

→ 6th ESA ADVANCED TRAINING COURSE ON LAND REMOTE SENSING

Synthetic Aperture Radar (SAR): Principles and Applications

Marwan Younis

German Aerospace Center (DLR) Microwaves and Radar Institute 82230 Oberpfaffenhofen, Germany

e-mail: marwan.younis@dlr.de / Web: www.dlr.de/HR

14-18 September 2015 | University of Agronomic Science and Veterinary Medicine Bucharest | Bucharest, Romania

Remote Sensing

- Measuring objects properties from distance with dedicated instruments
- Aerial photography is the original form of remote sensing
- Acquired information
 - spatial (geometric resolution)
 - spectral (frequency resolution)
 - intensity (radiometric resolution)
 - temporal (revisit time)
- Different types of remote sensing sensors:
 - Microwave sensors
 - passive (radiometers)
 - active (radars)
 - Scatterometer, Altimeter
 - Synthetic Aperture Radar SAR

Types of Remote Sensing Sensors

X-band, High Resolution Airborne SAR, F-SAR, Kaufbeuren, Germany

X-band, Airborne SAR, F-SAR, Full Polarimetric

C-band, Airborne SAR, F-SAR, Full Polarimetric

TerraSAR-X, Mississippi, USA - Flooding

TerraSAR-X, Drygalski Glacier, Oct 2007 – July 2008

TerraSAR-X, Las Vegas, USA (time series of 20 images)

Mato Grosso, Brazil - Deforestation

TanDEM-X, Atacama Desert, Chile

ENVISAT/ASAR, Bam Earthquake, 2003 (© ESA)

- Complementary information to optical systems (e.g. polarimetry)

TerraSAR-X, Pyramids of Giza, Egypt

F-SAR, Kaufbeuren, Germany

- Complementary information to optical systems
- Penetration of radar waves

Forest height with polarimetric SAR interferometry

- Complementary information to optical
- Penetration of radar waves
- Weather independent

average global cloud coverage

ENVISAT (ASAR and MERIS), Alps, Austria

SIR-C/X-SAR image, Kamchatka, Russia

- Complementary information to optical systems
- Penetration of radar waves
- Weather independent
- Day-and-night imaging capability

Wilkins ice shelf collapse during the antarctic winter

- Complementary information to optical systems
- Penetration of radar waves
- Weather independent
- **Day-and-night imaging capability**
- Geometric resolution independent of the distance

TerraSAR-X, multi-temporal, Sydney, Australia

- Complementary information to optical systems
- Penetration of radar waves
- Weather independent
- Day-and-night imaging capability
- Geometric resolution independent of the distance
- New image products by coherent combination of radar images (i.e. using phase information in the radar images)

3D Mapping (Digital Elevation Model)

Tomography (Urban Mapping)

Differential Interferometry (Earthquake deformation)

Differential Interferometry (Subsidence)

SAR Main Properties and Applications

- high resolution capability (independent of flight altitude)
- weather independence by selecting proper frequency range
- day/night imaging capability due to own illumination
- complementary to optical systems
- polarization signature can be exploited (physical structure, dielectric constant)
- innumerous applications areas:
 - Topography (DEM generation with interferometry)
 - Oceanography (wave spectra, wind speed, ocean currents)
 - Glaciology (snow wetness, snow water equivalent, glacier monitoring)
 - Agriculture (crop classification and monitoring, soil moisture)
 - Geology (terrain discrimination, subsurface imaging)
 - Forestry (forest height, biomass, deforestation)
 - Moving Target Indication (MTI)
 - Volcano and earthquake monitoring (differential interferometry)
 - Environment monitoring (oil spills, flooding, urban growth, global change)
 - Military surveillance and reconnaissance (strategic policy, tactical assessment)

Outline of Lecture

- Part I : Motivation for Spaceborne SAR Remote Sensing ✓
- Part II : Basics of Synthetic Aperture Radar

Radar principle, SAR basic principles, backscattering coefficient, geometric resolution, spaceborne SAR systems, frequency bands, summary

• Part III: Theory: SAR Image Formation, Image Properties

SAR block diagram, synthetic aperture, SAR image formation, impulse response function, calibration, SAR signal for distributed targets, speckle, multi-look processing

• Part IV: Advanced SAR techniques and Future Developments

ScanSAR imaging, Spotlight SAR imaging, outlook, references

Radar: <u>Radio Detection and Ranging</u>

Basic Radar Block Diagram

Radar Measurement Principle

• Received echo signal (back-scattered signal of imaged object):

Acquisition Geometry

Pulsed Radar system (PRF: pulse repetition frequency)

Side-looking antenna

⇒ discrimination of objects along ground-range possible

SAR Measurement Principle

Timing is an important issue for SAR:

It determines the duration of the receive echo window (swath width), which is inversely proportional to the *PRF* and τ

Side Looking Geometry and Timing

• Time delay for received signal t_d

$$t_d = \frac{2 \cdot r_0}{c_0}$$

• Maximum swath width SW_{max}

$$SW_{\max} \approx \frac{c_0}{2 \cdot PRF \cdot \sin \theta_i}$$

• Incidence angle θ_l

$$\cos \theta_l \approx \frac{h}{r_o}$$
 ($\theta_l = \theta_i$, valid only for flat terrain)

• Typical values of look angle: 20 degrees to 60 degrees

What does the Radar measure ?

• Radar reflectivity (backscattered signal) of targets as a function of their position

radar transmits a pulse (travelling velocity is equal to velocity of light)

some of the energy in the radar pulse is reflected back towards the radar. This is what the radar measures. It is known as radar backscatter σ_0 (sigma nought or sigma zero).

Range and Azimuth Resolution for a Radar System

• Range Resolution depends on the bandwidth or pulse duration of transmitted signal

• Azimuth Resolution depends on the azimuth size of the antenna and increases with range

$$\boldsymbol{\delta}_a = \boldsymbol{\theta}_a \cdot \boldsymbol{r}_o = \frac{\lambda}{d_a} \cdot \boldsymbol{r}_o$$

• Example 1: Airborne system in X-Band, 25 MHz bandwidth, 3 m antenna, 3000 m range

$$\delta_r = 6 m$$
 $\delta_a = 30 m$

• Example 2: Satellite system in X-Band, 25 MHz bandwidth, 12 m antenna, 800 km range

$$\delta_r = 6 m$$
 $\delta_a = 2000 m !$

Synthetic Aperture Radar (SAR)

Side-Looking Radar Imaging Geometry

Side Looking Geometry and Timing

Formation of a Synthetic Aperture

Concept of Synthetic Aperture (Simplified)

Azimuth resolution independent of range and Frequency!

Single Channel Radar Image

E-SAR image (X-band) processed in real-time, 3 x 3 m resolution, 6 looks

Backscattering Coefficient σ_o

Levels of Radar backscatter	Typical scenario
• Very high backscatter (above -5 dB)	Man-Made objects (urban) Terrain Slopes towards radar very rough surface radar looking very steep
• High backscatter (-10 dB to 0 dB)	rough surface dense vegetation (forest)
• Moderate backscatter (-20 to -10 dB)	medium level of vegetation agricultural crops moderately rough surfaces
• Low backscatter (below -20 dB)	smooth surface calm water, road very dry terrain (sand)

Backscattering Coefficient σ_o

SAR Acquisition for Single Point Target

Azimuth Signal

Azimuth position of the platform

 $x(t) = v_p t$

Range variation for a point target

$$r(x) = \sqrt{R_0^2 + x^2} \xrightarrow[2^{nd} \text{ order} \\ \text{Taylor approx.}} r(x) \cong R_0 + \frac{x^2}{2R_0}$$

Azimuth phase variation

$$\varphi_a(t) = -\frac{4\pi}{\lambda} r(t) \cong -\frac{4\pi}{\lambda} \left[R_0 + \frac{\left(v_p t \right)^2}{2R_0} \right]$$

Azimuth (Doppler) frequency variation

$$f_D(t) = \frac{1}{2\pi} \frac{\partial \varphi_a(t)}{\partial t} \cong -\frac{2v_p^2}{\lambda R_0} t = k_D t$$

Azimuth signal (reference function for focusing is complex conjugated and time reverted)

$$s_a(t) = \underline{A}_a(t) \exp\left(-j\frac{4\pi}{\lambda}r(t)\right) \cong \underline{A}_a \exp\left(j2\pi k_D t^2\right)$$

 \underline{A}_a complex amplitude

Azimuth Signal

Azimuth (Doppler) frequency variation

$$f_D(t) = \frac{1}{2\pi} \frac{\partial \varphi_a(t)}{\partial t} \cong -\frac{2v_p^2}{\lambda R_0} t$$

Illumination time

$$T = \frac{L_s}{v_p} = \frac{\Theta_a \cdot R_0}{v_p} \approx \frac{\lambda / L_a \cdot R_0}{v_p}$$

Max. Doppler (azimuth) bandwidth

$$B_{D} = f_{D}(t)\Big|_{t=-\frac{T}{2}} - f_{D}(t)\Big|_{t=+\frac{T}{2}}$$
$$B_{D} \cong \frac{2v_{p}\Theta_{a}}{\lambda} = \frac{2v_{p}}{L_{a}}$$

 $\Rightarrow Azimuth resolution$ $\Delta x = \frac{v_p}{B_D} = \frac{L_a}{2}$

Synthetic Aperture Radar Principle

Constant Doppler Frequency - Animation

Chart 47

Symmetric Doppler History

Doppler History of a Point Target

Symmetric, Wide Doppler History

Doppler History Forward Looking SAR

Lines of Constant Doppler (Isodops)

Doppler History of Multiple Targets

Chart 53

Timing in Spaceborne SAR

Swath Width and Range Ambiguities

Spaceborne SAR Systems

Chart 57

First Civilian SAR Satellite: SEASAT (1978)

Launch	June 26, 1978	Frequency	1,275 GHz
Altitude	~780 km	Bandwidth	19 MHz
Weight	2300 kg	Antenna	10,74 m x
Inc. Angle	~ 23°	Size	2,16 m
Swath Width	100 km	Resolution	25 m x 25 m

Spaceborne SAR Systems

SEASAT NASA/JPL (USA) L-Band, 1978

SIR-C/X-SAR NASA/JPL, L- and C-Band (quad) DLR / ASI, X-band 1994

ENVISAT / ASAR European Space Agency (ESA) C-Band (dual), 2002-2012

ERS-1/2 European Space Agency (ESA) C-Band, 1991-2000/1995-2011

RadarSAT-1 Canadian Space Agency (CSA) C-Band, 1995-2013

ALOS / PALSAR Japanese Space Agency (JAXA) L-Band (quad), Jan. 2006-2011

J-ERS-1 Japanese Space Agency (JAXA) L-Band, 1992-1998

Shuttle Radar Topography Mission (SRTM) NASA/JPL (C-Band), DLR (X-Band) February 2000

SAR-Lupe BWB, Germany 5 satellites, X-Band, 2006/2008

Spaceborne SAR Systems

RadarSAT-II Canadian Space Agency (CSA) C-Band (quad), 2007

TerraSAR-X/TanDEM-X DLR /Astrium, Germany X-Band (quad), 2007/2010

COSMO-SkyMed ASI, Italy 4 Satellites, X-Band (dual), 2007/2010

Kompsat-5 KARI, Korea X-band (dual), 2013

HJ-1C -SAR CRESDA/CAST/NRSCC, China S-Band (HH or VV), 2013

RISAT-1 Indian Space Agency (ISRO), India C-Band (quad), 2012

SENTINEL-1a/b ESA, Europe C-Band (dual), 2014/2015

Radarsat Constellation 1-3 CSA/MDA, Canada C-band (dual), 2018

PAZ Ministry of Defence, Spain X-Band (quad), 2014

BIOMASS ESA, Europe P-Band (quad), 2020

ALOS-2 Japanese Space Agency (JAXA) L-Band (quad), 2014

SAOCOM-1/2 CONAE/ASI, Argentina L-Band (quad), 2016/2018

Commonly Used Frequency Bands

Frequency band	Frequency range	Application Example
• VHF	300 KHz - 300 MHz	Foliage/Ground penetration, biomass
• P-Band	300 MHz - 1 GHz	biomass, soil moisture, penetration
• L-Band	1 GHz - 2 GHz	agriculture, forestry, soil moisture
• C-Band	4 GHz - 8 GHz	ocean, agriculture
• X-Band	8 GHz - 12 GHz	agriculture, ocean, high resolution radar
• Ku-Band	14 GHz - 18 GHz	glaciology (snow cover mapping)
• Ka-Band	27 GHz - 47 GHz	high resolution radars

Frequency and Polarisation Diversity