

What is SAR?

- Short for "Synthetic Aperture Radar"
- SAR is an active remote sensing technique (not dependent on Sun)

SAR amplitude examples

Why use radars for imaging?

- Microwaves penetrate the atmosphere AND clouds
- Images can be acquired during day AND night
- Resolution does not depend on distance
- Information content complementary to optical

Uses of SAR amplitude

Include:

- Oceonography (wave spectra, wind speed, currents)
- Sea ice monitoring
- Glaciology (snow wetness, glacier monitoring)
- Agriculture (soil moisture, crop classification)
- Forestry (forest height, biomass)
- Environmental monitoring (urban growth, oil spills)
- Military surveillance

SAR images also have "phase", allowing "interferometry" applications – covered in next lecture

Radar = Radio detection and ranging

• Pulse transmitted, distance from time for echo come back

Airborne/Spaceborne side looking radar antenna Native resolution across track (range) depends on pulse length pulse 780 km

Range resolution

 Whether 2 scatterers can be distinguished depends on the pulse length:

- So get good resolution by using short pulse
- In reality a longer pulse with variable frequency is used (a "chirp"), which can be post-processed to simulate a short pulse, called "range compression".
- Resolution typically several metres and does not depend on distance from target

"Range compression"

Airborne/Spaceborne side looking radar • Native resolution along track

Synthetic Aperture Radar

A trick to improve along-track resolution

Improvement in Resolution

(Crimea, Ukraine, ERS satellite)

Scattering: dependence on roughness

Bragg Scattering

Bragg scattering occurs mainly from spectral component with half radar wavelength

Scattering Mechanisms

Surface scattering

Double bounce

Volume scattering

What does the Radar measure?

Normalized radar cross-section (backscattering coefficient) is given by:

$$\sigma_o(dB) = 10. \ Log_{10} \ (energy \ ratio)$$

whereby

energy ratio = received energy by the sensor "energy reflected in an isotropic way"

scatterer

The backscattered coefficient can be a positive number if there is a focusing of backscattered energy towards the radar

or

The backscattered coefficient can be a negative number if there is a focusing of backscattered energy way from the radar (e.g. smooth surface)

Dielectric Properties

- Backscatter also depends on dielectric properties.
- Metal and water have high dielectric constant
- Amplitude can be used to determine soil moisture content

In summary, radar signal return depends on:

- Slope
- Roughness
- Dielectric constant

Backscattering Coefficient σ_o

Levels of Radar backscatter Typical scenario Man-Made objects (urban) Very high backscatter (above -5 dB) Terrain Slopes towards radar very rough surface radar looking very steep High backscatter (-10 dB to 0 dB) rough surface dense vegetation (forest) Moderate backscatter (-20 to -10 dB) medium level of vegetation agricultural crops moderately rough surfaces Low backscatter (below -20 dB) smooth surface calm water, road very dry terrain (sand)

Scattering and wavelength

Radar Images at Different Frequencies

X-band L-band

Speckle

Distributed scatterer pixel

- Amplitude has a pseudorandom element
- Neighbouring resolution cells with same scattering properties can have different amplitude
- This effect known as "speckle"

Speckle

Filtered

JERS-1 data (M.Shimada)

SAR Coordinates

GEOGRAPHIC COORDINATES

SAR COORDINATES

26

Orbit

- All SAR satellites fly in a near-polar orbit
- Acquisitions when flying south to north called "Ascending"
- Acquisitions when flying north to south called "Descending"

Internal datum:

Geographic datum:

Geographic datum: descending

Spaceborne SAR Systems (1)

SEASAT NASAUPL (USA) L-Band, 1978

SIR-CX-SAR NASA/JPL, L- and C-Band (quad) DLR / ASI, X-band 1994

EWISAT / ASAR European Space Agency (ESA) C-Band (dual), 2002-2012

ERS-1/2 European Space Agency (ESA) C-Band, 1991-2000/1995-2011

RadarSAT-1 Canadian Space Agency (CSA) C-Band, 1995-2013

ALOS / PALSAR
Japanese Space Agency (JAXA)
L-Band (quad), Jan. 2006-2011

J-ERS-1 Japanese Space Agency (JAXA) L-Band, 1992-1998

Shuttle Radar Topography Mission (SRTM) NASAJPL (C-Band), DLR (X-Band) February 2000

SAR-Lupe BWB, Germany 5 satellites, X-Band, 2006/2008

Spaceborne SAR Systems (2)

RadarSAT-II Canadian Space Agency (CSA) C-Band (quad), 2007

TerraSAR-X/TanDEM-X DLR /Astrium, Germany X-Band (quad), 2007/2010

COSMO-SkyMed ASI, Italy 4 Satellites, X-Band (dual), 2007/2010

Kompsat-5 KARI, Korea X-band (dual), 2013

HJ-1C-SAR CRESDA/CAST/NRSCC, China S-Band (HH or VV), 2013

RISAT-1 Indian Space Agency (ISRO), India C-Band (quad), 2012

ESA, Europe C-Band (dual), 2014/2015

PAZ Ministry of Defence, Spain X-Band (quad), 2014

Japanese Space Agency (JAXA) L-Band (quad), 2014

SAOCOM-1/2 CONAE/ASI, Argentina L-Band (quad), 2016/2018

Radarsat Constellation 1-3 CSA/MDA, Canada C-band (dual), 2016/2017

BIOMASS ESA, Europe P-Band (quad), 2019

Main acquisition modes

Traditional ScanSAR

TSX-ScanSAR image

- Synthetic aperture is smaller, reducing resolution
- Number of illuminations for points on groud varies causing "scalloping"

Sentinel-1 Wideswath mode: TOPS

(Terrain Observation with Progressive Scans)

Image: ESA

Why TOPS?

TSX-ScanSAR image

TSX-TOPS image

