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PART III

Theory: SAR Image Formation and 
Image Properties



SAR Image Formation
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SAR Basic Principle

1) pulsed radar system
(PRF = Pulse Repetition Frequency)

2) two dimensional imaging 
(range x azimuth)

3) range resolution  

4) azimuth resolution 

5) Radar system must be coherent!

Te

Lsa

2
a

a
d

   

2
o  r

p

c
B





antenna

> 100 Mbit/s kbit/s 

SAR Data Flow
Transmitter

Receiver

Data
Recording

Range 
compression

Azimuth
compression

Image 
evaluation

Image 
interpretation

SAR 
raw data

SAR 
image data



signal generator
Mixer

power
amplifier

low noise
amplifiercirculator

base band signal
I

Q

A
D

A
D

-90°

I/Q demodulator

Synthetic Aperture Radar (SAR)

ultra stable
oscillator



Coherent Measurement Principle

transmit

t  (time)

Total time delay 1 = 1

o

2 . r
c

Coherent demodulation

Received echo signal 1

phase change 1
1

4. .   objectphase r 


  1
4. .   objectphase r 


  

1
A

Imaginary Part

Real Part



Coherent Measurement Principle
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      tfjAtfA 00 2exp2coscomplex representation:

  jA expafter demodulation:



Aamplitude:

2Aintensity, power:

phase:

Every pixel of a complex SAR image consists of a real and an imaginary part,

i.e. it is a phasor and contains amplitude and phase information.
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Phasor Representation of SAR Signal
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Formation of Azimuth Chirp Signal
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Synthetic Aperture Formation and Processing
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Synthetic Aperture Radar (SAR)



SAR Processing (Image Formation)
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Pulse Compression by Convolution
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Linear Superposition of Chirps
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SAR raw data



SAR Processing (Image Formation)
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SAR Processing (Image Formation)



Summary: SAR Processing
1. Step: Range compression

• Generation of range reference function
• Matched filtering using convolution of range signal with range reference 

function

2. Step: Azimuth compression

• Generation of azimuth reference function
• Matched filtering using convolution of azimuth signal with azimuth 

reference function

3. Step: Calculation of the modulus of the SAR image (detection)

• This step is not required in case that the phase information is used (e.g. 
polarimetry, interferometry etc.) 

Normally the convolution is carried out in frequency domain



SAR Processing: 2D Matched Filter
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Calibration of SAR Images



• Examples of calibration targets with well-known reflectivity (Radar 
Cross Section) for external calibration of the SAR system

Corner Reflector

Calibration Devices 

Transponder



SAR Image of ASAR/ENVISAT, 12-10-02
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resolution: 
3 m x 3 m



SAR Image Properties
– Geometric Distortions –
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Slant-to-Ground-Range Conversion
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• Ground range projection onto a reference plane
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Geometric Distortion: Foreshortening
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Geometric Distortion: Foreshortening
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• Slopes oriented to the radar appear compressed
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Geometric Distortion: Layover
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• an inversion in the image geometry!
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Geometric Distortion: Shadow
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Consider the radar image below. What is the illumination direction of the radar?
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SAR Image Properties
– Speckle –



ERS-1 image / ESA



Kaufbeuren, Germany
F-SAR, X-band quadpol
0.25m resolution 



Kaufbeuren, Germany
F-SAR X-band quadpol 
0.25m resolution

Speckle



• SAR image can be modeled as:

|u(x, r)| = |  (x, r)  uo (x, r) |

SAR signal modeling
where 

|u(x, r)|   SAR image

 (x, r)     scene complex reflectivity

uo (x, r)  SAR impulse response
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SAR signal modeling
• Distributed targets have surface roughness comparable or smaller than 

radar wavelength

• Resolution of the SAR sensor cannot resolve individual scatterers

• For each resolution cell,  (x, r) is equal to the sum of all scatterers contributions i. e.

|u(xo, ro)| = |  (xo, ro)  uo (x, r) | = |  i (xo, ro)  uo (x, r) |
random sum

real

imaginary
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Speckle 
• Inherent to coherent systems

• Probability distribution function has a exponential distribution, i.e.  

average value = standard deviation

• Speckle makes SAR image interpretation more difficult

E-SAR high resolution image 
(0.6 m x 2 m)



Multi-Look Processing 

antenna diagram 
in azimuth direction

3 looks with 50% overlap5 azimuth looks

 overlap of 50% between the looks 
is commonly used.

azimuth

1 2 3 4 5 Look 1Look 2

Look 3

azimuth
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• SAR impulse response function with multi-looking ( L looks):

• azimuth resolution deteriorates:

• Standard deviation of the speckle noise is reduced by the square root of the number of looks:  

standard deviation = average value / sqrt( L)
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Multi-Look Processing 
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Statistics of SAR Signal for Distributed Targets 
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Multi-Look Processing (@ SAR Image)

• SAR impulse response function with average of L image pixels:

• azimuth resolution deteriorates:

• Standard deviation of the speckle noise is reduced by the square root of the number of looks:  

standard deviation = average value / sqrt( L)

ui
2 + uq

2
Average 
(boxcar
window)

sa (x, r)
ha(x, r)

2( , )MLu x r

L = number of looks
, . a ML a L

 
2

2 , 1

,
( , )

 




n m L

n m
n m

ML

u x r
u x r

L

2( , )u x r



5 looks
20 m x 20 m resolution

320 looks (average of 64 images)
20 m x 20 m ground resolution

Single-Look and Multi-Look Processing 

ERS-1 satellite images (processing DLR-IMF)



original SAR image (1 look)
Airborne SAR AeS-1

speckle filtered
Adaptive Filtering

(Model based approach)

Speckle Reduction with Image Filtering



Summary: Speckle

• SAR image of distributed targets contains speckle noise. 

• Speckle noise is inherent in coherent radar systems.

• The average value of the speckle amplitude is equal to its standard deviation 

(exponential distribution).

• Multi-look processing or spatial averaging is used to reduce the speckle 

noise. Standard deviation decreases with           . 

• An overlap of 50% between the looks is commonly used.

• Speckle noise can also be reduced by averaging the final image

effL



PART IV
Advanced SAR Techniques 

and Future Developments



Advanced SAR Imaging Modes
- ScanSAR Mode -



ScanSAR Imaging

A
B C

• Synthetic aperture is shared between the subswaths (not contiguous within one 
subswath) 
• Mosaic Operation is required in azimuth and range directions to join the azimuth 
bursts and the range sub-swaths



ScanSAR Main Properties 
• ScanSAR leads to a large swath width

•The azimuth signal consists of several bursts

• Azimuth resolution is limited by the burst duration

• Each target has a different frequency history depending on its azimuth location

Azimuth

azimuth frequency

Spectrum

A
B

C
C

A B C





ScanSAR Imaging (Chickasha, Oklahoma, USA)

Subswath
2

Subswath 
1

(near range)

Subswath
3

Subswath 
4

(far range)

azimuth

SIR-C image
L-band, VV



ASAR SCANSAR Image (Munich Area) ASAR ScanSAR Image

ASAR Image



Comparison: ScanSAR vs. Stripmap (TerraSAR-X)

ScanSAR (HH)
150 MHz
17 m resolution
1 (az) x 6.9 (rg) looks
ascending orbit

Stripmap (HH)
150 MHz
7 m resolution
2.9 (az) x 3.4 (rg) looks
descending orbit

3 days time separation



ScanSAR
EEC-RE
17 m res.

illumination

~3 km x 4 km

ScanSAR



Stripmap
EEC-RE
7 m res.

illumination

~3 km x 4 km

Stripmap



TOPS-SAR (Terrain Observation by Progressive Scan)
ScanSAR

Shares illumination time between 
multiple swaths

TOPS-SAR
Shares illumination time between 

multiple swaths 
Improved image quality



Advanced SAR Imaging Modes
- Spotlight Mode -



Azimuth

Spotlight Synthetic Aperture

End of 
imaging

Begin of 
imaging

image center

synthetic aperture of 
stripmap mode

• Non continuous imaging mode, but very high azimuth resolution
• Spotlight azimuth resolution 

Spotlight SAR Imaging 



Stripmap image 
3 m azimuth resolution

Spotlight image 
0.46 m azimuth resolution

E-SAR System, X-Band, Oberpfaffenhofen, Germany

Spotlight SAR Imaging 



High Resolution Spotlight, HH-Pol., spot_040, 37° inc. angle, 150 MHz 
Chuquicamata, Chile

L1B SAR Processing: High Resolution Spotlight
HR Spotlight (VV), 150 MHz range bandwidth, θincid ≈ 35°, 5 km x 10 km

az

rng

Chuquicamata, Chile
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Spotlight Imaging Mode



Outlook



SAR Application Trends 
Trends in Earth Science & Applications:
 Day / night, all-weather coverage of the Earth‘s surface

 Frequent revisit times (time series):

 hours to 1 day: coastal zones, ocean, traffic and disaster monitoring 

 days to weeks: differential interferometry, soil moisture, agricultural areas

 months to year: tropical, temperate and boreal forests, differential interf.

 Variable resolution (1 to 100 m) and wide coverage (25 to 450 km swath width)

 High (2 m) and medium resolution (10-15 m) global topography

 Information products of key inputs to global change models:

 above ground biomass,  soil moisture,  wetland areas,  land cover types

 ocean surface & currents, ice mass balance, glacier velocity 

 Calibrated and geo-coded data products are required (e.g. compatibility to GIS)

 Model based inversion algorithms are needed for reliable information extraction
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Summary: SAR Principles and Applications
• High resolution capability (independent of flight altitude)

• Weather independence by selecting proper frequency range

• Day/night imaging capability due to own illumination

• Complementary to optical systems

• Polarization signature can be exploited (physical structure, dielectric constant)

• Terrain Topography can be measured by means of interferometry

• Innumerous applications areas

• Great interest in the scientific community as well as for commercial and 

security related applications 
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