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Freeze/thaw cycles and rain-on-snow
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Structure of this lecture

1. What is freeze/thaw and why are we 
interested in it?

2. Sensors, data and algorithms
3. Applications with focus on events (esp. 

rain-on-snow)

� ESA - AOES Medialab
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What is freeze/thaw and why are we interested in it?

! Temperature change which results in change of physical properties
! Assumption presence of water

! High dynamics – diurnal variations common, minimum daily sampling required

! Monitoring of landsurface

! Changes type throughout the season
! We need to consider snow and/or soils
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! Temperature change which results in change of physical properties
! Assumption presence of water

! High dynamics – diurnal variations common, minimum daily sampling required

! Relevant for e.g.

! Soil processes, e.g. microbial activity !"carbon cycle
! Snow properties of relevance for subsoil temperatures !"permafrost
! Changes in snow structure !"wild life

What is freeze/thaw and why are we interested in it?
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Where does freeze/thaw occur?

! Often freeze/thaw is asscoiated with 
permafrost – actually only 
characterizes the state of the top of 
the active layer, by definition not 
permafrost

956 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 49, NO. 3, MARCH 2011

Fig. 6. Selected daily combined SSM/I F/T classification results for 2004,
where (a) DOY (Day of Year) = 100, (b) DOY = 200, (c) DOY = 300, and
(d) DOY = 360. Areas in white are outside the FT_ESDR domain.

Fig. 7. (a) Average nonfrozen period and (b) standard deviation of the
nonfrozen period [days yr−1] derived from the combined SSM/I 20-year
(1988–2007) record.

Fig. 8. Mean F/T seasonal climatology derived from the combined SSM/I
classification results over the FT_ESDR domain and 20-year (1988–2007)
satellite remote sensing record, including frozen (A), nonfrozen (B), and tran-
sitional (C) categories. Interannual variability (D) in the frozen and transitional
areas is expressed as twice the standard deviation of the area classification
results.

some northern grassland regions [62]; reasons for the earlier
A.M. thawing were inconclusive, but were attributed to poten-
tial vegetation cover effects on surface radiation budgets and
associated F/T diurnal patterns.

The average nonfrozen period was derived from the frozen
days for each EASE-grid cell and each year within the
FT_ESDR domain and 20-year record. The nonfrozen period
coincides with the potential growing season for boreal ever-
green needleleaf forests [6] and can be 1–2 months longer
than the growing season for deciduous vegetation [4], [56]. The
SSM/I results in Fig. 7(a) show a strong latitudinal gradient in
the average nonfrozen period over the Northern Hemisphere,
with generally shorter duration at higher elevations and lat-
itudes. The nonfrozen period is also generally longer along
coastal margins relative to adjacent inland areas. The SSM/I
results show large interannual variability in the nonfrozen
period over central North America and Europe. Some areas
of relatively extreme (> 25 days yr−1) temporal variability
occur over mountainous regions of South America, the Tibetan
plateau, Mexico, and Angola Africa, and predominantly reflect
negative differences between thawed and frozen Tb reference
states for one or two years.

The seasonal climatology of SSM/I-derived F/T dynamics is
shown in Fig. 8 and reveals a large dynamic range in frozen,
nonfrozen, and F/T transitional areas, with substantial inter-
annual variability in these patterns. The average (1988–2007)
seasonal progression of SSM/I-derived frozen area ranges from
0.48 ± 0.03 [SD] million km2 in August to 34.5 ± 0.9 [SD]
million km2 in January, and represents from 0.7 ± 0.05 [SD]
to 52.5 ± 1.40 [SD] % of the FT_ESDR domain. The global
maximum annual frozen area extent ranged from 35.4 million
km2 (53.6%) in 2007 to 38.6 million km2 (58.5%) in 1991.
The average global nonfrozen area ranges from 61.3 ± 0.03
[SD] million km2 in August to 20.0 ± 0.47 [SD] million km2

Number of unfrozen days, Kim et al. 2011
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Which sensors are used?

! Thermal: Landsurface temperature records require
gap filling

! Microwave range primarily used
! No problem with clouds & illumination
! Sensitivity to freeze/thaw

! High sampling rate with coarse spatial resolution

! Scatterometer (C-band, 5.3; Ku-band 13.4 GHz), C-
band SAR experimentally

! Radiometer (1.4, 19, 37 GHz)
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Example Metop ASCAT 5.3 GHz, since 2007 (Metop A, B …)

Figa et al. 2002

Daily coverage
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Example SSM/I  19, 37 GHz, 1987 -

Schlüssel (1996) 

extension to 1979 possible with 
SSMR

Algorithms transferable to AMSRE 
and AMSR2
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Example SMOS and SMAP with 1.4GHz

SMOS
Soil Moisture and Ocean Salinity

MIRAS (Microwave Imaging Radiometer 
with Aperture Synthesis) 
ESA

Launched on November 2nd 2009 

SMAP
Soil Moisture Active and Passive

NASA

Launched on January 31, 2015

V and H polarization

resolution ~40 km
Global coverage in 3 days
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Physical basis

Source: Ulaby & Long (2015)

SMOS
SMAP

ASCAT
QuikScat

SSMI/SSMR

also need to 
consider snow
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! Shorter wavelengths such as Ku-band interact with the snow particels
! Longer wavelengths penetrate dry snow and interact with the soil

! Interaction with ice layer at C-band

Snow interactions - radar

Dry snow, e.g. Snow structure 
and 
wavelength 
crucial

(arrows do not represent magnitude, just symbolize interaction)
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Example record ASCAT versus QuikScat
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Methods and parameters of snow products (excluding glacier 
and sea ice) from spaceborne scatterometers, status 2010

Reference Sensor M ethod Param eters

Boehnke &
W ism ann 1996

ERS
(C-band)

Location specific sum m er (July) and w inter 
(February) backscatter

Thaw tim ing

Fro lking et a l.
1999

NSCAT Five day average backscatter and location specific 
d ifference from  overall m ean

Thaw tim ing

Kim ball et a l. 2001 NSCAT Application of sim ilar m ethod as in  Boehnke et a l. 1996 Thaw tim ing

Kidd et a l. 2003, Bartsch 
et a l. 2007

SeaW inds
QuikSCAT

Diurnal d ifferences with respect to no ise and m ultip le 
thaw  periods

Start and end of m ajor thaw  period

Kim ball et a l. 2004a NSCAT Extension of Fro lking et a l. 1999 Start, end, prim ary thaw  date

Kim ball et a l.
2004b

SeaW inds
QuikSCAT

As in  K im ball et a l. 2004a Start, end, prim ary thaw  date p lus 
autum n refreeze

Brown et a l. 2007 SeaW inds
QuikSCAT

Fixed threshold for deviation from  w inter (February) 
backscatter level

Thaw tim ing

W ang et a l. 2008 SeaW inds
QuikSCAT

Application of m ethod from  Fro lking et a l. 1999 to 
average evening backscatter w ith  respect to sum m er 
m ean values (August)

Snow-off date

Bartsch et a l. 2010 SeaW inds
QuikSCAT

Moving w indow w ith fixed threshold Refreeze events

Naeim i et a l. 2012 Metop
ASCAT

Edge detection and location specific threshold from  
inflection point of tem perature function

Surface status +- 1 m onth of 
average spring/autum n transition 

Bartsch, A . 2010: Ten years of SeaW inds on QuikSCAT for snow applications. Rem ote Sensing 04, 2(4).



Annett Bartsch | 16/06/2018 | Slide  15ESA Cryosphere remote sensing training course 2018

C-band time series example

Threshold?
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C-band – relationship with ground temperatures

Freezing degree day classes
Warm permafrost
cold permafrost

Sn
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Threshold?

Example ENVISAT ASAR Global monitoring mode 

1km, background mode, C-band
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Bartsch et al. 2009, Journal of Environmental Management

Example ENVISAT ASAR Global monitoring mode

Acquired when no other mode requested
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Edge detection – step function, does not allow to detect single freeze/thaw events

Example ENVISAT ASAR Global monitoring mode
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Step function applied to Metop ASCAT – transition timing

Freeze-upThaw
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Freeze/thaw events from Metop ASCAT

! Reanalyses 
temperature data 
for location 
specific 
determination of 
logistic function

Inflection point
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C-band location specific threshold
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Comparison ASCAT and ASAR GM
Class Correct Around zero Incorrect
Condition LST < -2◦C and SSF 2/4 LST in ± 2◦C range LST < -2◦C and SSF 1/3

LST > 2◦C and SSF 1/3 LST > 2◦C and SSF 2/4

Table 1. Conditions for classification investigation surface status flags (SSF) 1 - unfrozen, 2- frozen, 3 - melting and 4 -
permanently frozen/ice covered
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Fig. 2. ASCAT SSF overlayed with ASAR thaw and freezeup
timing information.

freezing of the soil lags behind the first occurrence of slightly
negative LST because of the time water requires to change its
phase from liquid to solid. It also has to be noted that it could
be that the LST is generally slightly cooler than the ”real”
spatiotemporal mean temperature [12, 13].

Day-to-day comparison between SAR and scatterometer
results show good agreement regarding the general patterns
(example in Figure 2). The actual number of SAR acquisi-
tions has been shown to be crucial for the detection of spring
melt timing by [2] when compared to QuikScat snowmelt
records. This can also be demonstrated by ASCAT compari-
son for both snowmelt and freeze-up.
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Fig. 3. From top to bottom: SSF, LST and classification re-
sults for 8-day period 19, 2007.

4. CONCLUSIONS

A combined use of the LST and ASCAT SSF products may
be viable for further use. Additionally snow cover data could
be used to make the interpretation of the data during spring
easier. SAR derived surface status can, if sufficient sampling
is available, provide similar results as with ASCAT but even
with higher spatial detail. More frequent temporal sampling
with future satellites such as by Sentinel-1 may allow high
detail surface status mapping.
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! Daily maps from ASAR GM for 25x25km area

! Dependance on topography and landcover

Comparison ASCAT and ASAR GM

Images courtesy of H. Bergstedt

Day 1 Day 2 Day 3 Day 4 Day 5
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! Tundra

Comparison ASCAT and ASAR GM

Helena Bergstedt, Annett Bartsch: Surface State across Scales; Tem poral and Spatia l Patterns in  Land 
Surface Freeze/Thaw Dynam ics. Geosciences (Sw itzerland) 08/2017; 7(3):65. 
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! Lake dominated tundra

Comparison ASCAT and ASAR GM

Helena Bergstedt, Annett Bartsch: Surface State across Scales; Tem poral and Spatia l Patterns in  Land 
Surface Freeze/Thaw Dynam ics. Geosciences (Sw itzerland) 08/2017; 7(3):65. 
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Comparison ASCAT and ASAR GM

! Forest

Helena Bergstedt, Annett Bartsch: Surface State across Scales; Tem poral and Spatia l Patterns in  Land 
Surface Freeze/Thaw Dynam ics. Geosciences (Sw itzerland) 08/2017; 7(3):65. 
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Summary radar

! Allows investigations with higher spatial resolution using SAR, but data
availability is the major constrain

! but good SAR records available for C-band
! Continuity currently only ensured for C-band
! High potential for Ku-band, specifically for changes in the snow pack

! Simple threshold methods are usually not sufficient

! Threshold needs to be defined using temperature data from in situ or
reanalyses
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SSM/I and SSMR

Zhang & Armstrong (2001) 
! SSM/I 19-GHz and 37-GHz vertically-polarized TBs discriminate frozen ground 

from unfrozen ground over prairie soils, using the following equation:
(TB(37V) - TB(19V))/18 < 0 and TB(37V) < 258.2 K

! A similar approach is used with the SMMR data using the 18-Ghz and 37-Ghz 
channels.

Kim et al. (2011): seasonal threshold approach using TB(37V) at pm, also applied 
to AMSR-E and AMS2

952 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 49, NO. 3, MARCH 2011

investigation, we assume that these effects are minimal at the
relatively coarse (∼25 km) spatial scale of the SSM/I-based F/T
classification.

D. Implementing a Global F/T Classification Algorithm

General approaches to determining landscape F/T transi-
tions using satellite microwave remote sensing include seasonal
threshold, moving window, and temporal edge detection ap-
proaches [24], [55]. Edge detection approaches are suitable for
the identification of seasonal F/T transitions using time-series
microwave remote sensing data [7], [18]. Moving window
approaches are useful when applied to temporally consistent
data sets with freq uent (e.g., daily) observations for identi-
fying multiple F/T transition events [9], [13], [27]. Seasonal
threshold approaches examine the temporal progression of the
remote sensing signature relative to signatures acq uired during
a seasonal reference (e.g., frozen or thawed) state or states.
These techniq ues are well-suited for determining daily F/T
conditions and identifying multiple F/T transition events [16],
[19], [27]. These three techniq ues assume that the large changes
in dielectric constant occurring between predominant landscape
frozen and nonfrozen conditions dominate the corresponding
Tb temporal dynamics, rather than other potential sources of
variability such as changes in canopy structure and biomass
or large precipitation events. This assumption is generally
valid during seasonal F/T transitions for most cold temperature
constrained land areas of the globe. These approaches have
also been extensively tested and verified and are relatively
simple and robust for landscape-, continental-, and global-scale
applications [11], [18], [56]. In this investigation, the term
landscape refers to the aggregate signal response within the
satellite field of view (FOV), including vegetation canopy, snow
cover, and surface soil layer elements. The relatively coarse
(∼25-km) spatial scale of the SSM/I Tb retrievals and the F/T
classification methods used in this study do not resolve subgrid
scale F/T spatial heterogeneity or distinguish among individual
elements within the FOV.

W e applied a seasonal threshold approach (STA) to classify
daily F/T state dynamics from the SSM/I daily Tb time series.
The STA was selected over other approaches because it is
capable of resolving daily F/T state dynamics, rather than
single events or seasonally dominant transitions consistent with
moving window and temporal edge detection approaches. The
STA for this study uses a spatial and seasonal scale factor
∆T b p (x , t ) defined for an observation acq uired at location (x)
and time (t) as

∆T b p (x , t ) =
(T b p (x , t ) − FrozRef(x ))

(ThawRef(x ) − FrozRef(x ))
(2)

where T b p (x , t ) [K] is the SSM/I Tb measurement acq uired at
location (x), time (t), and polarization (p); FrozRef(x) [K] and
ThawRef(x) [K] define Tb values under respective landscape
frozen and thawed reference states.

The FrozRef(x) term was calculated on a grid cell-by-cell
basis by averaging SSM/I Tb measurements under NNR-
defined frozen air temperature conditions and excluding miss-
ing SSM/I values; frozen temperatures were defined where

Fig. 1. Mean daily SSM/I P 37V brightness temperatures (Tb) [K ] for
(a) January and (b) July of 2004. Areas in white are outside of the FT_ESDR
domain and were screened from the analysis. Similar monthly mean Tb maps
were computed annually and used as frozen and nonfrozen reference states for
the seasonal threshold algorithm-based daily F/T classifications.

mean daily air temperatures (T a v ) were below 0.0 ◦C, and
predominantly occurred in January in the Northern Hemisphere
and July in the Southern Hemisphere. The ThawRef(x) term
was calculated in a similar manner by averaging SSM/I Tb

values under NNR-defined nonfrozen reference periods, which
predominantly occurred in July and January for the North-
ern and Southern Hemispheres, respectively. The analysis of
20-year NNR monthly mean T a v indicated that January and
July generally encompassed seasonal maximum (minimum
for Southern Hemisphere) and minimum (maximum in the
Southern Hemisphere) air temperatures within the FT_ESDR
domain.

P revious studies have successfully used constant
frozen/nonfrozen threshold levels to classify STA-based F/T
dynamics over Northern Hemisphere regional domains [23],
[44]. However, our results indicate strong latitudinal variability
in SSM/I-defined reference states (Fig. 1). A dynamic threshold
level was therefore derived annually on a grid cell-by-cell basis
using least-sq uares linear regression relationships between
NNR surface air temperatures (independent variable) and
∆T b p (x , t ). The estimated dynamic threshold levels for frozen
and nonfrozen landscape conditions in each EASE-grid cell
were determined where ∆T b p (x , t ) corresponded to an NNR
air temperature of 0 ◦C (Fig. 2). The dynamic threshold levels
[T(x, t)] were derived separately for the SSM/I Tb time series
from P .M. and A.M. overpasses using corresponding daily NNR
T m x and T m n time series for each year (Fig. 3).

The SSM/I landscape F/T status can be defined such that

∆T b p (x , t ) > T (x , t )

∆T b p (x , t ) ≤ T (x , t ) (3)

define respective thawed and frozen landscape states.
The output from (3) is a dimensionless [DIM] binary state

variable designating nonfrozen (1) and frozen (0) conditions on
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investigation, we assume that these effects are minimal at the
relatively coarse (∼25 km) spatial scale of the SSM/I-based F/T
classification.

D. Implementing a Global F/T Classification Algorithm
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threshold approaches examine the temporal progression of the
remote sensing signature relative to signatures acq uired during
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These techniq ues are well-suited for determining daily F/T
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(∼25-km) spatial scale of the SSM/I Tb retrievals and the F/T
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∆T b p (x , t ) defined for an observation acq uired at location (x)
and time (t) as
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where T b p (x , t ) [K] is the SSM/I Tb measurement acq uired at
location (x), time (t), and polarization (p); FrozRef(x) [K] and
ThawRef(x) [K] define Tb values under respective landscape
frozen and thawed reference states.

The FrozRef(x) term was calculated on a grid cell-by-cell
basis by averaging SSM/I Tb measurements under NNR-
defined frozen air temperature conditions and excluding miss-
ing SSM/I values; frozen temperatures were defined where

Fig. 1. Mean daily SSM/I P 37V brightness temperatures (Tb) [K ] for
(a) January and (b) July of 2004. Areas in white are outside of the FT_ESDR
domain and were screened from the analysis. Similar monthly mean Tb maps
were computed annually and used as frozen and nonfrozen reference states for
the seasonal threshold algorithm-based daily F/T classifications.

mean daily air temperatures (T a v ) were below 0.0 ◦C, and
predominantly occurred in January in the Northern Hemisphere
and July in the Southern Hemisphere. The ThawRef(x) term
was calculated in a similar manner by averaging SSM/I Tb

values under NNR-defined nonfrozen reference periods, which
predominantly occurred in July and January for the North-
ern and Southern Hemispheres, respectively. The analysis of
20-year NNR monthly mean T a v indicated that January and
July generally encompassed seasonal maximum (minimum
for Southern Hemisphere) and minimum (maximum in the
Southern Hemisphere) air temperatures within the FT_ESDR
domain.

P revious studies have successfully used constant
frozen/nonfrozen threshold levels to classify STA-based F/T
dynamics over Northern Hemisphere regional domains [23],
[44]. However, our results indicate strong latitudinal variability
in SSM/I-defined reference states (Fig. 1). A dynamic threshold
level was therefore derived annually on a grid cell-by-cell basis
using least-sq uares linear regression relationships between
NNR surface air temperatures (independent variable) and
∆T b p (x , t ). The estimated dynamic threshold levels for frozen
and nonfrozen landscape conditions in each EASE-grid cell
were determined where ∆T b p (x , t ) corresponded to an NNR
air temperature of 0 ◦C (Fig. 2). The dynamic threshold levels
[T(x, t)] were derived separately for the SSM/I Tb time series
from P .M. and A.M. overpasses using corresponding daily NNR
T m x and T m n time series for each year (Fig. 3).

The SSM/I landscape F/T status can be defined such that

∆T b p (x , t ) > T (x , t )

∆T b p (x , t ) ≤ T (x , t ) (3)

define respective thawed and frozen landscape states.
The output from (3) is a dimensionless [DIM] binary state

variable designating nonfrozen (1) and frozen (0) conditions on
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K.Rautiainen, T. Parkkinen, J.Lemmetyinen, M.Schwank, A.Wiesmann, J. Ikonen, C.Derksen, S.Davydov, A. Davydova, J. Boike, M.Langer, M. 
Drusch, J.Pulliainen (2016): SMOS prototype algorithm for detecting autumn soil freezing. Remote Sensing of Environment 180 (2016) 346–360

L Band: SMOS         slide courtesy of K. Rautiainen (FMI)
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K.Rautiainen, T. Parkkinen, J.Lemmetyinen, M.Schwank, A.Wiesmann, J. Ikonen, C.Derksen, S.Davydov, A. Davydova, J. Boike, M.Langer, M. 
Drusch, J.Pulliainen (2016): SMOS prototype algorithm for detecting autumn soil freezing. Remote Sensing of Environment 180 (2016) 346–360

L Band: SMOS         slide courtesy of K. Rautiainen (FMI)
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NPR - Normalized polarization ratio

K.Rautiainen, T. Parkkinen, J.Lemmetyinen, M.Schwank, A.Wiesmann, J. Ikonen, C.Derksen, S.Davydov, A. Davydova, J. Boike, M.Langer, M. 
Drusch, J.Pulliainen (2016): SMOS prototype algorithm for detecting autumn soil freezing. Remote Sensing of Environment 180 (2016) 346–360

L Band: SMOS         slide courtesy of K. Rautiainen (FMI)
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Frost depth observation network 
operated by Finnish 
Environmental Institute 
(SYKE)

Pixel-wise FF values compared 
against observed frost depths

! Exponential fit => thresholds 
defined

K.Rautiainen, T. Parkkinen, J.Lemmetyinen, M.Schwank, A.Wiesmann, J. Ikonen, C.Derksen, S.Davydov, A. Davydova, J. Boike, M.Langer, M. 
Drusch, J.Pulliainen (2016): SMOS prototype algorithm for detecting autumn soil freezing. Remote Sensing of Environment 180 (2016) 346–360

L Band: SMOS         slide courtesy of K. Rautiainen (FMI)
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L Band: SMAP

! The algorithm uses the normalized polarization ratio (NPR) of SMAP 
radiometer measurements defined by:

NPR=(TBV-TBH)/(TBV+TBH)

! A seasonal scale factor D(t) is defined for an observation acquired at time t as:

Dt=(NPR(t)-NPR(fr))/(NPR(th)-NPR(fr)) 

! where NPR(t) is the normalized polarization ratio calculated at time t, for which 
a freeze/thaw classification is sought, and NPR(fr) and NPR(th) are normalized 
polarization ratios corresponding to the frozen and thawed reference states, 
respectively. Threshold value is 0.5

C.Derksen, X. Xu, R. S. Dunbar, A. Colliander, Y.Kim, J.S. Kimball, T. A. Black, E.Euskirchen, A. Langlois, M. M. Loranty, P. Marsh, K. 
Rautiainen, A.Roy, A. Royer, J. Stephens, Retrieving landscape freeze/thaw state from Soil Moisture Active Passive (SMAP) radar and 
radiometer measurements, Remote Sensing of Environment, Volume 194, 2017, Pages 48-62.



Annett Bartsch | 16/06/2018 | Slide  35ESA Cryosphere remote sensing training course 2018

L Band: SMAP

Freeze and thaw 
references

C.Derksen, X. Xu, R. S. Dunbar, A. Colliander, Y.Kim, J.S. Kimball, T. A. Black, E.Euskirchen, A. Langlois, M. M. Loranty, P. Marsh, K. 
Rautiainen, A.Roy, A. Royer, J. Stephens, Retrieving landscape freeze/thaw state from Soil Moisture Active Passive (SMAP) radar and
radiometer measurements, Remote Sensing of Environment, Volume 194, 2017, Pages 48-62.
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Summary – passive microwave

! Varying approaches
! Use of different frequencies

! Use of different polarizations
! Summer and winter references used

! Threshold needs to be defined using temperature data from in situ or reanalyses
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Validation

! Air temperature
! Snow height

! Soil temperatures – not that many sites, 
but e.g. permafrost boreholes

! Need to convert continuous values to 
yes/no information
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WMO and GTN-P 
borehole data (point 
versus 25km gridded 
ASCAT) 

Validation
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Air temp

Soil temp 2cm, air temp
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Applications

! Entire Arctic 
! Basins

! Locally 

4. Examples

4.1 Snow melt

The TU Wien product which is based on an adaptive diurnal difference approach introduced
by Bartsch et al. (2007b) can be applied to QuikScat data for the extraction of the beginning
and the end of thaw. It has therefore been chosen for investigation of the melt area and river
discharge behaviour over selected Russian basins. It considers the varying noise levels and
captures the final thaw period with respect to multiple thaw events before the final snowmelt
period and short term variations during spring thaw. Typical duration of final spring melt in
central Siberia above 60 ◦ N is two weeks to one month.
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Fig. 3. Overview map of selected basins in Russia and proportion of permafrost types (source:
NSDIC, Brown et al. (1998))

The area which undergoes snowmelt at a certain day has been extracted for three basins in
Russia for the years 2001 to 2008. Those are the Dvina upstream of Ust Pinega (≈270.000 km2),
the Lena river upstream of Kyusyur (≈2.440.000 km2) and two of its subbasins: the upper
Lena upstream of Solyanka (≈770.000 km2) and the Lena river tributary Aldan (Verkhoyan-
ski’ Perevoz, ≈695.000 km2). These basins show varying Permafrost characteristics (Figure
3, source: NSDIC, Brown et al. (1998)). Dvina has only 12.5% continuous permafrost. This
proportion is higher for all other selected basins, 50% for upper Lena and 80% for Aldan
and the entire Lena basin. The upper Lena basin constitutes most of the none-continuous
permafrost of the Lena basin. Most of it, however, is also characterized by discontinuous and
sporadic permafrost.

Figure 4 and Figure 5 show time series of melt area and discharge for the years 2001-2008.
River runoff measurements are provided through ArcticRIMS (Regional, integrated Hydro-
logical Monitoring System)/ R-ArcticNET (www.russia-arcticnet.sr.unh.edu). All basins are
characterized by a pronounced runoff peak in spring.

www.intechopen.com
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Application – melting snow

Timing of snow melt from diurnal difference Ku-band

Bartsch, A . 2010: Ten years of SeaW inds on QuikSCAT for snow applications. Rem ote Sensing 04, 2(4).
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Application – melting snow

Melt area versus river discharge

QuikScat derived daily 
basin melt area in % of the 
Lena Kyusyur basin (black 
solid thick line), Uppler 
Lena Solyanka basin (solid 
thin grey line), Aldan basin 
(thick grey solid line) and 
river discharge in m3/s at 
corresponding stations 
(dashed lines) 

Bartsch (2010b)

Fig. 5. QuikScat derived daily basin melt area in % of the Lena Kyusyur basin (black solid
thick line), Uppler Lena Solyanka basin (solid thin grey line), Aldan basin (thick grey solid
line) and river discharge in m3/s at corresponding stations (dashed lines), 2001-2008

The magnitude of the melt area maximum and the river discharge spring maximum shows
only a high correlation (R2=0.79) for the upper Lena basin (Figure 6). This relationship is also
partly visible for Aldan, but no distinct discharge peak could be observed in 2005 (Figure 5).
The overall Lena basin spans over several degrees latitude and includes mountain ranges and
therefore does not show a direct relationship.

www.intechopen.com
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Application – melting snow

4. Examples

4.1 Snow melt

The TU Wien product which is based on an adaptive diurnal difference approach introduced
by Bartsch et al. (2007b) can be applied to QuikScat data for the extraction of the beginning
and the end of thaw. It has therefore been chosen for investigation of the melt area and river
discharge behaviour over selected Russian basins. It considers the varying noise levels and
captures the final thaw period with respect to multiple thaw events before the final snowmelt
period and short term variations during spring thaw. Typical duration of final spring melt in
central Siberia above 60 ◦ N is two weeks to one month.
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Fig. 3. Overview map of selected basins in Russia and proportion of permafrost types (source:
NSDIC, Brown et al. (1998))

The area which undergoes snowmelt at a certain day has been extracted for three basins in
Russia for the years 2001 to 2008. Those are the Dvina upstream of Ust Pinega (≈270.000 km2),
the Lena river upstream of Kyusyur (≈2.440.000 km2) and two of its subbasins: the upper
Lena upstream of Solyanka (≈770.000 km2) and the Lena river tributary Aldan (Verkhoyan-
ski’ Perevoz, ≈695.000 km2). These basins show varying Permafrost characteristics (Figure
3, source: NSDIC, Brown et al. (1998)). Dvina has only 12.5% continuous permafrost. This
proportion is higher for all other selected basins, 50% for upper Lena and 80% for Aldan
and the entire Lena basin. The upper Lena basin constitutes most of the none-continuous
permafrost of the Lena basin. Most of it, however, is also characterized by discontinuous and
sporadic permafrost.

Figure 4 and Figure 5 show time series of melt area and discharge for the years 2001-2008.
River runoff measurements are provided through ArcticRIMS (Regional, integrated Hydro-
logical Monitoring System)/ R-ArcticNET (www.russia-arcticnet.sr.unh.edu). All basins are
characterized by a pronounced runoff peak in spring.

www.intechopen.com

Bartsch (2010b)
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Ku-band diurnal cycling

Microbial activity starting when 
snow starts to melt
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  Fig. 9.8   Days with significant backscatter changes due to diurnal thaw and refreeze at Zotino 
(60.75° N, 89.38° E), smoothed (5 days) spring daily accumulated CO 2  fluxes ( solid line ) and 
mean daily air temperature ( dashed line ) in 2000 (source: TCOS Siberia). Duration of major and 
final melt period is indicated by grey shading. Adapted from Bartsch et al. (2007)       

A. Bartsch, W . W agner, R . K idd: Rem ote Sensing of Spring Snowm elt in  S iberia. Environm ental Change in  
S iberia, 01/2010: pages 135-155
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Surface state from ASCAT

Globpermafrost WebGIS
www.globpermafrost.info

Number of frozen days
http://maps.awi.de/map/map.html?cu=globpermafrost_arctic&sb=e&zm=1&ctr=[

69.78107758124735,-97.23345073130245]&lyr=["globpermafrost-
arctic::GTNP WMO Thermal State of Permafrost TSP","globpermafrost-
arctic::GTNP WMO Circumpolar Active Layer Moinitoring 
CALM","globpermafrost-arctic::EU-INTERACT Research and Monitoring 
Stations","globpermafrost-arctic::International Arctic Research and Monitoring 
Networks","globpermafrost-arctic::Average Number of Frozen Days per Year 
from Metop ASCAT 2007-2012"]#mapcontent

http://www.globpermafrost.info/
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ASCAT Surface state and ground temperatures

Number of frozen days
Mean Annual Ground 

temperature

Melting snow as frozen 
soil

R2 = 0.64

Melting snow as 
thawing soil

R2 = 0.66

Kroisleitner, C., Bartsch, A., and Bergstedt, H.: Potential permafrost distribution and ground temperatures based on surface state obtained 
from microwave satellite data, The Cryosphere Discuss., https://doi.org/10.5194/tc-2017-162, in review, 2017.
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ASCAT Surface state and ground temperatures

Temperatures from lineat fit

Neglects snow and soil properties 

Black lines are permafrost zones 
(source: Brown et al. 1997)

ASCAT Surface state and ground temperatures

Kroisleitner, C., Bartsch, A., and Bergstedt, H.: Potential permafrost distribution and ground temperatures based on surface state obtained 
from microwave satellite data, The Cryosphere Discuss., https://doi.org/10.5194/tc-2017-162, in review, 2017.

Figure 13. Maps of modelled mean annual ground temperature (top) and standard deviation of modelled MAG Tc (bottom) for ASCAT

excluding melt days (FT; left) and SSM/I (right) based on all analyzed years. Source for permafrost extent classes: Brown et al. (1997).

3 1

Figure 5. Permafrost extent maps based on thresholds applied to frozen days of year (DOY) to ASCAT excluding melt days (FT), thresholds

applied to frozen days of year (DOY) to ASCAT including melt days (FM), and thresholds applied to frozen days of year (DOY) to SSM/I.

The initial threshold is 180 days. The value for best Kendall’s ⌧ represents the best fit with borehole measurements. The highest threshold

has been determined using an empirical model calibrated with borehole measurements. See also Table 1. All satellite results are based on

2007/8-2008/9 records. Source for permafrost extent classes: Brown et al. (1997).

24
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QuikScat Rain-on-Snow

! Southern Yamal peninsula has been 
affected by a rain-on-snow (ROS) event in 
November 2006.

! The ROS event and subsequent refreezing 
with formation of ice crusts forced a 
major change in migration. 

! Some of the brigades were additionally 
affected by an event to the west in 
January and as they migrated back 
northwards across the snowpack, which 
still consisted of the previous ice layers. 
The loss amounted to 25% of the 
animals including deaths and still-
births resulting from exhaustion and 
poor nutrition of pregnant females. !"#$%&'#()*+%,-.+"%#"%,/+%01,/%#(%2#3+45+'%

67789%:;/#,#<%=*#')-"%!,-44*+'>

?9%@-',AB/C%+,%-*9%6707

!""#$$%&'($)*+,%- ./0%12/324',%& (2*#%5 %60(7#),%6 40(.'" %8$'// 4#(9 :#$#*$.0" %0;%8"0< %82(;'*#%-+'< ."=%'">%?#;(##@."=%." %$+#%A2(').'"
!(*$.*%B)."=%C2.D85!-9E./ 34.*'$.0")%;0(%?#.">##(%F#(>."=G%A*040=.*'4%!334.*'$.0")%HIJIKHKL%IKMNO9IPQRSTNG



Annett Bartsch | 16/06/2018 | Slide  48ESA Cryosphere remote sensing training course 2018

QuikScat Rain-on-Snow

!"#$%&'()*+#,'#%-"#./0/

!""#$$%&'($)*+,%- ./0%12/324',%& (2*#%5 %60(7#),%6 40(.'" %8$'// 4#(9 :#$#*$.0" %0;%8"0< %82(;'*#%-+'< ."=%'">%?#;(##@."=%." %$+#%A2(').'"
!(*$.*%B)."=%C2.D85!-9E./ 34.*'$.0")%;0(%?#.">##(%F#(>."=G%A*040=.*'4%!334.*'$.0")%HIJIKHKL%IKMNO9IPQRSTNG



Annett Bartsch | 16/06/2018 | Slide  49ESA Cryosphere remote sensing training course 2018

QuikScat Rain-on-Snow

! Comparison with WMO station data
!"#$%&'()*+#,'#%-"#./0/

!""#$$%&'($)*+,%- ./0%12/324',%& (2*#%5 %60(7#),%6 40(.'" %8$'// 4#(9 :#$#*$.0" %0;%8"0< %82(;'*#%-+'< ."=%'">%?#;(##@."=%." %$+#%A2(').'"
!(*$.*%B)."=%C2.D85!-9E./ 34.*'$.0")%;0(%?#.">##(%F#(>."=G%A*040=.*'4%!334.*'$.0")%HIJIKHKL%IKMNO9IPQRSTNG



Annett Bartsch | 16/06/2018 | Slide  50ESA Cryosphere remote sensing training course 2018

! Increase of snow depth 
in a very short time?

! Snow structure change

!"#"$%$&$'()*&+%")$%,-+./--(*+01!23456

QuikScat Rain-on-Snow
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ASCAT Rain-on-Snow and Sea Ice

! Evidence for autumn atmospheric warming and 
precipitation increases over Arctic coastal lands 
in proximity to Barents and Kara sea ice loss.
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ASCAT backscatter change in  dB

Source: SSMI derived sea ice extent on NSIDC



Annett Bartsch | 16/06/2018 | Slide  52ESA Cryosphere remote sensing training course 2018

QuikScat Rain-on-Snow

Change detection, short term 
increase of backscatter

Rennert et a l. 2009

! " #$ Nov.-Feb. 2000-2009

Bartsch (2010):  Ten years of SeaW inds on QuikSCAT for snow 
applications  Rem ote Sensing.
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QuikScat Snow structure change
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QuikScat Snow structure change
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Not always Rain-on-Snow, 
applies to passive and 
active microwaves
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Rain-on-Snow

Nov.-Feb. 2000-2009

Bartsch (2010):  Ten years of 
SeaW inds on QuikSCAT for snow 
applications  Rem ote Sensing.

The extrem e warm  spell and ROS events in  
January–February 2012 had m ajor im plications for 
the society and w ild life  in  Svalbard. 
(a) S lush avalanches caused closed roads and 

schools and destroyed a bridge in  the m ajor 
settlem ent Longyearbyen (photo: Kjersti
S trøm m en). 

(b) A  th ick layer of ground-ice bu ilt up on roads 
and airport runways in  Longyearbyen (photo: 
Øyste in Varpe) and Ny-Å lesund. 

(c) A  w ild  fem ale re indeer struggles to find food 
on the ice-encapsu lated tundra in  Reindalen
one week subsequent to the warm  spell and 
ROS (photo: Brage B Hansen).

Hansen et a l. 2014: W arm er and 
wetter w inters: characteristics and 
im plications of an extrem e weather 
event in  the H igh Arctic. ERL
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Rain-on-Snow

Nov.-Feb. 2000-2009

Bartsch (2010):  Ten years of 
SeaW inds on QuikSCAT for snow 
applications  Rem ote Sensing.

Wild Svalbard reindeer (Rangifer 
tarandus platyrhynchus), the 
Svalbard rock ptarmigan (Lagopus 
muta hyperborea), and the sibling 
vole (Microtus levis), and one shared 
consumer, the arctic fox (Vulpes 
lagopus).
The community's population 
fluctuations are mainly driven by 
rain-on-snow events

Hansen, B .B; V . G røtan, R . Aanes, B .-E. Sæ ther, 
A . S tien, E . Fugle i, R .A . Im s, N .G . Yoccoz, A .Ø . 
Pedersen. C lim ate Events Synchron ize the 
Dynam ics of a Resident Vertebrate Com m unity in  
the H igh Arctic. Science, 18 Jan. 2013

W esterm ann, S ., Bo ike, J., Langer, M ., 
Schuler, T. V ., and Etze lm üller, B .: 
Modeling the im pact of w intertim e rain  
events on the therm al reg im e of 
perm afrost, The Cryosphere, 5, 945-959, 
https://do i.org/10.5194/tc-5-945-2011, 
2011. 
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Summary freeze/thaw

! Monitoring of landsurface
! Changes type throughout the season: We need to consider snow and/or 

soils

! Relevant for e.g.

! Soil processes, e.g. microbial activity !"carbon cycle
! Snow properties of relevance for subsoil temperatures !"permafrost
! Changes in snow structure !"wild life
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