

THE EUROPEAN SPACE AGENCY EO Missions and their Exploitation for Land Science & Applications

Yves-Louis DESNOS, Peter REGNER, Steven Delwart, Marcus ENGDAHL Jerome BENVENISTE, Michael FOUMELIS, Simon PINNOCK et al

European Space Agency ESRIN/ESTEC/HARWELL

www.esa.int

Septembre 2015

ESA FACTS AND FIGURES

- Over 50 years of experience
- 22 Member States
- Eight sites/facilities in Europe, about 2200 staff
- 4.4 billion Euro budget (2015)
- Over 80 satellites designed, tested and operated in flight
- Over 20 scientific satellites in operation
- Six types of launcher developed

PURPOSE OF ESA

"To provide for and promote, for exclusively peaceful purposes, cooperation among European states in **space research** and **technology** and their **space applications.**"

Article 2 of ESA Convention

OVER 20 MEMBER STATES

ESA has 22 Member States: 18 states of the EU (AT, BE, CZ, DE, DK, ES, FI, FR, IT, GR, IE, LU, NL, PT, PL, RO, SE, UK) plus Norway and Switzerland. Estonia and Hungary are joining ESA in 2015.

Seven other EU states have Cooperation Agreements with ESA: Bulgaria, Cyprus, Latvia, Lithuania, Malta, Slovakia and Slovenia. Discussions are ongoing with Croatia.

Canada takes part in some programmes under a long-standing Cooperation Agreement.

ESA Earth Observation Programmes

Copernicus: A New Generation of Data Sources

- Copernicus is a European space flagship programme led by the European Union
- ESA coordinates the space component
- Copernicus provides the necessary data for operational monitoring of the environment and for civil security
- Free and open data policy

Tentative Sentinel Schedule

Launch Sentinel-1A

- 3 April 2014
- Kourou spaceport
- Soyuz-2 rocket
- New era of Earth observation

First Image Campaign

Sentinel-1 C-band SAR mission

Mission profile:

- **C-Band SAR** at 5.4 GHz, multi-polarisation
- Sun synchronous orbit at 693 km mean altitude
- **250 km** swath width (Interferometric Wideswath mode)
- **6 days** repeat cycle at Equator with 2 satellites
- **7 years** design life time, consumables for 12 years
- **1 4** nominal mutually exclusive operation modes

'Selfie' April 4th 2014

Sentinel-1 Operational Modes

Resolution (1 look)	Swath Width	Polarisation
20 x 40 m ²	> 400 km	HH+HV or VV+VH
5 x 20 m ²	> 250 km	HH+HV or VV+VH
5 x 5 m ²	> 80 km	HH+HV or VV+VH
5 x 5 m ²	20 x 20 km ² at 100 km spacing	HH or VV

S-1 operational product family

European Space Agency

sa

Marine / Oceans

Maritime Surveillance (Oil Spill Detection, Ship Detection, Illegal Fisheries, etc.)

Sentinel-1 TOPS Polarimetric Composite

Sentinel-1A TOPS over Greece

Sentinel-1A TOPS IW VV/VH GRD High 10m pixel spacing

Sentinel-1 A for Sentinel-1 B Cal/Val

Sentinel-1 A data propagated in time and space from the source storm to the coast Space Agency

Sentinel1 wind speed ventury effect around hawaiian islands

Sentinel-1A Island

Land cover

Crop monitoring, Forest, Food Security ... and New Promising Land Applications ...

Northern Italy

RBG - VV/VH/VH Pixel spacing 10m 250x340 km Date: 15.11.2014

S1A Country Mosaics Data from SciHub - processed with S1TBX

Switzerlan

A mosaic of 6 1A scenes acq October to De 2014

S1A Mosaic of Romania

Philippine island of Luzon with Mount Pinatubo

Sentinel-1A Deforestation over Brazil

S1A Polarimetric Composition Poyang Lake, China

Data from SciHub Processed with S1TBX

European Space Agency

RGB - VV VH VV/VH

S1A Polarimetric Composition – Poyang Lake, China

Vegetation Regeneration Burn Scar over Parnitha Mt. (Greece)

PRELIMINAY RESULTS RICE MONITORING

S-1A geocoded - 8 & 20 Aug, 80m (detail) - Vietnam

rice stage 1 rice stage 2 rice stage 3 non-rice

Courtesy SARMAP

The An Giang Province

PRELIMINAY RESULTS RICE MONITORING

Asia- RICE Technical Demonstration Site: The Mekong River Delta (~250 x 300 km)

Sentinel-1 data acquired every 12 days (resolution 40m or 10m):

1 - 30 Oct 2014 2 - 11 Nov 2014 3 - 23 Nov 2014 4 - 5 Dec 2014 5- 17 Dec 2014 6- 10 Jan 2015

The period corresponds to
Recession of flood waters
For fields protected by dykes: the end of Autumn-Winter crop and the beginning of Winter-Spring crop
(e.g. in the An Giang Province)

Bouvet & Le Toan

PRELIMINAY RESULTS RICE MONITORING

Rice crop calendar for local/regional survey and inputs to rice growth models

Crop calendar in the An Giang Province

November-December: end of Autumn-Winter crop and beginning of Winter-Spring crop

Crop calendar using the first Sentinel-1 data

- Planted around 11-12- 2014
- Planted between 11-11 and 23-11
- Planted on 23 -11
- Harvested between 23-11 and 5 -12, and planted again around 5-12
- Harvested between 23-11 and 5-12, and planted again between 5 and 17 -12
- Harvested between 17 -12 and 10 -01-2015

Bouvet & Le Toan

esa

The An Giang province (80 km x 80 km)

Sentinel-1 Mosaic of India

Courtesy SARMAP

Great potential for rice mapping and land classification Demonstration North Italy

Multitemporal 8-20 Apr 2015 with coherence

> Courtesy SARMAP

RED/ORANGE:

coherence, object not changing: bare soil rough

GREEN:

average of the two sigma0 VV Forest mainly

BLUE:

difference of the two sigma0 VV objects changing within 12 days (here ploughing activities)

BLACK:

objects not reflecting: water or very smooth^E bare^{Space Agency} soil areas

Land motion

Interferometry Applications Ground deformation

Objective

"Validation and scientific exploitation of the interferometric performance of TOPS mode on Copernicus Sentinel-1 mission"

ESA's SEOM INSARAP Studies

- Full exploitation of S-1 mission capacity (DInSAR, PSI, multi-reference SBASlike, processing full IW extend etc.)
- Development of advanced algorithms and novel products
- Supporting the scientific community
- Demonstrate continuity of ESA's C-band SAR observations

Activity funded through SEOM element of ESA's EOEP-4 (www.seom.esa.int)

Copyright: Copernicus data (2014)/ESA/PPO.labs-Norut-COMET-SEOM INSARAP study

Sentinel-1 TOPS Interferogram - Norway Relief Nominal Orbit Reached

Sentinel-1 TOPS Interferogram Mt. Etna (Sicily) **Nominal Orbit Reached**

Interferometric phase with overlaid reflectivity and topographic fringes substracted Copyright: Copernicus data (2014)/ESA/DLR Microwave and Radar Institute-SEOM Insarap study

Large Scale Interferogram over Italy (IDCR) (IDCR)

Copyright: Copernicus data (2014)/ESA /PPO.labs-Norut-COMET-SEOM INSARAP study

First Capture of an Earthquake by Sentinel-1 Napa Valley (California) M6.0R

Sentinel-1 maps earthquake

The biggest earthquake in 25 years struck California's Napa Valley in the early hours of 24 August 2014. By processing two Sentinel-1A images, acquired on 7 August and 31 August 2014 an interferogram was generated. Deformation on the ground causes phase changes in radar signals that appear as the rainbow-coloured patterns around the Napa Valley. Each colour cycle corresponds to a deformation of 28 mm deformation. The maximum deformation is more than 10 cm, and an area of about 30x30 km was affected significantly.

Copyright: Copernicus data (2014)/ESA/PPO.labs/Norut/COMET-SEOM Insarap study

Napa Valley Earthquake Scientific Component

of operational missions

Copyright: Copernicus data (2014)/ESA/PPO.labs-Norut-COMET-SEOM INSARAP study

Napa Valley Earthquake Promoting Science Data Use and Results

Mount Vesuvius and Campi Flegrei Nominal Orbit Reached

Release of Sentinel Toolboxes

- Itinel To
 Multi-mission
 Developed as open
 Users
 Common architecture (Six in Stiffic toolboxes
 Mustific toolboxes
 Cloud infrastruct

STEP

- STEP
- opening

- EO science conce Technical forum and commune g Gathering user feedback and usag unicating on results and Training 2015 2025 **Under** preparation http://step.esa.int/

Sentinel-1 Maps Fogo Volcano Eruption

Fogo Volcano Eruption Displacement Field

INSARAP 2014 Workshop

seom scientific explo	
NSARAP SEOM ESA	
HAVIGATION Home	Programme and Presentations
Participation and Registration	11 December 2014
Programme	Session 3 - Sentinel-1 TOPS InSAR results Chairs: P. Prats & Y. Larsen
Committee and Contact	09:00 Sentinel-1 InSAR Capabilities: Results from the Sentinel-1A Commissioning Phase - D. Geudtner, ESA
Workshop Flyer	09:15 Adaptation of DIAPASON processing software to Sentinel-1 TOPS interferometry - J. Duro, Altamira
	09:45 Sentinel-1 InSAR progress and experience at GAMMA - U. Wegmüller, Gamma Remote Sensing AG
	10:15 Enabling the processing of Sentinel-1 TOPS data with the open-source DORIS software - F. van Leiten, Delft University of Technology
	10:45 Coffee Break
	11:00 SBAS-DINSAR processing chain for Interferometric Wide Swath Sentinel-1 data - M. Manunta, IREA-CNR
	11:30 Sentinel-1a Interferometry using the Integrated Wide Area Processor – First Experiences -R. Broic, DLR
	12:00 Lunch Break
	Round Table Discussion

Etrijtictpætson

Thereseks Beentines of the second sec

TOPS InSAR for Sentinel-1 Toolbox

https://sentinel.esa.int/web/sentinel/toolboxes/sentinel-1

TOPS InSAR for Sentinel-1 Toolbox

https://sentinel.esa.int/web/sentinel/toolboxes/sentinel-1

FRINGE 2015 Workshop

12 Thematic Sessions with 146 oral presentations

General

- Opening/ESA Session
- Copernicus Overview
- International Initiatives
- Mission Exploitation

Methods

- InSAR with Sentinel-1 (TOPS)
- Coherence Exploitation
- Theory and Techniques
- PSI and DInSAR

Applications

- Cryosphere
- Mapping
- Earthquakes and Tectonics
- Subsidence and Landslides
- Volcanoes

Oral presentations

Calbuco Volcano, Chile Eruption on April 24th, 2015

Copyright: Copernicus data (2014)/ESA/DLR Microwave and Radar Institute-SEOM INSARAP study

Nepal Earthquake (25 April 2015)

Differential interferogram from Sentinel-1A showing the ground deformation pattern of the 25 April 2015, M7.8R Nepal earthquake.

Generated based on Sentinel-1A acquisitions on 17 and 29 April 2015 – before and after the main seismic event.

An overall area of 120x100 km has moved, half of that uplifted and the other half, north of Kathmandu subsided.

> Copyright: Copernicus data (2015)/ ESA/Norut/PPO.labs/COMET-ESA SEOM INSARAP study

Nepal Earthquake (25 April 2015)

Each interferometric fringe represents about 3 cm of deformation. The large amount of fringes indicates the large deformation pattern with ground motions of more than 1m.

O Kathmandu

Copyright: Copernicus data (2015)/ ESA/Norut/PPO.labs/COMET-

Nepal Earthquake (25 April 2015)

Based on Sentinel-1A acquisitions on 17 and 29 April 2015 (ie before and after the 25 April earthquake)

Courtesy DLR / EOC

- Near the boundary of the Indian and Eurasian tectonic plates
- Blue shows areas of uplift of up to 0.8 m towards the satellite (called `line of sight') which could be caused by a vertical uplift of 1 m
- Yellow area depicts areas of subsidence
- A horizontal north-south shift of up to 2 m was detected

Nepal Earthquake Promoting Science Data Use and Results

Nepal Earthquake Motion using Speckle Tracking

Sentinel-1 First Subsidence Monitoring Mexico City

Five Sentinel-1A radar TOPS scans acquired between 3 October and 2 December 2014 were combined to create this image of ground deformation in Mexico City.

The deformation is caused by ground water extraction, with some areas of the city subsiding at up to 2.5 cm/month (red).

`Big Deformation' Mexico City - Recap

European Space Agency

Copyright: Copernicus data (2014)/ESA/PPO.labs-Norut-COMET-SEOM INSARAP study

`Big Deformation' Mexico City - Recap

~500km (longitude)

European Space Agency

Copyright: Copernicus data (2014)/ESA/PPO.labs-Norut-COMET-SEOM INSARAP study

Sentinel-1 Avalanche Debris Detection ESA Living Planet Fellowship "AVISENT" - NORUT

Copyright: M. Eckerstorfer, E. Malnes, H. Vickers (Unpublished Results)

Phlegraean fields monitored by Sentinel-1 – Surface deformation velocity

TOP: based on Envisat data acquired in 2002-2010

BOTTOM: based on Sentinel-1A data acquired in 2014-2015.

Drastic improvement of the point density obtained through the Sentinel-1A InSAR analysis

Small BAseline Subset (SBAS) interferometry technique, based on small spatial and temporal orbital separation between the radar images

European Space Agency

Courtesy CNR / IREA

Emergency Disaster Management

Flooding Geohazards Natural / Man-made Disasters etc

Sentinel-1 Flood Monitoring of Caprivi Flood Plain, Namibia

24°30'0"E

Zambia South Atlantic Ocean Legend Country border Derived HAND Index > 10 m Flooded areas Description: This map shows the flooding situation in the Caprivi flood plain of Zambezi River on 13th of April, 2014. The flood was delineated with the Water Observation and Information System (WOIS) based on SENTINEL-1A Namibia satellite data. Source data: SENTINEL-1A IW mode, 20 m resolution, acquired on 13th of April, 2014 at 03:50 GMT. SENTINEL-1 image was provided by the European Space Agency. Cartographic Reference Projection: EPSG:4326 Datum: WGS 84 Botswana Department eesa ater Affair 20 Km

25°0'0"E

25°0'0"E

10

Geo GEO

and the second

and and the second

EX NO. YANT

Flood in Panah, Pakistan, 16 Sep 2014 – International Charter / Unosat

20.002

79*59578

2014/04/21

STANDING WATERS IN TARIND MUHAMMED PANAH AREA, PUNJAB PROVINCE, PAKISTAN

Nº4FPE

Analysis with SENTINEL-1 data 16 September 2014

10120-01

304964010

Anapóis

Amazon N

274777

ANOTE

This map illustrates satellite-defacted areas with waters as detected by SEMTMEL - I angery acquired the 16 September to the server of the server and the server and the paginal reverse sepanded and takens to have landated once apsochative fields along the Index Meer and the Paginal Rever absochated fields along the Index Meer and the Paginal Rever to the Paginal Province (Patitian). This analysis has a server in measurement in the been usktated in the field. Please send ground feedback to MrTARP. AutoSAT.

TYPE

Flood

244503

Production Date

\$197/2014

WATER EXTENT ANALYSIS

ervez Haren // son African Lands Anni 1 15 September 2014 Comp Webs Extern Sin Max Baran

Bap Scale for A3: 4:175,000

Balefille Date (1): 58/17/MEL-1 magery Date: 16 Sectember 2014 Peacebox: 10e Copyright ESA Searce: ESA Searce: ESA Searce: ESA Most Date: Google May Maler / OSM / ESM Other Date: ChOSE UNCS. NASA. NOA Assignet: UNCTRAY (UNC)417 Production: UNETRAY (UNC)417 Production: UNETRAY (UNC)417 Production: UNETRAY (UNC)417 Assignet: Conductors with AC (05 yrth 2)

Coordinate System WG3 1984 UTM Zone 42V Physiotics: Transverse Meritator Datase WG3 2984 Units Media

This dispetition and same of boundaries, geographic, names and related data shown finite are not neuroscied to be enrol-time nor do liver drugs callular indecancement or acceptance by the United Nations UNCEAP is a proper of the United Nations Initiality and Nationality (UNITER), privating addetine reaging and Nationality (UNITER), privating addetine reaging and Nationality (UNITER), privating addetine reaging and Nationality (UNITER).

This serie by UNITARUNOSAT is increased under a Oracles. Contention Although April International Disording 3.8 Conjugated Laboration

10000

10151019

11005

Flood in Zaragoza, Spain, 2 Feb 2015 – Copernicus Emergency Service

LLCR some /L 2014-00004-WW Amount O 2000 HS Pediate /D 2014-01004-10	Legend Consist Information Profits of the automation Consist Information Consist Information Profits Optimized Administrative Boundaries Administrative Boundaries Administrative Boundaries Administrative Adminis	Hydrotagy Bar Bar Bar Bar Bar Bar Bar Bar Bar Bar	Consequences within the detail ADI on 27/01/2015					1 Stat	
Blantyre - MALAWI Flood - 17/01/2015 Delineation Map - Detail Certagraphic Information 1.100000 Pathene 107 Al , nor service 1109 on A States 100 Al , nor service 1100 Al , nor			Hooled and Latinuke populate Settempo	Nation Pressential Pressential Pressential Pressential Reference (Decidence)	14 1440.0003 140 800 800 800 800	Affected 12 addental 300 301 data 50 302 data 1 302	Tinal In Al3 802 80573 3024 78 198 198 198 20 100	Er state	
See MS2 MAXIM Zear Bit increases any one of the second sec	disparatuli Pasis Tradicipalitas Point of interest Brancia							A S	learning a

opernicus

Flood in Malawi

January 2015 -

Flood delineation map based on Sentinel-1 data

Copernicus Emergency Management Service

Ice / Cryosphere / Climate

Sea Ice / Iceberg Ice Sheets Polar Monitoring Snow

Thwaites Glacier, Antarctica

FIRST DEMONSTRATION OF SEA-ICE APPLICATION

The first Sentinel-1 sea-ice chart

Courtesy of DMI, MyOcean

S1A image20140426 10:10 UTC, EWS, HH

Pine Island Glacier Ice Velocity

Ice velocity map made of 2 Sentinel-1A images acquired on:

- 3 March 2015
- 15 March 2015

Courtesy University of Leeds

European Space Agency

First Greenland Ice Sheet Ice Surface Velocity Map based on Sentinel-1 data

Based on SLC products from Sentinel-1 Interferometric Wide Swath mode

Period: Jan-Mar 2015 (some scenes from Oct-Dec 2014)

~ 800 scenes ~ 25 000 bursts ~ 2.7 TB of SLC data

Offset tracking technique

Courtesy ENVEO IT Gmbh / ESA CCI Ice Sheets Project

European Space Agency

Operational Qualification phase leading to the Routine Operations

sa

Sentinel-1 full mission exploitation capacity based on the routine operations of the 2-satellite constellation → gradually achieved

Sentinel-2 Mission

Sentinel-2 in a nutshell

13 VIS/NIR/SWIR spectral bands: 3 new bands in the red edge tailored to vegetation monitoring

- Spatial resolution: 10m / 20m (60 m for atmosphere calibration)
- Swath: 290 km

2 spacecraft on same orbit, 180° apart: 5 days revisit at equator

Systematic coverage between 84°N and 56°S

Capacity is key: systematic acquisition 4 July 2015: Longest orbit

8000km from Sweden to Togo

 $\pm 30\%$ cloudy

<u>BUT:</u> 70% cloud-free = 2.3 Mio km2 successfully mapped in 20 minutes!

Synergy Sentinel-2 & Sentinel-1!

Irrigation and fires in Tabuk, Saudi Arabia

Urban Infrastructure and Motion in Venice/Italy

Spectacular details: airplane over the Alps

Athens/Orchomenos: 13 spectral banc

4-3-2, 8-3-2, 12-11-8a and 5-6-7

DQSTAG 4 Sep 2015

Greenland: Disko Bay 13 Spectral bands make the difference

Calving icebergs (Greenland

Radar vision

· Introducing Sentinel-1

ESA > Our Activities > Observing the Earth > Copernicus > Sentinel-1

Applications · Oceans and ice

- · Changing lands
- · Emergency response

About the mission

Facts and figures
 Satellite constellation

- · Instrument
- · About the launch

Operations and data

Data flow
 Data products

Multimedia • Image gallery

· Video gallery

Downloads
 Documents &

publications

Services
Subscribe

Chasing glacier retreat

CHASING ICE

21 August 2015 Satellite images show that the fastest moving glacier in the world shed a chunk of measuring around 12.5 sq km this week – one of the most significant calving events on record.

Radar images from Sentinel-1A captured the Jakobshavn glacier in western Greenland before and a the event, which took place between 14 and 16 August.

Comparing images taken on 27 July, and 13 and 19 August, the new face of the glacier has been pushed inland by several kilometres to what appears to be its furthest easterly location since monitoring began in the mid-1880s.

The image time series suggests that between 27 July and 13 August, the glacier advanced westwar before the calving caused rapid retreat of the ice front to its position on 19 August.

It is estimated that the glacier lost a total area of 12.5 sq km. Assuming the ice is about 1400 m d this equates a volume of 17.5 cubic km – which could cover the whole of Manhattan Island by a lay of ice about 300 m thick.

The history of this last calving event is also revealed in images taken by Sentinel-2A on 6 and 16 August.

Jakobshavn glacier drains 6.5% of the Greenland ice sheet, producing around 10% its icebergs. This amounts to some 35 billion tonnes of ice that calve every year.

Other similar events have been documented where the glacier parted with 7 sq km of ice, both earlier this year and back in 2010.

Jakobshavn glacier calving

Hazards: Vesuvius & Naples

Danube River Boat Jam – discovered by S1 and S2

Danube river traffic jam monitored with Sentinel acqui satellites

- The first two Sentinel satellites of the European Space Agency provided essential information for the monitoring of navigation along the Danube, which had its water levels receding considerably under the effect of the heat wave that
- gripped the country, informs a Romanian Space Agency (ROSA) release to AGERPRES.

Luisiana BIGEA / AGERPRES PHOTO

Using data from the two satellites, ROSA helped the Lower Danube River Administration spot a cluster of vessels jammed up near the town of Zimnicea, next to the river bank.

"About 120 vessels are now blocked on the Danube, 100 of which are not equipped with an Automatic Identification System," said Ion Nedelcu, director of the Romanian Space Agency's environmental and safety projects, cited in the release.

He said that "the main purpose was to identify the ships that are not equipped with such a system, and that it's particularly in these cases that the Sentinel images have proved extremely useful."

Sentinel-1A was the first satellite launched under the European Commission's Copernicus environment-monitoring programme, in April 2014; its all-weather, day-or-night radar imagery is particularly useful for maritime surveillance and ship safety.

As the radar regularly covers the entire Europe on a swath width of 250 km, it allows such critical events to be observed.

The younger Sentinel-2A has been in orbit only since June 23, with it multispectral camera supplying optical images of Earth's land and water bodies.

"We are pleased that we were able to support the request from Romania in the middle of the satellite's commissioning phase," said Bianca Hoersch, ESA's Sentinel-2 Mission Manager.

Pierre Potin, ESA's Sentinel-1 Mission Manager added that "the combined use of Sentinel-1 and Sentinel-2 opens new large-scale monitoring capabilities."

The satellites will continue to monitor the situation in the coming days. AGERPRES

Enjoy the swath - Paris!

Baja California: dry land vs irrigated land (NIR-VIS), land discharge (rededge) along a border

S2 & closed seas: Algal bloom in the Baltic Sea, august 2015

Stunning details: fronts and filaments of ocean biogeochemistry slashed open by shiptracks, wind blown structures...

Sentinel-2 Red Sea Coral Reefs - True Colour Saudi Arabian coast Gayal.jpg

Sentinel-2 Western Greenland glaciers 1

Sentinel-2 Western Greenland glaciers 2

Milestones reached...

- 1. First image 4 days after launch
- 2. First sample published on SciHub 3 weeks after launch (pre-qualified)
- 3. First key user event at IGARSS'2015/Milano one month after launch (pre-qualified)
- 4. More sample published 18 Aug 2015 (pre-qualified)
- 5. Data quality steadily improving, currently IPF version 01.03

S2 nominal observation plan in Routine Operations

Baseline in full operations is systematic acquisition of:

- ✓ All land surfaces (-56° and +84° latitude);
- ✓ Major (greater than 100 km² size) and EU islands;
- Coastal (20km off the coast)
- inland waters, Mediterranean Sea and all closed seas;

Sentinel-2 Phases until Full Operational Capacity

Sentinel-3

Sentinel-3: for Copernicus

Copernicus
Contains modified Copernicus Sentinel data [2015]

entinel-3: Satellite Orbit details

Instrument Swath Patterns

Orbit type
Repeat cycle
LTDN
Average altitude
Inclination

Repeating frozen SSO 27 days (14 + 7/27 orbits/day) 10:00 815 km 98.65 deg

Ground Track Patterns

SRAL orbit drivers:

- Ground track repeatability,
- Dense spatial sampling Orbit control requirement:
- Ground track dead-band ±1km

Key Improvements compared to AATSR:

- number of spectral bands from 7 to 9 (new 1.3 and 2.2um) for better Ci Cloud detection
- increased resolution for VIS and SWIR channels (0.5 km @ nadir, TIR 1 km @nadir)
- maintain along track scanning with increased swath of oblique view to 740 km
- increased nadir swath coverage to 1400 km
- 100% overlap with OLCI
- improved coverage Ocean < 4 days (practically ~ 2 days)
- dedicated Active Fire channels
- Timeliness: 3 hours NRT Level 2 product

SLSTR FM2 emerging from Thermal Vacuum Chamber after characterization and calibration tests at RAL, UK May 2015

Spectral Channels: (A)ATSR & SLSTR

		ATSR-1	ATSR-2	AATSR	SLSTR
	(*** *********************************	ERS-1	ERS-2	ENVISAT	Sentinel3
Swath	Nadir	500	500	500	1400
[km]	oblique	500	500	500	740
SSI [km] VIS/SWIR	Resolution at sub sat point	1	1	1.	0.5
SSI [km] IR		1	.1	1	1
Band 1 ¹²	Chlorophyll	-	0.555	0.555	0.555
Band 2	Veg. Index		0.659	0.659	0.659
Band 3	Veg. Index	÷1	0.865	0.865	0.865
Band 4	Cloud clearing	-	- 4 -		1.375
Band 5	Cloud clearing	1.610	1.610	1.610	1.610
Band 6	Cloud clearing	-	- 41-	-	2.250
Band 7	SST	3.740	3.740	3.740	3.740
Band 7 F	Fire	-	A.,	4	3.740
Band 8	SST	10.850	10.850	10.850	10.850
Band 8 F	Fire	100		-	10.850
Band 9	SST	12.000	12.000	12.000	12.000
Life time [years]	As designed As flown	3 1991-2000	3 1995- 2008	5 2002 2012	7.5

The **GlobTemperature** Project under the Data User Element of ESA's 4th Earth Observation Envelope Programme (2013-2017) aims to promote the wider uptake of global-scale satellite Land Surface Temperature by the research and operational user communities.

Contains modified Copernicus Sentinel data [2015]

S3 OLCI: Technical details

Basic configuration similar to MERIS:

- 5 Camera Optical Sub Assemblies (COSA),
- 5 Focal Plane Assemblies (FPA),
- 5 Video Acquisition Modules (VAM),
- 1 Scrambling Window Assembly (SWA),
- 1 OLCI Electronic Unit (OEU) managing all the instrument functions,
- 1 calibration assembly allowing radiometric and spectral calibration.

Compared to MERIS:

- 100% overlap with SLSTR
- More spectral bands (from 15 to 21): 400-1020 nm
- Broader swath: 1270 km
- Full res. 300m acquired systematically for land & ocean
- Improved characterization, e.g. straylight, camera boundary characterization
- Timeliness: 3 hours NRT Level 2 product

Reduced sun glint by camera tilt in west (12.6°)

MERIS Bands	λ center	Width
Yellow substanace/detrital pigments	412.5	10
Chl. Abs. Max	442.5	10
Chl & other pigments	490	10
Susp. Sediments, red tide	510	10
Chl. Abs. Min	560	10
Suspended sediment	620	10
Chl. Abs, Chl. fluorescence	665	10
Chl. fluorescence peak	681.25	7.5
Chl. fluorescence ref., Atm. Corr.	708.75	10
Vegetation, clouds	753.75	7.5
O ₂ R-branch abs.	761.25	2.5
O ₂ P-branch abs.	778.75	15
Atm corr	865	20
Vegetation, H_2O vap. Ref.	885	10
H ₂ O vap., Land	900	10
New OLCI bands	λ center	Width
Aerosol, in-water property	400	15

Fluorescence retrieval

Atmospheric parameter

Cloud top pressure

Atmos./aerosol correction

Atmos./aerosol correction

opernicus
Contains modified Copernicus Sentinel data [2015]

673.75

764.375

767.5

940

1020

7.5

3.75

2.5

20

40

Continuity to ENVISAT Projects

GlobCover on The Times 'Atlas of the World'

Global Ocean Colour (ESA Ocean Colour Climate Change Initiative)

Chlon

0

ESA and NASA.

10 3)

0

S3-A SAR Radar Altimeter (SRAL)

Dual frequency Ku/C band Radar Altimeter

- CryoSat and Jason heritage
- High azimuth resolution (~300m in SAR mode)

• SRAL Radar features:

- Ku-Band (13.575 GHz) : main frequency
- **C-Band** (5.41 GHz) : ionosphere corrections
- Fully redundant electronics

Measurement modes:

- 2 radar modes:
 - Low Resolution Mode (LRM) and
 - High Resolution SAR mode
- 2 tracking modes:
 - Closed-loop (traditional) and
 - Open-loop tracking modes over rough surfaces
- SRAL is Supported by dual channel microwave radiometer, DORIS, GPS and LRR

Global SAR Sea Surface Altimetry

CryoSat SAR mode with SAMOSA Retracker Altitude Over Geoid (meters) designed for Sentinel-3 over open oc

Sentinel-6/Jason-CS mission

- Sentinel-3A Satellite on track for a launch November 2015!!
- All ground segment facilities supporting the Sentinel-3 commissioning (predicted duration 5 months after launch) and operations are in place, both at ESA and EUMETSAT
- Sentinel-3B Satellite integration well advanced. On track for a launch approx.
 18 months after Sentinel-3A (i.e. Q2-2017)
- Procurement of Sentinel-3C and -3D Satellites started
 - of Sentinel-3 satellite, mission continuity is ensured for at least 25 years from the launch of the first Satellite

CCI: Essential Climate Variables

www.esa-landcover-cci.org UCL, Brockmann Consult, GAMMA, MPI-M, Met Office, LSCE, JRC, U. Wageningen, U. Jena, U. Pavia, Lippmann

ncv

Phase 1 Achievements:

In consultation with international partners, IGBP, GOFC-GOLD, FAO, EEA and JRC, performed optical (MERIS, SPOT-VGT, Proba-V, AVHRR) and SAR (ASAR) image classification to provide:

- Global moderate resolution land cover maps for epochs: 2000 (1km), 2005 (300m), 2010 (300m)
- Legend compatible with plant functional types used in climate models.
- Land cover seasonality characterisation
- Global map of permanent water bodies
- Provision of a tool for subsetting, re-projecting and resampling the products for use in climate modelling.

Phase 2 Objectives:

- Improve Phase 1 products, processing systems and validation.
- Extend coverage to the 1990's and the 2013-2016 periods with AVHRR, Sentinel-3, and Proba-V data sets.
- Investigate potential to extend back to 1980's with AVHRR.
- Demonstrate the feasibility of higher resolution global land cover products (required as part of the ECV by GCOS) by generating a 10-20m land cover map over Africa, using Sentinel-2 supplemented by LandSat-8.

GCOS Req. for moderate resolution LC

Variable/ Parameter	Horizontal Resolution	Vertical Resolution	Temporal Resolution	Accuracy	Stability
Maps of land-cover type	250m	N/A	1 year	15% (maximum error of omission and commission in mapping individual classes), location accuracy better than 1/3 IFOV with target IFOV 250m	15% (maximum error of omission and commission in mapping individual classes), location accuracy better than 1/3 IFOV with target IFOV 250m

Figure: Landcover_cci Phase 1 has delivered three global land cover state products for 2000, 2005 and 2010 epochs, supplemented by global water bodies and phenology products.

www.esa-fire-cci.org

UAH, GMV, GAF, DLR, GMV, IRD, ISA, JULICH, LSCE, U. Leicester, INIA

Phase 1 Achievements:

Developed new processing algorithms for the ATSR-series, VEGETATION and MERIS sensors to overcome spatial and temporal inconsistencies in existing products.

- Prototype products over test sites in key biomes from ATSR-2, AATSR, VEGETATION and MERIS-300m.
- Global prototype products (2006-2008) for VGT and MERIS-300m.
- Unique validation database of high resolution optical satellite images collected over globally distributed sites for spatial and temporal validation.

Phase 2 Objectives (KO on 8 Sep 2015):

- Extend prototypes to full global coverage over 2000-2016
- Investigate potential to extend ECV back to 1980's using AVHRR
- Estimate small fire distribution for the African continent using Sentinel-2, plus Sentinel-1 SAR for persistently cloudy regions.
- Link small fires estimates to global products using Proba-V 300m and 100m data.
- Extend validation database to meet CEOS Level-3 spec.
- Develop a sustainable processing system.

GCOS Req. for Burnt Area

Variable/ Parameter	Horizontal Resolution	Vertical Resolution	Temporal Resolution	Accuracy	Stability
Burnt area	250m	N/A	Daily detection	15% (error of omission and commission), compared to 30m observations	15% (error of omission and commission), compared to 30m observations

Figure: Gridded burned area derived from MERIS-300m for 2008

www.esa-soilmoisture-cci.org EODC, TUW, GeoVille, AWST, Transmissivity, ETH, FMI, UCC, NILU

Phase 1 Achievements:

- ECV products from merged active and passive microwave instruments covering 1978-2014: ERS 1/2, ASCAT, SMMR, SSM/I, TMI, AMSR-E, WindSat, and AMSR2.
- 1500 registered users
- Input to BAMS and WMO state of the climate assessments
- 24 peer-reviewed publications, including Nature.
- FCDR produced in collaboration with Level-2 data providers: ESA, EUMETSAT H-SAF, NASA, NOAA, NRL

Phase 2 Objectives:

- Integrate Sentinel-1 SAR and SMOS products into the ECV

GCOS Requirements

Product T.11 Global near-surface soil moisture maps (up to 5cm soil depth)

Variable/ Parameter	Horizontal Resolution	Vertical Resolution	Temporal Resolution	Accuracy	Stability
Volumetric soil moisture	50km	NA	Daily	0.04m ³ /m ³	0.01m ³ /m ³ /year

- Improve algorithms and uncertainty characterisation with latest research:
 e.g. RFI, diurnal variability, vegetation modelling, land cover variability.
- Improve merging approaches and inter-instrument calibrations for multi-satellite products.
- Develop root-zone soil moisture products to better match climate user requirements.
- Reprocess to exploit new algorithm improvements and new sensor data.
- Transfer to sustainable operations at EODC

