral analysis: NOAA images (grey tone proportional to radiance) – Sumatra island, 1993

Why:

- Sumatra has dark tones in the VIS image and light tones in the NIR image?
- Clouds have light tones in the VIS image and dark tones in the "3-4µm" image
- In the VIS image, the bright spot below South Sumatra is not a cloud. What is it?

View direction: POLDER (Polarization and Directionality of Earth Reflectances) - 114° FOV, 6km

The anisotropy of the Earth surfaces reflectance ρ strongly affects TOA radiance. ρ : described by BRF or Bidirectional Reflectance Distribution Function (BRDF) BRF=function of sun direction (θ_s, ϕ_s) & view direction (θ_v, ϕ_v). In practice: $\rho(\theta_s, \theta_v, \phi_s - \phi_v)$

View direction: *POLDER (16/09/96) - 670nm - 114° FOV*

"Which elements do have the larger reflectance value (reddish tones)?

The second secon

View direction: POLDER (16/09/96) - 865nm - 114° FOV

For which configuration, a schematic landscape {bare ground + trees} has a strongly anisotropic reflectance with a maximum at nadir. Same, with minimum at nadir.

0

MODIS daily VIS/NIR surface reflectance: south Africa tropical savanna, 2000-2004

(E. Vermote, C. Justice and Breon, NASA supported Land LTDR Project)

Does the variability of Earth surface reflectance increase or decrease if satellite spatial resolution coarsens?

Reflectance anisotropy with view direction: verification with RS model

OLD BLACK SPRUCE - DART SIMULATIONS: NIR -

Hot spot ($\rho_{PIR} \approx 0.287, \theta_v = 35^\circ, \phi_v = 0^\circ$)

Sun direction: $\theta_s = 35^\circ$, $\phi_s = 0^\circ$

 $(\rho_{\text{PIR}} \approx 0.168, \theta_v = 35^\circ, \phi_v = 72^\circ)$

 $(\rho_{\text{PIR}} \approx 0.156, \theta_v = 35^\circ, \phi_v = 180^\circ)$

Nadir ($\rho_{\text{PIR}} \approx 0.147, \theta_v = 0^\circ$)

(ρ_{PIR}≈0.173, θ_v=35°, φ_v=288°)

Reflectance varies from 0.147 to 0.287!!!

DART simulations

Nadir reflectance and albedo values can differ a lot. Hence, to approximate the Earth surface albedo as a directional reflectance value can be a large source of error.

Satellite and airborne sensors with finite FOV (perspective and parallel-perspective projections)

Non-zero FOV impacts RS data: geometric distortion + view direction difference

Example of geometric distortion: Basilica St-Sernin (Toulouse, France)

Identical objects in a simulated landscape appear differently, depending on view configuration (distance, view angle)

Toulouse urban data base - DART scene

DART simulated images Parallel projection (satellite, $\theta_v = 50^\circ$, $\phi_v = 0^\circ$) Perspective projection (UAV camera, $z_s = 140$ m)

Radiance variability due to geometry: fish eye camera VIS/TIR images (Toulouse)

RGB color composite

- Thermal infrared camera image (DART simulated images)

Satellite sensor with FOV=0 (parallel projection) - Järvselja pine stand, Estonia (RAMI4)

→ 6th ESA ADVANCED TRAINING COURSE ON LAND REMOTE SENSING

14–18 September 2015 | University of Agronomic Science and Veterinary Medicine Bucharest | Bucharest, Romania

Satellite / airborne sensor with finite FOV (perspective projection) - Järvselja pine stand, Estonia

Direction oversampling within camera FOV

Identical objects (trees,...) appear with different radiance values due to sensor FOV (angular effects) UAV camera ($\theta_v = 50^\circ$, $z_s = 140m$)

• 6th ESA ADVANCED TRAINING COURSE ON LAND REMOTE SENSING 14–18 September 2015 | University of Agronomic Science and Veterinary Medicine Bucharest | Bucharest, Romania

Hot spot effect in actual airborne and satellite images

Camera¹

MODIS image (October 27, 2002²)

- Usually, sun-sensor geometry impacts stronly vegetation reflectance anisotropy.
- Important role of hot spot (perception of within vegetation shdows).

1. http://academic.emporia.edu/aberjame/remote/lec10/hotspot.jpg

 $2.\ http://earthobservatory.nasa.gov/IOTD/view.php?id{=}83048$

→ 6th ESA ADVANCED TRAINING COURSE ON LAND REMOTE SENSING

14–18 September 2015 | University of Agronomic Science and Veterinary Medicine Bucharest | Bucharest, Romania

Camera hot spot effect at different altitudes

 $z_S = 5km$

 $z_S = 50 km$

 $z_S = 500 km$

Pushbroom hot spot effect at different altitudes

Pixel-wise comparison: ortho-rectified images of satellite and airborne pushbroom imagers

- 552nm
- Altitude: 200m
- Central zenith angle: -20°

Parallel projection image

Pushbroom image

Difference image: pushbroom - parallel projection

Light Detection And Ranging (LiDAR)

LiDAR emits laser pulse, and uses the time-of-flight technique for measuring distance and amplitude of return energy. Satellite, airborne and terrestrial systems

Various types: discrete-return, waveform and photon counting LiDARs.

Light Detection And Ranging (LiDAR)

Application: DEM/DSM, vegetation / urban architecture & dimensions, atmosphere,...

DEM

First return

Intensity

1st order LiDAR models: Geo-optical models with **hot spot** configuration. Multiple order models: Monte-Carlo ray tracing (Flight, DELiS,...), DART (quasi-MC),...

Small footprint waveform simulation: Linden tree from RAMI-4 ($\lambda = 1064$ nm, H = 10km)

ALS simulation: LiDAR of CAO AtoMS system over Järvselja pine stand (RAMI-4)

Parameters	Values	
Sensor area	0.1m ²	
Wavelength	1064 nm	
Pulse energy	1 mJ	
Time step per bin	1 ns	
Distance step per bin	30 cm	
Footprint divergence half angle	0.25 mrad	
FOV divergence half angle	0.4 mrad	
Pulse Repetition Frequency	400 kHz	
Scan frequency	140 Hz	
Maximum look angle	32.5 °	
Platform speed	49 m/s (95.24 knots)	
Along-track distance step per scan	0.35 m	
Look angle step per pulse	0.02275 °	

Number of pulses: 167478 (309 scans × 542 pulses per scan)

Pulse density: 14.35 /m²

5000 SPs per pulse \rightarrow 0.78 seconds / pulse / thread \Rightarrow 110 minutes with 20 threads

ALS simulation: LiDAR of CAO AtoMS system over Järvselja pine stand (RAMI-4)

Display of DART simulations with SpDLib code

Waveform

axis

Height

