

INTEGRATED REMOTE SENSING AND FORECASTING FOR ARCTIC OPERATIONS

Keynote: Applications of full-polarimetric SAR to monitoring newly formed sea ice, leads, and oil spills

Professor Camilla Brekke

ESA Cryosphere Remote Sensing Training Course 2018 Longyearbyen, Svalbard, 12 June

Topic 1: Sea ice observations – From a HP SAR perspective

Utilizing several SAR missions provides higher temporal resolution for sea ice studies

Objective of study:

- Establish knowledge about the differences between various available SAR sensors and polarization modes.
- Homogenize the data sets for a uniform and consistent analysis across sensors.

Missions considered:

Radar Imaging Satellite-1 (RI-1), **HP SAR**, Indian (2012-2017) Radarsat-2 (RS-2), **QP SAR**, Canadian (2007-)

Simulated vs. real HP SAR data for sea ice type separation.

Overlapping simulated (RS-2) and real HP (RI-1) data – Negligable change in conditions within a pair

Pair	Satellite	Date	Time (UTC)	Polarization Mode (Beam)
P1	RI-1	6 Sept.	16:38	HP (FRS-1)
	RI-1	6 Sept.	18:13	HP (FRS-1)
P ₂	RS-2	6 Sept.	18:35	FP (FQ-29)
P_3	RI-1 RS-2	7 Sept. 7 Sept.	16:30 16:26	HP (FRS-1) FP (FQ-5)

Area ID Date (U		Date (Time) (UTC)	Observations
	O_1	30.08 (22:19)	Newly formed ice and
			nilas (0.5-5 cm) with snow cover
Ile-de-France	02	31.08 (11:48)	Newly formed ice and
(P ₂)			nilas (0.5-4 cm) with snow cover
	O ₃	31.08 (12:42)	Leads (2-3 cm), 110-235 cm thick ice
			and 5-8 cm snow cover
	Ó4	05.09 (11:20)	Scattered floes with 1-2 cm snow cover,
			melt ponds, and 137-210 cm thick ice
	05	06.09 (07:25)	Newly formed frazil/
Fram Strait			grease ice (3-4 cm)
(P1 and P5)	O _n	06.09 (12:56)	High melt pond coverage, 2 cm snow,
			and 104-187 cm thick ice
	07	07.09 (07:42)	Snowfall, 3-4 cm fresh snow layer,
			and 116-130 cm thick ice

Observations 5 days prior to RI-1/RS-2 acquisitions – SentineI-1 scenes confirm stable conditions

Non-circularity of the transmitted wave – Effect investigated in relation to sea ice type separability

HP scattering vector:

$$\bar{k}_{(RH,RV)} = [S_{RH}, S_{RV}]^T$$

Simulated HP (RS-2) compared to real HP (RI-1)

$$\bar{k}_{(RH,RV)} = \frac{1}{\sqrt{2}} [S_{HH} - iS_{HV}, -iS_{VV} + S_{HV}]^T$$

Non-circularity property (RI-1): Not possible to generate perfect circular polarization on transmit using current technology.

RI-1 configuration:

$$\chi = -38^{\circ}$$

 $\psi = 0^{\circ}$

Perfect circular configuration:
 $\chi = -45^{\circ}$
 $\psi = 0^{\circ}$
 $\psi = 0^{\circ}$

Perfect circular configuration:
 $\chi = -45^{\circ}$
 $\psi = 0^{\circ}$

HP features within a group predominately sensitive to common scattering types

Group Number	HP Features	Dominant Scattering Type			
	σ_{RH}				
	σ_{RV}				
Group 1	O'RL.	Surface scattering			
	90				
	93				
Group 2	<i><i>G</i>_{RR}</i>	Depolarzation due to volume scattering			
	1-m	Depolarization due to			
Group 3	Y(RR,RL)	multiscattering from			
	P(RH,RV)	rough surfaces			
Group 4	$\gamma_{(RH,RV)}$	Polarization differences in resonant Bragg scattering and also in the Fresnel coefficients			
Index states	91	Might be			
independent	92	complementary to			
group	a _s	other parameters			

Kolmogorov-Smirnov (KS) test applied to each feature to evaluate the separability between the sea ice types.

RI-1 and **RS-2** HP $\chi = -45^{\circ}$ – All sea ice types separable

 $KS \in [0,1]$. $KS = 0 \longrightarrow$ the two cumulative distributions are equal.

FYI flooded and niles with snow

	Group	HP	P2_A	vs. P2_B	P2_A	15. P_C	P_A.	s. P_D	P2_B v	s. P_C	P2_Bv	s. P_D	P2_C v	s. P2_D
	name	features	RI-1	RS-2	RI-1	RS-2	RI-1	RS-2	RI .	N 2	RI-1	RS-2	RI-1	RS-2
	a	$\sigma_{RH}(dB)$	0.98	0.99	1.00	1.00	1.00	1.00	0.93	0.85	1.00	1.00	1.00	1.00
Surface scattering	1965 A	$\sigma_{RV}(dB)$	0.98	0.99	1.00	1.00	1.00	1.00	0.61	0.29	1.00	1.00	1.00	1.00
Depolarzation due	Group 1	$\sigma_{RL}(dB)$	0.98	0.99	1.00	1.00	1.00	1.00	0.98	0.89	1.00	1.00	1.00	1.00
		$q_0(dB)$	0.98	0.99	1.00	1.00	1.00	1.00	0.91	0.69	1.00	1.00	1.00	1.00
		q3(dB)	0.95	0.94	1.00	1.00	1.00	1.00	0.99	0.97	1.00	1.00	0.87	0.94
	Group 2	$\sigma_{RR}(dB)$	0.97	0.99	0.99	0.99	1.00	1.00	0.23	0.64	1.00	1.00	0.99	0.99
	a	1 - m	0.44	0.81	0.83	0.10	0.97	0.56	0.57		1.00	0.97	0.74	0.55
	Group 3	Y(RR.RL)	0.30	0.80	0.89	0.38	0.97	0.67	0.97	0.97	1.00	0.97	0.59	0.49
		P(RH,RV)	0.46	0.81	0.81	0.16	0.97	0.67	0.97	0.90	1.00	0.97	0.76	0.65
	Group 4	Y(RH.RV)	0.03	0.12	0.59	0.56	0.68	0.66	0.62	0.67	0.71	0.75	0.11	0.13
	Independent	q1(dB)	0.63	0.64	0.80	0.59	0.91	0.86	0.47	0.14	0.75	0.50	0.36	0.60
	group	q2(dB)	0.39	0.60	0.58	0.49	0.87	0.91	0.52	0.37	0.97	0.75	0.86	0.93
		as(dB)	0.37	0.27	0.70	0.67	0.61	0.63	0.63	0.87	0.57	0.82	0.15	0.13

Group 1 & 2 holds the most powerful features.

Separability between sea ice types similar for both RS-2 HP $\chi = -45^{\circ}$ and $\chi = -38^{\circ}$ (green and blue)

Why are some features affected by the non-circularity property?

Summary – Sea ice type discrimination in HP SAR

- Real HP vs. simulated HP; comparable performance.
- A more elliptical wave on transmit will not affect the separability of the investigated sea ice types given that the correct features are selected.
- HP features sensitive to *surface scattering* and *depolarization due to volume scattering* have great potential for discrimination.
- These feature groups also contain features with highest discrimination power and invariance to the non-circularity property on transmit.

Topic 2: Sea ice observations – From a multifrequency SAR perspective

Norwegian young sea ICE 2015 (N-ICE2015) expedition with R/V Lance January – June 2015.

- Satellite data
 - ALOS-2 (L-band)
 - Radarsat-2 (C-band)
 - TerraSAR-X (X-band)
- In-situ data from airborne platforms
 - Electromagnetic soundings
 - Photographs
 - Lidar surface measurements
- Meteorological observations
 - On board the vessel
 - On the sea ice

Several near coincident QP SAR acquisitions (pairs or triplets) collected during N-ICE2015.

Mission	Band	Incidence angle	Resolution (rg x az)	Width	Length
TerraSAR-X	9.65 GHz/3.1 cm (X-band)	18°-46°	1.2 m x 6 m	18.5 km	55 km
Radarsat-2	5.41 GHz/5.6 cm (C-band)	18°-50°	5.2 m x 7.6 m	25 km	25 km
ALOS-2	1.20 GHz/22.9 cm (L-band)	29°-41°	5.1 m x 4.3 m	40 km – 50 km	70 km

Frost flower covered lead in ALOS-2 vs Radarsat-2 scenes. Entropy higher in Part I (Part II) for C-band (L-band).

0.5

0.4

0.3

15

17°E

50.00

49.50

49.00"

52.00

50

Lead 1

45

30'

I: Newly formed, small scale surface structures. Mean snow/ice thickness: 0.3 m.

40 m

40 m

II: Newly formed, smooth. Mean snow/ice thickness: 0.23 m.

17°E

6

0.5

0.4

0.3

12

Combinations of SAR frequency bands may give additional information about sea ice medium.

Can models aid interpretation of sea ice in ALOS-2 Lband SAR imagery?

L-band: "Lead ice" data points compared to model. Model overlap – ambiguous interpretation.

Jakob Grahn, "Sea ice remote sensing with multi-frequency radar", PhD thesis, 2018.

L-band: "Ice floe" data points compared to model. Classification of thin vs thick level ice may be challenging.

Jakob Grahn, "Sea ice remote sensing with multi-frequency radar", PhD thesis, 2018.

"Open water" observations reveal much lower response in C-band as compared to L-band.

Jakob Grahn, "Sea ice remote sensing with multi-frequency radar", PhD thesis, 2018.

Is this due to frazil/grease ice slicks?

For low viscous slicks, damping at C-band Bragg waves up to two orders of magnitude stronger than at L-band.

Topic 3: Oil spill transport – Integration of SAR and modeling

NORSE2015: NOrwegian Radar oil Spill Experiment 2015

<u>Oil releases</u>: 3 emulsion and 1 plant oil (biogenic slick simulator). Left untouched! <u>Data collection</u>: UAVSAR, Radarsat-2, TerraSAR-X, ALOS-2, RISAT-1, photo, drifters, and weather data.

Main objectives:

- To study evolution of oil slicks
- To study transport of oil slicks
- To study oil slick detection capabilities
- To study oil slicks characterization capabilities

Positioning of oil releases planned according to satellite imaging geometry

Release	Time (UTC)	Substance	Volume
Р	04.48	Plant oil: Radiagreen ebo	0.2 m ³
E40	04.59	Emulsion (40% oil):	0.5 m ³
		300 L water + 100 L Troll + 100 L Oseberg + 0.2 L One-Mul	
E60	05.15	Emulsion (60% oil):	0.5 m ³
		200 L water + 150 L Troll + 150 L Oseberg + 0.2 L One-Mul	
E80	05.30	Emulsion (80% oil):	0.5 m ³
		100 L water + 200 L Troll + 200 L Oseberg + 0.2 L One-Mul	

All slicks left untouched on sea surface

Timing of oil releases planned according to satellite overpass

Release	Time (UTC)	Substance	Volume
Р	04.48	Plant oil: Radiagreen ebo	0.2 m ³
E40	04.59	Emulsion (40% oil):	0.5 m ³
		300 L water + 100 L Troll + 100 L Oseberg + 0.2 L One-Mul	
E60	05.15	Emulsion (60% oil):	0.5 m ³
		200 L water + 150 L Troll + 150 L Oseberg + 0.2 L One-Mul	
E80	05.30	Emulsion (80% oil):	0.5 m ³
		100 L water + 200 L Troll + 200 L Oseberg + 0.2 L One-Mul	

Sensor	Time	Mode	Freq. band	Polarization
UAVSAR (16 scenes)	05.32-08.53	PolSAR	L-band	Quad-pol.
TSX	06.24	SM	X-band	Dual-pol. (HH, VV)
RS2	06.28	WFQ	C-band	Quad-pol.
RISAT-1	07.19	FRS	C-band	Compact pol. (RH, RV)
UAVSAR (6 scenes)	11.45-13.18	PolSAR	L-band	Quad-pol.
TSX	17.12	SM	X-band	Dual-pol. (HH, VV)
ALOS-2	23.53	HS	L-band	Single-pol. (VV)

The slicks were monitored by UAVSAR for 8 hours after release

Frequency	L-Band 1217.5 to 1297.5 MHz (23.8 cm wavelength)
Resolution	1.7 m Slant Range, 1.0 m Azimuth
Operational Altitude	12.5 km
Swatch Width	22 km
Polarization	Quad-Polarization (HH, HV, VH, VV)
Repeat Track Accuracy	± 5 meters
Transmit Power	> 3.1 kW
Radiometric Calibration	1.2 dB absolute, 0.5 dB relative
Noise Floor	-47 dB average

- 2 flights
- 22 quad-polarimetric SAR scenes at L-band

Comparison of multi-polarization SAR configurations in terms of signal vs. noise

Skrunes et al., "A Multisensor Comparison of Experimental Oil Spills in Polarimetric SAR for High Wind Conditions", IEEE JSTARS 2016. Brekke et al., "Cross-Correlation Between Polarization Channels in SAR Imagery Over Oceanographic Features", IEEE GRSL 2016.

Noise floor

Fig. 5. Noise analyses. (a) TSX. (b) RS2. (c) UAVSAR. For each ROI, the horizontal lines indicate the 5th, 25th, 75th, and 95th percentiles, and the 50th percentile is indicated by a symbol, depending on the polarization channel. The VV lines are a little wider than those for HH and VH. CS indicates clean sea.

Skrunes et al., "A Multisensor Comparison of Experimental Oil Spills in Polarimetric SAR for High Wind Conditions", IEEE JSTARS 2016.

Drifters were released at P and E80 to provide position and sea surface temperature at 10 min intervals

The ISPHERE is an expendable, low cost bi-directional spherica drifting bury. The drifter was developed to meet the demandin needs of the offshore oil industry ocean freight industry and the specificality to track and monitor oil spill incidences. The ISPHERI drifter also provides the user with essential real-time see surfac temperature data and GPS positional data.

21 Thornhill Driv 21 Thornhill Driv Dartmouth. Nova Scotia B3B 17 CANAC Tel: +1 902 468-251 Fax: +1 902 468-444 www.melocean.co

Drifters:

- 2 iSphere (subject to direct wind drift)
- 2 Self Locating Datum Marker Buoy (submerged)

Releases were left to develop under relatively high sea state with winds in the range 9–12 m/s

Ocean state 06:42 07:28 07:29

Time series of UAVSAR used to get position and size of evolving slicks

From UAVSAR: Relative position, extent, and spread in the 8 h following release

Parameters in Met Norway's OpenOil drift model tuned to fit UAVSAR measurements

- \rightarrow Oil represented by particles (seeded within contours from UAVSAR)
- → Simulated transport of P and E80 (slicks with associated iSphere and SLDMB drifters).

Horizontal movement:

- Ambient current (two runs: SLDMB drifters or model)
- Wave-induced Stokes drift
- Windage (~2% of surface wind)

Vertical movement:

- Entrainment of oil surface elements by breaking waves
- Eddy diffusivity of submerged droplets (random walk scheme)
- Rise of submerged particles due to buoyancy

Two free parameters:

- Entrainment rate
- Droplet radius

Trajectories show particles spending most time close to (far below) surface drift faster eastward (westward)

Bulk of plant oil below surface shielded from strong eastward Stokes drift and surface wind. Trajectory mainly steered by currents and in agreement with UAVSAR observations.

Difference in depth profiles found, indicating a potential for slick discrimination based on transport

Key message to take home

<u>Plant oil:</u>

- → Rapidly entrains
- → Most oil stays below surface
- \rightarrow Reservoir of resurfacing oil
- → Less wind-driven transport

Mineral oil emulsion (80%)

- \rightarrow Slowly entrains
- → Most oil stays at surface
- → Stronger wind-driven transport

Careful planning and interdisciplinary research team key factors for success!