

Snow Mapping Using SAR

David Small Environmental SAR, Remote Sensing Laboratories University of Zürich, Switzerland

Snow Mapping using SAR

- Motivation
- Geometric Calibration / Wet Snow Attenuation
- Backscatter Normalisation Conventions
- Radiometric Terrain Corrections
- Approaches for Wet Snow Mapping
 - Single-track dB differencing
 - Backscatter Compositing
- Conclusions

Remote Sensing of Snow: Motivation

Knowledge of snow parameterisation important for

- Mitigating large economic impacts of snowfall events
- Snow wetness: run-off modelling: measurements and future prognoses
- Snow wetness: Sudden melt events inducing flooding
- Snow wetness: Hydrology
- Snow distribution and season length interactions with land cover
- Avalanche modelling
- Climate interactions

A. Dietz, C. Kuenzer, and S. Dech, "Global SnowPack: a new set of snow cover parameters for studying status and dynamics of the planetary snow cover extent," Remote Sens. Lett., 6(11), pp. 844–853, Sep. 2015.

D. R. DeWalle and A. Rango, **Principles of Snow Hydrology**. Cambridge, UK: Cambridge University Press, 2008.

Active Microwave: Synthetic Aperture Radar

Geometric Calibration: Test Site: Surat Basin, Australia (40 CRs)

Overview of geometric Corrections:

Reference target position:

- Solid Earth Tides
- tectonics/ITRF geodetic frame shift

Range timing:

- atmospheric PD (troposphere & ionosphere)
- intra-burst-dependent range bias (TOPS mode: IW/EW) (1)

Azimuth timing:

- Bistatic residual correction
- Bistatic bulk bias correction
- Instrument Timing Correction (2)
- Topography-induced Doppler shift (2)

⁽¹⁾ Rodriguez-Cassola M., Prats-Iraola P., De Zan F., Scheiber R., Reigber A., Geudtner D., Moreira A. Doppler-related distortions

in TOPS SAR images. IÉEE Trans. Geosci. Remote Sens. **2015**, 53, 25–35.

⁽²⁾ Piantanida R., Recchia A., Fransceschi N., Velentino A., Miranda N., Schubert A., Small D.,

Accurate Geométric Calibration of Sentinel-1 Data, Proc. ÉUSAR 2018, 6p.

IW SLC ALE over Surat array using published method (i.e. without division by 2π)

Dept. of Geography / Remote Sensing Laboratories

No intra-burst rg bias or terrain-induced DC corrections

Asc. IW SLC ALE over Surat array (# products = 192, # dates = 101)Solid/Hollow=Prec/Rest OSVs Timespan=2015.03:06-2018.04.25 Target in IW1/IW2/IW3 ALE rg [m]: -0.038 ± 0.253 ALE az [m]: 0.044 ± 0.347 1.5 1 Azimuth offset [m] 0.5 0 -0.5 -1 -1.5 -2 -1 -0.5 0 0.5 1 Slant range offset [m]

Intra-burst rg bias and terrain-induced DC corrections

Attenuation in wet snow

Dept. of Geography / Remote Sensing Laboratories

Snow and Dielectric Constant

F. T. Ulaby, W. H. Stiles, and M. Abdelrazik, "Snowcover Influence on Backscattering from Terrain," IEEE Trans.

Geosci. Remote Sens., vol. GE-22, no. 2, pp. 126–133, Mar. 1984.

W. I. Linlor, "**Permittivity and attenuation of wet snow between 4 and 12 GHz**," J. Appl. Phys., vol. 51, no. 5, pp. 2811–2816, May 1980.

SAR: Backscatter Normalisation Conventions

Ground Illuminated Area

Backscatter coefficients are relative to isotropic scattering

Dept. of Geography / Remote Sensing Laboratories

An idealised isotropic scatterer will scatter equally in all directions

Real Imaged Objects

- can tend to scatter more forward than back to the sensor, focussing energy away from the measurement
 - are darker, generating negative dB values
- can focus energy back towards the sensor (e.g. through corner reflections), generating positive dB backscatter

$$(\gamma_{wet}^0 - \gamma_{ref}^0)$$
 [dB]

When difference between candidate image backscatter and dry reference image is lower than -3dB, classify as wet snow

Developed using ERS-1 geometries, VV-pol.

Relies on **exact repeat tracks** (e.g. 35-day ERS repeat) to avoid corruption e.g. by terrain-induced effects

- N. Longépé, S. Allain, L. Ferro-Famil, E. Pottier, and Y. Durand, "Snowpack Characterization in Mountainous Regions Using C-Band SAR Data and a Meteorological Model," IEEE Trans. Geosci. Remote Sens., vol. 47, no. 2, pp. 406–418, Feb. 2009.
- T. Nagler and H. Rott, "Retrieval of wet snow by means of multitemporal SAR data," IEEE Trans. Geosci. Remote Sens., vol. 38, no. 2, pp. 754–765, Mar. 2000.
- N. Baghdadi, Y. Gauthier, and M. Bernier, "Capability of Multitemporal ERS-1 SAR Data for Wet-Snow Mapping," Remote Sens. Environ., vol. 60, no. 2, pp. 174–186, May 1997.

Normalising σ for *terrain*

 $oldsymbol{eta}^{\scriptscriptstyle 0}, oldsymbol{\sigma}^{\scriptscriptstyle 0}_{\scriptscriptstyle E}, oldsymbol{\gamma}^{\scriptscriptstyle 0}_{\scriptscriptstyle E}$

are each usable and widely used to normalise the backscatter σ , but one main problem remains:

Each of β^0 , σ^0 , γ^0 vary with the local terrain situation (forest on a hill *foreslope* is brighter than forest on *flat* ground, which is brighter than forest on a hill *backslope*)

Local Incident-angle Mask (LIM)

The most common slope-normalisation methodology found in the literature is fails to account for **non-homomorphic** (one to many correspondence) nature of relationship between Earth coordinates (map geometry) & slant range geometry (native sensor acquisition process)

Normalisation for local variation of ground scattering area expressed in map geometry:

$$\boldsymbol{\sigma}_{T}^{0} \triangleq \boldsymbol{\sigma}_{NORLIM}^{0} = \boldsymbol{\sigma}_{E}^{0} \cdot \frac{\sin \theta_{LIM}}{\sin \theta_{E}}$$

e.g. Kellndorfer et al., *TGRS*, Sept. 1998.

No one-to-one correspondence between slant range and map geometries on **fore-** and **back**-slopes

Relating *received* to *transmitted* power:

$$\overline{P}_{r} = \frac{\lambda^{2}}{(4\pi)^{3}} \int_{\text{area illuminated}} \frac{P_{t}G^{2}}{R^{4}} \cdot \sigma^{0} dA$$
Ulaby, Moore, Fung,
1982.
Ulaby, Moore, Fung,
1982.

uses an *ellipsoid Earth model* approximation as a standard normalisation area - using ellipsoidal incidence angle θ_E as a **proxy for area**

For radiometric terrain correction, we need to actually perform the integration on a DEM

The concept of a *single Local Incident Angle* determining the terrain's local normalisation area at a single pixel is **flawed**:

- old concept adapted from ellipsoidal incident angle for ocean, sea-ice, & <u>flatlands</u>
- fails to account for:
 - shadow
 - foreshortening
 - layover

Improve sensor model:

use local contributing *area*, not angle!

and measure that area using the gamma convention

Radiometric Normalisation Conventions

Convention	1	2	3	4	5
	$oldsymbol{eta}^{0}$	$oldsymbol{\sigma}_{\scriptscriptstyle E}^{0}$	${\pmb \gamma}^0_E$	$oldsymbol{\sigma}_{\scriptscriptstyle T}^{\scriptscriptstyle 0}$	${\pmb \gamma}_T^0$
Earth Model	None	Ellipsoid		Terrain	
Reference Area	A_{eta}	\underline{A}_{σ}	\underline{A}_{γ}	\widehat{A}_{σ}	A_{γ}
Area Derivation	$oldsymbol{\delta}_r\cdotoldsymbol{\delta}_a$	$\underline{\delta}_{g}\cdot\delta_{a}$	$\underline{\delta}_p \cdot \delta_a$	$oldsymbol{\delta}_{g}\cdotoldsymbol{\delta}_{a}$	$\int_{DHM} \delta_p \cdot \delta_a$
Normalisation	$\beta^0 = \frac{\sigma}{A_\beta}$	$\beta^{0} \cdot \frac{A_{\beta}}{\underline{A}_{\sigma}} = \beta^{0} \cdot \sin \theta_{E}$	$\beta^{0} \cdot \frac{A_{\beta}}{\underline{A}_{\gamma}} = \beta^{0} \cdot \tan \theta_{E}$	$\sigma_E^0 \cdot \frac{\widehat{A}_{\sigma}}{A_{\beta}} = \sigma_E^0 \cdot \frac{\sin \theta_{LIM}}{\sin \theta_E}$	$\frac{\beta^0 \cdot A_\beta}{A_\gamma}$
Product		GTC		NORLIM	RTC

Sentinel-1 Acquisition Modes

Terrain-flattened Gamma Nought

Dept. of Geography / Remote Sensing Laboratories

Interlaken, Switzerland Sentinel-1A IW GRDH VH-pol. May 26, 2015

Normalise β^0 : divide by simulated image

Terrain-flattening:

Small D. Flattening Gamma: Radiometric Terrain Correction for SAR Imagery, IEEE Trans. on Geoscience & Remote Sensing, 49(8), Aug. 2011, pp. 3081-3093.

RTC

Dept. of Geography / R

Sentinel-1A: GTC (Geometrically Terrain Corrected)

Generated automatically from 3 IW GRDH products using SRTM3

Copernicus Sentinel data (2015)

Dept. of Geography / R

Sentinel-1A: RTC (Radiometrically Terrain Corrected)

Generated automatically from 3 IW GRDH products using SRTM3

Contains modified Copernicus Sentinel data (2015)

Sentinel-1A: GTC (Geometrically Terrain Corrected)

Sentinel-1A: RTC (Radiometrically Terrain Corrected)

Wet snow detection with dB thresholding

$$\Delta \gamma^0 = (\gamma^0_{wet} - \gamma^0_{ref}) \quad [dB]$$

When difference between candidate image backscatter and dry reference image is lower than a set threshold (e.g. -2 or - 3dB), classify as wet snow

Relies on exact repeat tracks (e.g. 35-day ERS/ENVISAT or 24-day Radarsat-2 repeat) to avoid corruption e.g. by terraininduced effects

Single-track (same rel. orbit) dB Differences: Apr-Mar vs. June-Mar

Considerations when using a single track

Single track/relative orbit	Advantages	Disadvantages
Response time	Quick (time-tag of single acquisition)	
Sensitivity to terrain normalization method	Low, as terrain is distorted similarly in all acquisitions from single-track	
Completeness		Shadow regions unobserved Foreshortened/layover regions observed with extremely poor local resolution
Adaptability to multiple modes/sensors		Poor: tied to individual tracks and acquisition modes & exact repeats
Consistency of reference images		Inconsistent: Reference images must be calculated separately for each relative orbit and acquisition mode

SEOM S1-4SCI SNOW

DEVELOPMENT OF PAN-EUROPEAN MULTI-SENSOR SNOW MAPPING METHODS EXPLOITING S1

ROUND ROBIN EXPERIMENTS

enveo

Sensor	Date
S1A (ASC)	2016-05-04T17:14:49.665Z - 2016-05-04T17:15:14.665Z
S2A (DESC)	2016-05-05T10:30:27.000Z

Interlaken 566 m.s.l.

Mountains - Swiss Alps 4 May 2016

Mountains - Swiss Alps 4 May 2016

Dept. of Geography / Remote Sensing Laboratories

VALIDATION & INTERCOMPARISON

Urban Glacier 📕 Dense forest 🔜 Water 💻 No Data

Radar shadow/foreshortening/layover

ACCURACY OPT ≥ 75%		S1 WS maps			
		ENVEO	UZH	NORUT	
РТ	Klein	92.17	89.90	87.55	
S2 C	Salomons on	92.46	90.36	88.16	
aps	ENVEO		91.61	89.41	
S1 WS m	UZH			92.97	
	NORUT				

ACCURACY OPT ≥ 90%		S1 WS maps			
		ENVEO	UZH	NORUT	
РТ	Klein	91.56	89.85	87.82	
S2 0	Salomonso n	91.18	90.27	88.39	
aps	ENVEO		91.61	89.41	
MS m	UZH			92.97	
S1 \	NORUT				

ACCURACY OPT = 100 %		S1 WS maps			
		ENVEO	UZH	NORUT	
РТ	Klein	90.03	89.17	87.56	
S2 (Salomons on	83.25	85.38	84.75	
S1 WS maps	ENVEO		91.61	89.41	
	UZH			92.97	
	NORUT				

units in %

University of Zurich¹¹⁷ Xountains – Ötztaler Alps, Austria 28 June 2016

Dept. of Geography / Remote Sensing Laboratories

Sensor	Date
S1A (ASC)	2016-06-28T17:06:39.235Z - 2016-06-28T17:07:06.206Z & 2016-06-28T17:07:04.058Z - 2016-06-28T17:07:31.033Z
S2A (DESC)	2016-06-28T10:10:26.000Z

Obergurgl 1907 m.s.l.

University of ZurichTM Concept for Pan-European Wet Snow Product

Dept. of Geography / Remote Sensing Laboratories

Track range – Pan European

Towards a MultiSensor Snow and Melt Extent product from Copernicus Satellite Data for the Pan-European Domain

Multisensor snow and melt extent product covering Europe from SAR and medium resolution optical sensors

enveo

1-10 March 2018

Wide area backscatter composites with local resolution weighting (LRW)

 γ_E^0

Backscatter Composites

-26dB -1dB

Combine asc. & desc. observations to generate
composite with improved local resolution
Less shadow than single RTC, lower noise

Interlaken, Switzerland

Composite

Revisit Interval: Breaking the tyranny of exact repeat passes

For *Regular Intervals* with temporal resolution better than repeat-pass interval • Use moving time-window integrating information from all tracks

- The more (diverse!) data (and tracks) the better esp. combine ascending and descending observations

Composites in Time Series Movie

Dept. of Geography / Remote Sensing Laboratories

-26dB -1dB

Jan – May 2015

180

175

170

Northing [km]

Contains modified Copernicus Sentinel data (2015)

Composites in RGB Time Series

Dept. of Geography / Remote Sensing Laboratories

-26dB -6dB

R=2015.01.02+03 / G=2015.01.14+15 / B=2015.02.07+08 ; (each Asc. + Desc.)

Interlaken, Switzerland

Freezing: Higher backscatter in Feb. than Jan.: Blue

Composites in RGB Time Series

Dept. of Geography / Remote Sensing Laboratories

-26dB -6dB

R=2015.02.07+08 / G=2015.04.08+09 / B=2015.05.26+27 ; (each Asc. + Desc.)

Interlaken, Switzerland

Melting: Lower backscatter in May than Feb/Apr.: Yellow

Seasonal prioritization of SAR observation windows

Evolution of Snow Cover in the US [IGOS Cryosphere Theme Report, 2007]

Fig. 3.1. Percentage of snow-covered area within the conterminous U.S. during the 2003-2004 season with corresponding unique snow depths and SWE.

WMO White Paper on SAR Acquisition Planning for Terrestrial Snow Monitoring

Dept. of Geography / Remote Sensing Laboratories

Key General Recommendations

R 1	Use wide-swath modes to enable wide area monitoring with high temporal resolution (i.e. RSAT2 SCN or SCW, Sentinel-1 IW or EW, TSX "SC Wide" & CSK "Huge Region" ScanSAR modes).
R2	Build combined ascending/descending coverage by default into acquisition plans covering mountainous regions. Favour asc./desc. acquisition sets acquired within a tight time window (1-3 days) to allow a narrow time-attribution to composites generated from these sets.
R3	Concentrate snowmelt acquisitions on the seasonal window when the majority of snow melting occurs (March through May at temperate northern latitudes). The <i>highest temporal resolution possible</i> is requested during this critical melting period. Although some further acquisitions are also requested <i>outside</i> of this seasonal window, lower temporal resolution at these less critical times is acceptable.
R4	Standardise dual-pol. mode acquisitions on VV/VH combination: a cross-platform consistent polarisation simplifies combination of datasets from multiple providers (e.g. S1/RSAT2/RCM or TSX/CSK).
R5	Harmonise acquisition plans of satellites with compatible calibrated backscatter values (e.g. S1/RSAT2/RCM or TSX/CSK). Utilise the available diversity of orbits to achieve the desired diversity of tracks – e.g. to achieve the fullest possible ascending/descending coverage.
R6	Assure full coverage over land also in coastal regions when other modes are by default programmed over ocean (e.g. favour Sentinel-1 IW or EW over WV).
R7	Maintain a regular observation plan also during the winter to assure frequent observations of other important snow parameters, and other phenomena related to the winter period such as avalanches and rain on snow events.

Science Requirements for wide area snowmelt monitoring

Variable	Extent	Spatial resolution	Temporal resolution	Sensor	Auxiliary Data
Snowmelt area	Regional	100m	1 to 5 days	Sentinel-1	Land cover, DEM
Snowmelt liquid water content	Regional	100m	1 to 5 days	Sentinel-1 dual polarisation	Land cover, DEM

[Malenovský, Z. et al. Sentinels for science: Potential of Sentinel-1, -2, and -3 missions for scientific observations of ocean, cryosphere, and land. Remote Sens. Environ. 120, 91–101 (2012)]

Temporal resolution (target): 1 day

- "Observation of the *daily* geographic extent of snow cover is essential because it enables inference of several first order effects of snow on many Earth systems." [IGOS Cryosphere Theme Report, 2007
- WMO PSTG report "Coordinated SAR Acquisition Planning for Terrestrial Snow Monitoring", ۲ PSTG-SARCWG-SNOW-001, Aug. 2014.

Data Collections

Region	DEM	Spatial sampling	Temporal resolution [days]	Sensors
Interlaken region, Switzerland	swissALTI3D (2m)	10 m	<6	S-1A/S-1B IW VV/VH
European Alps	SRTM3 (3s)	3s (~90m)	<6	S-1A/S-1B IW VV/VH
Coastal British Columbia, Canada	SRTM3 (3s)	3s (~90m)	<12	S-1A/S-1B IW VV
Ellesmere Island, Canada	CDEM ¹	400m	1	S-1A/S-1B EW + IW HH/HV RS2 SCWA HH/HV

¹M. Santoro & T. Strozzi (2012): Circumpolar digital elevation models > 55° N Canadian Digital Elevation Model Product Specifications, Edition 1.1, 2013-04-01, GeoGratis

Contains modified Copernicus Sentinel data (2018)

Sentinel-1 IW VH-pol. Feb. - June 2018: 12 day windows

SRTM3 used for geometric and radiometric corrections

Contains modified Copernicus Sentinel data (2018)

Dept. of Geography / Remote Sensing Laboratories

Sentinel-1 IW 12d Composites 2018 VH: Feb 24-Mar 7, April 1-12, May 1-12; -23dB (black) to -6dB (white)

No mask for foreshortening/layover required

Sentinel-1 Western Alps Backscatter Movie

Dept. of Geography / Remote Sensing Laboratories

Latitude [* N]

Sentinel-1 IW VH

Feb.- June 2018 6-day windows

Composite backscatter from 42 scenes between 2018/02/12 00:00:00 and 2018/02/17 23:59:59 10 15 10 .9 8 11 Longitude (* E1

Contains modified Copernicus Sentinel data (2018)

18

SRTM3 used for geometric and radiometric corrections

Contains modified Copernicus Sentinel data (2017)

Contains modified Copernicus Sentinel data (2016)

Sentinel-1 IW VH Feb. - June 2016, 16-day windows

Wet snow cover for the composite period of 10.02.2016 - 25.02.2016 47.5° Latitude ford 45.5* 43.5 9.5* 11.5" 7.5* 13.5° 15.5* 5.5' 17.5 Longitude D. Jäger, M.Sc. Thesis, UZH, 2016. SRTM3 used for geometric and radiometric corrections

Contains modified Copernicus Sentinel data (2015)

Vancouver, Canada

Dept. of Geography / Remote Sensing Laboratories

Coastal BC Backscatter Composites

S-1A+S-1B IW VH

6 day delta 12 day window

N.B. SRTM DEM

May 2017 - Apr 2018

Contains modified Copernicus Sentinel data (2017-2018)

Longitude [* E]

Iceland

Dept. of Geography / Remote Sensing Laboratories

Backscatter Composites

S-1A+S-1B IW VH

6 day delta 12 day window

N.B. EU-DEM

May-Sept. 2017

Contains modified Copernicus Sentinel data (2017)

University of Single Geometry vs. Composites

Dept. of Geography / Remote Sensing Laboratories

	Single Mode/Geometry	Composite from time window
Time covered	Single point in time	Blurred time window (e.g. 1, 2, 3, or 6 days)
Temporal resolution	S1A+S1B: 6 days RS2: 24 days	Narrowest time window providing full coverage, e.g. at temperate latitudes: S1A+S1B: ~5 days; in high Arctic: ~1-2 days
Spatial resolution on mountains	Highly variable: Poor on foreslopes, high on back-slopes	More uniform: Able to integrate ascending/descending images for best of both worlds: higher spatial resolution than in any single acquisition
Scalability with availability of further sensors (e.g. S1+RCM)	Requires all sensors use same mode and orbit	Able to integrate diverse geometries from non- harmonised S1+RCM orbits or modes
Spatial extent	Single scene from given mode	Extendable to wide areas
Wide area interpretation	Complex	Analysis Ready

Dept. of C

Ellesmere Island Backscatter Composites

RS2 SCWA HV

2 day delta

4 day window

N.B. CDEM

Mar – Aug. 2017

RADARSAT-2 Data and Products @ MacDonald, Dettwiler and Associates Ltd. (2017) - All Rights Reserved. RADARSAT is an official trademark of the Canadian Space Agency.

Dept. (

Ellesmere Island Backscatter Composites

S-1A+S-1B EW+IW HV

1 day delta2 day window

N.B. CDEM

Apr. – Aug. 2017

UTM Easting [km]

Contains modified Copernicus Sentinel data (2017)

Dept. of C

Ellesmere Island Backscatter Composites

S-1A+S-1B EW+IW

+RS2 SCWA

ΗV

1 day delta

1 day window

Apr. – Aug. 2017

N.B. CDEM

RADARSAT-2 Data and Products @ MacDonald, Dettwiler and Associates Ltd. (2017) - All Rights Reserv

RADARSAT is an official trademark of the Canadian Space Agen

Contains modified Copernicus Sentinel data (2017)

Dept. of

Ellesmere Island Backscatter Composites

S-1A+S-1B EW+IW

+RS2 SCWA HH

1 day delta
 1 day window

N.B. CDEM

Apr. – Aug. 2017

Composite backscatter from 16 scenes

RADARSAT-2 Data and Products @ MacDonald, Dettwiler and Associates Ltd. (2017) - All Rights Reserv

RADARSAT is an official trademark of the Canadian Space Agen

Contains modified Copernicus Sentinel data (2017)

JTM NO

Dept. of Ge

Ellesmere Island, Canada

Sentinel-1 EW+IW **2d** Composite HV-pol.: May 11-12, July 8-9, July 15-16

 γ_T^0 HV-pol. -23dB -6dB

Contains modified Copernicus Sentinel data (2017)

Dept. of G

Ellesmere Island, Canada

Sentinel-1 EW+IW **2d** Composite HV-pol.: July 30-31, Aug. 13-14, Aug. 31-Sept. 1

 γ_T^0 HV-pol. -23dB -6dB

Contains modified Copernicus Sentinel data (2017)

Future Radar Resources

- Radarsat Constellation Mission (Canadian Space Agency)
- Launch of 3 satellites planned for Nov. 2018
 - C-band, same central frequency as Sentinel-1 and Radarsat-2
 - Non-commercial model, satellites owned by Canadian government
 - Six active C-band satellites:
 - S-1A, S-1B
 - RS2
 - RCM1-3
 - Harmonisation of acquisition patterns between ESA/EU and CSA will be helpful

Conclusions

- Snow wetness clear strong signal in C-band SAR imagery
- Snow depth and Snow Water Equivalent (SWE) currently not accessible in singledate C-band SAR data
- Backscatter composites would be more user-friendly than slant or ground range level 1 products for many users: *Analysis Ready*
- Additional C-band satellites on the way:
 - Sentinel-1C / Sentinel-1D being built
 - Three satellites in Radarsat Constellation Mission (RCM) planned for 2018 launch

Daily temporal resolution achieved with multi-sensor / multi-agency data integration – in the future, also at more temperate latitudes?

University of Zurich^{™™}

Contains modified Copernicus Sentinel data (2015)

Dept. of Geography / Remote Sensing Laboratories

Acknowledgments -

Thanks for support from N. Miranda, ESA-ESRIN – EOP-GMQ – Frascati, Italy T. Nagler, ENVEO – Innsbruck, Austria S. Howell, Environment & Climate Change Canada – Toronto, Canada

For Sentinel-1 datasets, thanks to ESA/Copernicus (http://scihub.esa Radarsat-2 data via SOAR programme and MURF with Env. Canada