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Background in field
based glaciology

Especially hydrology and
ice dynamics
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Atmospheric CO, at Mauna Loa Observatory
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Satellites have revolutionised
our understanding of change:

e.g. CryoSat-2, a radar
altimeter, for observing
surface elevation change
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Observations of elevation change

Satellite laser altimetry 2003-2007 Greenland losing mass due
: to substantial thinning
around the ice sheet margin.
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Confirmed by several different methods
Pritchard et al, 2009, Nature derived from field and satellite data

Newer results = same pattern but worse

Helm et al, TC,
2014
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Satellite mass: 720kg
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~alVal work in the percolation zone of
the Greenland Ice Sheet
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Snowpit density structure - spring and autumn 2004
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Percolation zone — spring 2004

1600

Spring 2004 — strongest radar return is from
depth in the snowpack

Summer 2003 layer
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Percolation zone — autumn 2004
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2004 - ASIRAS over the percolation zone (T5) of the GrIS
Variable radar signature caused by a stratified snowpack structure
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And evidence of changing reflecting horizon on
CryoSat-2 elevation retrieval

[

8 July 2012 12 July 2012

Implications for satellite measurements

An apparent elevation increase of 56 +26 cm in Greenland’s accumulation
zone between June and September 2012 from CryoSat-2 L2i data following
the extreme melt event in July 2012..
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2003-2007 elevation change rate for
the Greenland Ice Sheet

What does this elevation
change plot mean for
mass change (and thus
sea level rise)

—" Pritchard et al., Nature 2009

Autumn
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Spring and autumn snow depths

Spring and autumn 2004 pit depth relative to 2003
end summer surface

180

160 _

140 /E'D Qo e

B 120 +—= A
S —
Z 100 / \\k,, — kiii*\\kﬁ —~—
= el A
g »
= 60 --0-- Spring
o 40 —— Autumn ———
—4— 2006
20
(0] T T T T T T T T T T
TO4 TO5 E1 E2 E3 E4 S1 S2 S3 S4 TO06

Location

Mean
SD
%

Spring  Autumn

139.1 147.3
10.4 11.8
7.5 8.0

2006

101.3
8.1
9.6

2004
2004 autumn snowpack ~ 5%
thicker c/w spring

Spring and autumn mean snow densities

Mean snow pack density (g cm3) by end spring and start of

autumn 2004

0.700
0.600
T ‘\’/’—_\ /\‘/‘\‘\A/a
£ 0.500 D”_D“_D_”\E/- o 'E'--D---D. *
o 0.400 S
2 0.300
2]
$  0.200
& 0.100 —&— Autumn
’ - -O- - Spring
0.000 —
To4 TO5 E1 E2 E3 E4 S1 S2 S3 S4 TO06
Location

Mean
SD
%

Spring  Autumn

0.410 0.532
0.018 0.036
4.34 6.772

Autumn snowpack ~ 23% denser

Parry et al, Annals of Glac., 2007

14/09/2016

18



14/09/2016

Snowpit density structure - spring and autumn 2004
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And the density used for converting volume change to mass change has huge
implications for mass balance and sea level rise estimates?

See current debate re latest Zwally et al (J.G

N . i 1

lac. 2015) estimates of Antarctica mass balance

X
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The example of supra-glacial lakes

Numerous in summer on the margins of the Greenland Ice Sheet.

Images from http://www.whoi.edu/oceanus
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Lakes may be important for the future
dynamic response of the ice sheet?

Zwally et al., 2002, Science

Futu re dyn am|C response’) Zwally et al., 2002, Science

* Will the ice sheet
interior/margin accelerate
with climate warming?

* Hypothesis: melt
increases runoff,
enhancing basal sliding
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Ellesmere
Island

5% John Evans
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e.g. work investigating the links
between hydrology and dynamics at i

John Evans Glacier, a High Arctic 4
polythermal glacier, 1999-2003. 3;3@%%

100

3.

i

Speed-up driven by supraglacial meltwater inputs
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http://www.ggy.bris.ac.uk/personal/RobBingham/jeg/supralake.jpg
http://www.ggy.bris.ac.uk/personal/RobBingham/jeg/supralake.jpg
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During summer, lakes up to several
kilometers square form on the
surface of the ice near the ice sheet
margin.

S0B0W 50715W S0W agrasw aga0w agisw aaw 2875w

Landsat image in Zwally et al., 2002, Science.

How do these lakes behave
during the course of a melt-
season?

Image from http://www.whoi.edu/oceanus

Comparison of images from two sites in W Greenland —
early July 2001 and early August 2001.

Survey of lake area conducted for lakes > 0.01 km? on both dates.

McMillan et al, 2007
Earth Planetary Science Letters

Swiss
Camp
Scenes

Russell
Glacier
Scenes

Landsat scene, 7t July 2001
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Substantial drainage of lakes observed

% .
4 . Russell Glacier lake
% b4 aerial extent
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McMillan et al, 2007

Earth Planetary Science Letters

Drainage at ~950 m on Russell Glacier

A more extensive study of lake drainage was
undertaken by Sundal et al. using MODIS data

~10 June

~20 July

Sundal et al, 2009
RSE
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Supra-glacial lakes

Total lake area according to elevation bands (200 m)
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Evolution in supra-glacial lake area according to elevation above sea level
in the ‘Russell’ catchment, W. Greenland, during the 2003 melt season.
Sundal et al, RSE, 2009

These observations tell us about evolution in lake area but nothing about:

1) the processes involved in lake drainage or of
2) their importance for ice sheet dynamics

July
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Detailed study of lake drainage by Das et al, 2008 (Science)

Field based study in west Greenland in 2006

= Monitored two lakes
located at ~1000m

= Max diameters ~ 2 km
= Coldice
= |ce ~1km thick

= Western margin of
Greenland Ice Sheet

Concluded the cause of drainage = hydrofracture

= |ce sheet uplift and acceleration =
drainage to ice-bed interface

= Average flow rate: 8700 mé/s
(exceeds that of the Niagara Falls)
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And the implications for ice sheet dynamics?

Ice motion from lake drainage = short-lived and not important
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c. Supraglacial lake at 1926 UTC July 18 2010

d. Supraglacial lake site at 2126 UTC

Bartholomew et al, JGR, 2012
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Again, detailed field based observations needed
to understand process and significance

Take home message is a cautionary tale

Satellites are very important for enhancing our understanding of global
processes but .....

29



14/09/2016

i) they need to be calibrated to be accurate and provide reliable data and

ii) fieldwork is still essential for understanding most landscape processes
because of the limited temporal and or spatial (i.e. detailed) resolution of
most satellites.

So please make sure you're familiar with both the
field literature as well as the satellite literature!
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