InSAR Theory

Andy Hooper COMET, University of Leeds

ESA Advanced Training Course Remote Sensing of the Cryosphere

What is InSAR and what is it used for?

• Short for "Interferometric Synthetic Aperture Radar"

Sensitive to topography and displacement

Uses include:

- Tectonics and earthquakes
- Volcanoes
- Glacial isostatic rebound
- Glaciology
- Oil and Gas extraction
- Hydrology
- Monitoring infrastructure

Stereo Radar

- 2 images from different positions give 3D position
- Note: different to stereo vision

- Accuracy of position proportional to accuracy of ΔR (~1m)
- Accuracy scales with R/B! (~10⁶/10²)

What about the phase?

Electromagnetic waves have phase as well as amplitude – can we use this?

InSAR phase

Interference phase at ground depends mainly on horizontal position, but also a little on the vertical position

Example in 2D: interferogram

Mainly horizontal phase stripes (fringes), perturbed by ground elevation

Reference phase (Flat Earth Phase)

Example Reference Phase

Interferometric phase

A Standard

reference (flat Earth) phase

= topographic phase

Baseline dependency, height ambiguity

Baseline dependency, height ambiguity

One of earliest interferograms

Cottonball Basin in Death Valley (Goldstein et al., 1988)

Speckle phase contribution

Phase is that of coherent sum of all scatterers

Distributed scatterer pixel

Phase of single image

- Uninterpretable, due to pseudorandom phase added by ground scattering
- But ground scattering cancels (hopefully) in phase difference

InSAR phase: displacement

Example: Izmit, Turkey

Glacier Dynamics (Svalbard, Spitsbergen)

The 1999 Izmit earthquake displacement field

1

COMET

 Phase unwrapping is the reverse - finding the integer shift values for each point.

General approach

- Strictly: phase unwrapping is ill-posed problem (not possible to obtain unique solution)
- Heuristic approach: Assume true (unwrapped) phase values of neighboring pixels lie within one-half cycle

One-dimensional example

Assumption: phase differences between adjacent samples are element of [-0.5, 0.5) cycles Wrapped data (in phase cycles): $\psi(x)$: 0.5 0.75 0.25 0.5 0.75 0.0 0.0 0.25 Gradient: 0.25 -0.750.25 0.25 0.25 -0.750.25 Add integer to make phase difference between +/- half a cycle +1 0.25 +1 0.25 0.25 0.25 0.25 0.25 0.25 Integration: 0.5 0.75 1.0 1.25 1.5 1.75 2.0 2.25 Another possible solution that violates our assumption: 1.75 2.0 -0.5 -0.25 101.25 1.5 2.25 +1.25!

2011 Tohoku Earthquake

Dike Intrusion in N. Iceland

Each color fringe is 28 mm displacement in direction of satellite

Two Side-looking Geometries

Decomposed InSAR + GPS

Up

East

Main condition for interferometry

Coherence!

36

Cause of coherence loss

Distributed scatterer pixel

If scatterers move with respect to each other, the phase sum changes

Coherence (Complex Correlation)

Estimation of coherence magnitude from neighbouring pixels:

$$|\hat{\gamma}| = \frac{|\sum_{n=1}^{N} y_1^{(n)} y_2^{(n)} \cdot e^{-j\phi^{(n)}}|}{\sqrt{\sum_{n=1}^{N} |y_1^{(n)}|^2 \sum_{n=1}^{N} |y_2^{(n)}|^2}}$$

Coherence magnitude is a measure of the correlation (values 0 - 1)

Coherence loss as function of time 1 day interval 3.5 year interval

Coherence and wavelength Loss of correlation is due to: volume of vegetation movement of vegetation Coherence dielectric change (moisture) Р-L-**C**-X-**Effective phase center Frequency band** band L-band **P-band** UHF VHF

Source: H.Zebker

Coherence as function of wavelength

1 Cycle of Interferometric Phase

Source: H.Zebker

Results SIR-C mission, Simultaneous C and L band ΔT=6 months

Vegetation 0

Water detection using coherence

• Water has zero coherence over short times

Tropospheric variability

One day interferograms in Netherlands show change in phase delay through troposphere. Mostly due to water vapour distribution.

Topography-correlated tropospheric phase delay

Interferogram (El Hierro Island)

Elevation (scaled to match phase)

Multiple Aperture InSAR a.k.a Spectral Diversity

where l is antenna length and x is azimuthal displacement

Sentinel-1 TOPS issues (Terrain Observation with Progressive Scans)

Image: ESA

Effect of along-track displacement

Sentinel-1 simulated earthquake

Pine Island Glacier

Prats-Iraola et al, 2014

Burst overlaps

Image: ESA

Multiple aperture InSAR on burst overlaps

~1.7 m azimuth displacement for one phase cycle

 InSAR is a powerful tool because it can measure topography and deformation with high spatial sampling, without even going there

 Sentinel-1 represents a new era as the first operational mission

 Capability will continue to improve as more missions come online

