

## → 6th ESA ADVANCED TRAINING COURSE ON LAND REMOTE SENSING

## Synthetic Aperture Radar (SAR): Principles and Applications

**Marwan Younis** 

German Aerospace Center (DLR) Microwaves and Radar Institute 82230 Oberpfaffenhofen, Germany

e-mail: marwan.younis@dlr.de / Web: www.dlr.de/HR

14-18 September 2015 | University of Agronomic Science and Veterinary Medicine Bucharest | Bucharest, Romania

## PART III

## Theory: SAR Image Formation and Image Properties





## **SAR Image Formation**





## **SAR Basic Principle**



- 1) pulsed radar system (PRF = Pulse Repetition Frequency)
- 2) two dimensional imaging (range x azimuth)
- 3) range resolution

$$\delta_r = \frac{c_o}{2B_p}$$

4) azimuth resolution

$$\delta_a = \frac{d_a}{2}$$

5) Radar system must be coherent!



#### **SAR Data Flow**



## Synthetic Aperture Radar (SAR)



## **Coherent Measurement Principle**



## **Coherent Measurement Principle**



## **Phasor Representation of SAR Signal**

complex representation:  $A \cdot \cos(2\pi f_0 t + \phi) \rightarrow A \cdot \exp[j(2\pi f_0 t + \phi)]$ 

after demodulation:  $A \cdot \exp[j \cdot \phi]$ 



Every pixel of a complex SAR image consists of a real and an imaginary part, i.e. it is a phasor and contains amplitude and phase information. amplitude information  $\rightarrow$  backscattering coefficient  $\sigma_o$ 

phase information =  $-\frac{4.\pi}{\lambda} \cdot r + \phi_{object}$ 



## 2-D Raw Data Matrix



## **Formation of Azimuth Chirp Signal**





## **Synthetic Aperture Formation and Processing**





## **SAR Processing (Image Formation)**





## **Pulse Compression by Convolution**



DLF

## **Linear Superposition of Chirps**





## **SAR Processing (Image Formation)**



## **SAR Processing (Image Formation)**



## **Summary: SAR Processing**

#### 1. Step: Range compression

- Generation of range reference function
- Matched filtering using convolution of range signal with range reference function

#### 2. Step: Azimuth compression

- Generation of azimuth reference function
- Matched filtering using convolution of azimuth signal with azimuth reference function

#### 3. Step: Calculation of the modulus of the SAR image (detection)

• This step is not required in case that the phase information is used (e.g. polarimetry, interferometry etc.)

#### Normally the convolution is carried out in frequency domain



## **SAR Processing: 2D Matched Filter**



## **Calibration of SAR Images**



## **Calibration Devices**

• Examples of calibration targets with well-known reflectivity (Radar Cross Section) for external calibration of the SAR system







## SAR Image of ASAR/ENVISAT, 12-10-02





# SAR Image Properties – Geometric Distortions –



#### Montserrat Volcano

Stripmap VV-pol.

• 9. Oct. 2007

Eruption: 29. July 2008

- 1. Aug. 2008
- 12. Aug. 2008







## **Slant-to-Ground-Range Conversion**



## **Geometric Distortion: Foreshortening**



## **Geometric Distortion: Foreshortening**



## **Geometric Distortion: Layover**



## **Geometric Distortion: Shadow**



#### Consider the radar image below. What is the illumination direction of the radar?











#### far range

near range

## SAR Image Properties - Speckle -




## Kaufbeuren, Germany

F-SAR, X-band quadpol 0.25m resolution

2

Kaufbeuren, Germany F-SAR X-band quadpol 0.25m resolution



## **SAR signal modeling**



 $|u(x, r)| = |\gamma(x, r) \otimes u_o(x, r)|$ 

• For a point target:  $\gamma = 1$ 

where

|u(x, r)| SAR image

 $\gamma$  (*x*, *r*) scene complex reflectivity

 $u_o(x, r)$  SAR impulse response



## **SAR signal modeling**

- Distributed targets have surface roughness comparable or smaller than radar wavelength
- Resolution of the SAR sensor cannot resolve individual scatterers
- For each resolution cell,  $\gamma(x, r)$  is equal to the sum of all scatterers contributions i. e.







#### Speckle

- Inherent to coherent systems
- Probability distribution function has a exponential distribution, i.e.

average value = standard deviation

• Speckle makes SAR image interpretation more difficult



E-SAR high resolution image (0.6 m x 2 m)



#### **Multi-Look Processing**



 $\rightarrow$  overlap of 50% between the looks is commonly used.



#### **Multi-Look Processing (@ SAR Processor)**



- azimuth resolution deteriorates:  $\delta_{a,ML} = \delta_a L$
- Standard deviation of the speckle noise is reduced by the square root of the number of looks:

standard deviation = average value / sqrt( L)



#### **Multi-Look Processing**



#### **Statistics of SAR Signal for Distributed Targets**



## Multi-Look Processing (@ SAR Image)



• SAR impulse response function with average of *L* image pixels:  $|u_{ML}(x,r)|^2 = \frac{\sum_{n,m=1}^{n+m=L} |u(x_n,r_m)|^2}{L}$ 

- azimuth resolution deteriorates:  $\delta_{a,ML} = \delta_a L$  L = number of looks
- Standard deviation of the speckle noise is reduced by the square root of the number of looks:

standard deviation = average value / sqrt( L)



#### Single-Look and Multi-Look Processing





#### 5 looks 20 m x 20 m resolution

320 looks (average of 64 images)20 m x 20 m ground resolution

ERS-1 satellite images (processing DLR-IMF)



#### **Speckle Reduction with Image Filtering**





#### original SAR image (1 look) Airborne SAR AeS-1

speckle filtered Adaptive Filtering (Model based approach)



#### **Summary: Speckle**

- SAR image of distributed targets contains speckle noise.
- Speckle noise is inherent in coherent radar systems.
- The average value of the speckle amplitude is equal to its standard deviation (exponential distribution).
- Multi-look processing or spatial averaging is used to reduce the speckle noise. Standard deviation decreases with  $\sqrt{L_{\rm eff}}$  .
- An overlap of 50% between the looks is commonly used.
- Speckle noise can also be reduced by averaging the final image



# PART IV

## **Advanced SAR Techniques**

## and Future Developments





## Advanced SAR Imaging Modes - ScanSAR Mode -





- Synthetic aperture is shared between the subswaths (not contiguous within one subswath)
- Mosaic Operation is required in azimuth and range directions to join the azimuth bursts and the range sub-swaths





#### **ScanSAR Main Properties**

• ScanSAR leads to a large swath width

#### •The azimuth signal consists of several bursts



- Azimuth resolution is limited by the burst duration
- Each target has a different frequency history depending on its azimuth location





## ScanSAR Imaging (Chickasha, Oklahoma, USA)

Subswath 1 (near range)

> Subswath 2

Subswath 3

Subswath 4 (far range)



azimuth

SIR-C image L-band, VV





#### Comparison: ScanSAR vs. Stripmap (TerraSAR-X)



#### → ScanSAR (HH)

- 150 MHz
- 7 17 m resolution
- 1 (az) x 6.9 (rg) looks
- ascending orbit

#### → Stripmap (HH)

- , 150 MHz
- 7 m resolution
- 2.9 (az) x 3.4 (rg) looks
- descending orbit

#### → 3 days time separation







ScanSAR







#### TOPS-SAR (Terrain Observation by Progressive Scan)

#### ScanSAR

Shares illumination time between multiple swaths



#### TOPS-SAR

- Shares illumination time between multiple swaths
- → Improved image quality





## Advanced SAR Imaging Modes - Spotlight Mode -



## **Spotlight SAR Imaging**



- Non continuous imaging mode, but very high azimuth resolution
- Spotlight azimuth resolution

$$\delta_{\mathrm{a}} = rac{\lambda}{2\cdot\Delta heta_{\mathrm{a}}}$$





#### **Spotlight SAR Imaging**





Stripmap image 3 m azimuth resolution

Spotlight image 0.46 m azimuth resolution

E-SAR System, X-Band, Oberpfaffenhofen, Germany







Chuquicamata, Chile



## **Outlook**



## **SAR Application Trends**

#### Trends in Earth Science & Applications:

✓ Day / night, all-weather coverage of the Earth's surface

✓ Frequent revisit times (time series):

✓ hours to 1 day: coastal zones, ocean, traffic and disaster monitoring ✓ days to weeks: differential interferometry, soil moisture, agricultural areas ✓ months to year: tropical, temperate and boreal forests, differential interf. ✓ Variable resolution (1 to 100 m) and wide coverage (25 to 450 km swath width) High (2 m) and medium resolution (10-15 m) global topography ✓ Information products of key inputs to global change models: ✓ above ground biomass, soil moisture, wetland areas, land cover types ✓ ocean surface & currents, ice mass balance, glacier velocity ✓ Calibrated and geo-coded data products are required (e.g. compatibility to GIS) Model based inversion algorithms are needed for reliable information extraction



## **Summary: SAR Principles and Applications**

- High resolution capability (independent of flight altitude)
- Weather independence by selecting proper frequency range
- Day/night imaging capability due to own illumination
- Complementary to optical systems
- Polarization signature can be exploited (physical structure, dielectric constant)
- Terrain Topography can be measured by means of interferometry
- Innumerous applications areas
- Great interest in the scientific community as well as for commercial and security related applications



## **References**



#### **References I**

#### **SAR Principles and Applications**

- CEOS EO Handbook Catalogue of Satellite Instruments. On-line available: http://www.eohandbook.com, Oct. 2012.
- Curlander, J.C., McDonough, R.N.: Synthetic Aperture Radar: Systems and Signal Processing. Wiley, 1991.
- Elachi, C. and J. van Zyl, Introduction to the Physics and Techniques of Remote Sensing. John Wiley & Sons, 2006
- Henderson, F. und Lewis, A.: Manual of Remote Sensing: Principles and Applications of Imaging Radar. Wiley, 1998.
- Lee, J.S. and Pottier, E.: Polarimetric Radar Imaging: From Basics to Applications. CRC Press, 2009.
- Massonnet, D. and Souryis, J.C.: Imaging with Synthetic Aperture Radar. EPFL & CRC Press, 2008.
- McDonough, R.N. et al: Image Formation from Spaceborne Synthetic Aperture Radar Signals. Johns Hopkins APL Technical Digest, Vol. 6, No. 4, 1985, S. 300-312.
- Moreira, A., Prats-Iraola, P., Younis, M., Krieger, G., Hajnsek, Irena and Papathanassiou, K.: A Tutorial on Synthetic Aperture Radar. IEEE Geoscience and Remote Sensing Magazine, 1 (1), 2013, pp. 6-43.
- Tomiyasu, K.: Tutorial Review of Synthetic-Aperture Radar (SAR) with Applications to Imaging of the Ocean Surface. In: IEEE Proc., Vol. 66, No. 5, May 1978.
- Woodhouse, I.: Introduction to Microwave Remote Sensing, CRC, Taylor & Francis, 2006.




## **References II**

## **SAR Processing**

- Cumming, Ian and Frank Wong, Digital Processing of Synthetic Aperture Radar Data, Artech House, 2005
- Franceschetti G. und R. Lanari.: Synthetic Aperture Radar Processing. CRC Press, USA, 1999
- Li, F.K., Croft, C., Held,D.: Comparison of Several Techniques to Obtain Multiple-Look SAR Imagery. In: IEEE Trans. Geoscience and Remote Sensing, Vol. 21, No. 3, Juli 1983.
- Moreira, A., Mittermayer, J., Scheiber, R.: Extended Chirp Scaling Algorithm for Air- and Spaceborne SAR Data Processing in Stripmap and ScanSAR Imaging Modes. In: IEEE Trans. Geoscience and Remote Sensing, Vol. 34, No. 5, 1996.

## SAR Image Properties

- Oliver, C. und S. Quegan. Understanding Synthetic Aperture Radar Images. SciTech Publishing, Inc., 2004.
- Raney, R. K.: Theory and Measure of Certain Image Norms in SAR. IEEE Trans. Geosci. Remote Sensing, Vol. 23, No.3, Mai 1985.
- Raney, R. K. und Wessels, G. J.: Spatial Considerations in SAR Speckle Simulation. IEEE Trans. Geosci. Remote Sensing, Vol. 26, No. 5, Sept. 1988, S. 666-672.
- Tomiyasu, K.: Conceptual Performance of a Satellite Borne, Wide Swath Synthetic Aperture Radar. In: IEEE Trans. Geoscience and Remote Sensing, Vol. 19, No. 2, April 1981, S. 108-116.





## The Golden Age for Spaceborne SAR I

alberto.moreira@dlr.de

TanDEM-X, Kori Kollo, Bolivia