

Ice surface velocities using SAR

Thomas Schellenberger, PhD

ESA Cryosphere Remote Sensing Training Course 2018 UNIS Longyearbyen, Svalbard 12th June 2018

Outline

UiO **Department of Geosciences** University of Oslo

Synthetic Aperture Radar (SAR) theory

Coverage / geometric resolutions / geometric distortions Surface properties / speckle / SAR glacier zones Advantages / disadvantages

Offset tracking

Preprocessing / cross correlation / post processing Examples from Svalbard Preview of practical

Interferometric SAR

Processing steps of 2-Pass D-InSAR of ERS-1/2 tandem pair

Take aways

Imaging geometry / Acquisition modes

K. Langley, 2007

Geometric resolution

Figure 2.10: SAR intensity images of Kronebreen:

- (a) Radarsat-2 Ultrafine Mode, 18th October 2013, 2 m geometric resolution.
- (b) Radarsat-2 Wide Mode, 9th October 2013, 20 m geometric resolution.
 (c) TerraSAR-X StripMap, 27th April 2008, 2 m geometric resolution.
- (d) Radarsat-2 Wide Fine Mode, 23rd November 2015, 8 m geometric resolution.

5

SAR Sensors

Microwave sensors and their technical specifications: frequency, wavelength, waveband (modified after Richards, 2009).

SAR Theory - Speckle

SAR glacier zones

Langley et al., 2008

SAR backscatter time series from RS-2 and Sentinel-1

Winsvold et al., 2018

Geometric distortions

Kääb

Outline

Synthetic Aperture Radar (SAR) theory

Coverage / geometric resolutions / geometric distortions Surface properties / speckle / SAR glacier zones Advantages / disadvantages

Offset tracking

Preprocessing / cross correlation / post processing Examples from Svalbard Preview of practical

Interferometric SAR

Processing steps of 2-Pass D-InSAR of ERS-1/2 tandem pair

Take aways

SAR offset and speckle tracking

Scheme of the offset tracking workflow:

- 1. Co-registration of two single-look complex (SLC) images e.g. using orbital parameters or correlation
- 2. Offset tracking (correlation)
- 3. Geocoding of the velocity map
- 4. Filtering of the velocity map
 - manual filtering based on amplitude and direction
 - automated filtering (e.g. maximum velocity, standard deviation)

SAR offset and speckle tracking

Principle of offset tracking / image matching From: Kääb [2005], modified

Cross-correlation in the spatial domain

$$CC(i,j) = \frac{\sum_{k,l} (s(i+k,j+l) - \mu_s)(r(k,l) - \mu_r)}{\sqrt{\sum_{k,l} (s(i+k,j+l) - \mu_s)^2 \sum_{k,l} (r(k,l) - \mu_r)^2}}$$

i,j indicates the position in the search area,k,l the position in the reference area,

r the pixel value of the reference chip,

s the pixel value of the search chip

 μ_r the average pixel value of the reference chip

 μ_s the average pixel value of the search chip.

-> peak of the cross-correlation surface indicates the displacement between the images

Cross-correlation in the frequency domain

 $CC(i,j) = IFFT\left(F(u,v)G^*(u,v)\right)$

F(u,v) is the FFT of the matching window from the image at time t = 1, G(u,v) is the FFT of the matching window from the image at time t = 2, * denotes the complex conjugated and IFFT is the Inverse Fast Fourier Transform.

UiO **Contemport of Geosciences** University of Oslo

Basin-3 / Basin-2

10 km +

5

0

UiO: Department of Geosciences University of Oslo Surface velocity of Basin-3 from SAR (2012 -2016)

Surface speed of Basin-3

Maximum speed:

18.8 m d⁻¹

Dec 2012 / Jan 2013

UiO **Department of Geosciences** University of Oslo

The beginning...

velocity (m d⁻¹)

UiO : Department of Geosciences University of Oslo

Crevasse formation on Basin-3 in 2004–2012 from GPR

GPS velocity - Basin-3 (2008 - 2012)

Surface velocity April/May 2012

Surface velocity of Basin-3 from GPS

Hydro-thermodynamic feedback

Surge cycle of Basin-3

Stonebreen, Edgeoya

ALOS PALSAR & Radarsat-2 data autumn winter

Sentinel-1 winter 2015 / Autumn 2015

Nathorstbreen surge

Radarsat-2 8 Feb 2009

Radarsat-2 29 July 2013

Maximum velocity > 40 m/day \rightarrow Eventually the fastest glacier on Earth at that time \rightarrow No offset tracking possible (\rightarrow advance)

Frontal ablation of Basin-3

April 2012 - July 2016

Frontal ablation components	(Gt yr ⁻¹)
Ice mass flux, Q _{fg}	7.8 ± 2.7
Terminus mass change, Qt	2.6 ± 0.8
Terminus-seawater replacement, Q _{tsw}	$2.1\ \pm 0.7$
Total frontal ablation	
Mb perspective, $Q_{mb} = Q_{fg} - Q_t$	5.2 ± 1.9
SLR perspective, $Q_{sl} = Q_{mb} + Q_{tsw}$	7.3 ± 2.6

(Blaszczyk et al., 2009)

2 I drinking water

for every human being – daily!

SAR practical – Sentinel-1 offset tracking of Basin-3 using the ESA SNAP Sentinel-1 Toolbox

Outline

Synthetic Aperture Radar (SAR) theory

Coverage / geometric resolutions / geometric distortions Surface properties / speckle / SAR glacier zones Advantages / disadvantages

Offset tracking

Preprocessing / cross correlation / post processing Examples from Svalbard Preview of practical

Interferometric SAR

Processing steps of 2-Pass D-InSAR of ERS-1/2 tandem pair

Take aways

2-pass D-InSAR workflow

UiO **Department of Geosciences** University of Oslo

UiO **Department of Geosciences** University of Oslo

UiO **Department of Geosciences** University of Oslo

Interferometric SAR (Radar interferometry, InSAR)

UiO **Department of Geosciences** University of Oslo

Interferometric SAR (Radar interferometry, InSAR)

UiO **Department of Geosciences** University of Oslo

Interferometric SAR (Radar interferometry, InSAR)

UiO **Department of Geosciences** University of Oslo

UiO: Department of Geosciences University of Oslo Interferometric processing of ERS-1/2 tandem pair

Interferogram ASC

Interferogram DESC

* ERS-1/2 data from ESA / Romsenter PRODEX project "ICEDIVIDE"

DEM preparation

UiO **Department of Geosciences** University of Oslo

DEM hill shade

SAR height

Simulated SAR image

Simulated unwrapped phase

Subtraction of topographic phase

Interferogram #2

Differential Interferogram

Phase unwrapping: up-slope example

Phase unwrapping: up-slope example

Phase unwrapping: noise

UiO **Department of Geosciences** University of Oslo

Differential interferogram

Differential unwrapped interferogram

2-pass D-InSAR workflow

UiO **Department of Geosciences** University of Oslo

Velocity map – line of sight

2D velocity map Icedivide between Kongsbreen and Monacobreen

Speed (m/d)

Influence of the surge?

Direction (N = 0°, clockwise)

Acuuracy assesment

InSAR Accuracy (bedrock displacement in meter) of Jostedalsbreen 20/21 Jan 1996 – 6/7 Mar 1996

	V_median	V_mean	V_std
UTM	0.00552	0.00764	0.00732
ASC	0.00372	0.00606	0.00702
DESC	0.00381	0.00636	0.00728

Take aways

SAR Limitations

- Side-looking sensor (complicated image geometry)
- Backscatter difficult to interpret visually
- Some penetration into the ground
- Sensitive coherence (repeat pass)
- Much analysis know-how necessary

Offset tracking

- robust method for fast moving glaciers
- Accuracy ~1/10 of a pixel

InSAR

- for slow displacements
- accuracy in the range of cm
- many parameters to tune

Thank you!

