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1. Introduction 

This Algorithm Theoretical Baseline Document (ATBD) describes all technical issues from the 

prototyping of the Land Surface Phenology (LSP) in the context of the Remotely Sensed Essential 

Biodiversity Variables (RS-enabled EBVs) product of the ESA funded GlobDiversity Project. This 

document shall specify the process flow of the prototyped algorithm and the associated program 

in more detail. 

GlobDiversity is the first large-scale project explicitly designed to develop and engineer RS-

enabled EBVs. This project initiated and funded by the European Space Agency (ESA) supports 

the efforts of the Convention on Biological Diversity (CBD) and Intergovernmental Science-Policy 

Platform on Biodiversity and Ecosystem Services (IPBES), among others, and is adopted under 

the umbrella of the Group on Earth Observations Biodiversity Observation Network (GEO BON). 

The GlobDiversity project shall support the initiative to build a global knowledge of biological 

diversity of terrestrial ecosystems (= on land) and of relevance for society.  

There are three RS-enabled EBVs designed as part of the GlobDiversity project with each 

algorithm documented by such an ATBD: 

• Fragmentation (Wageningen Environmental Research WEnR, Wageningen University & 

Research) 

• Canopy chlorophyll concentration (Faculty of Geo-Information Science and Earth 

Observation ITC, University of Twente) 

• Land surface phenology (Dept. of Geography, University of Zurich (UZH), the hereby 

documented algorithm) 

Within the project, these three variables were investigated in detail to contribute to an observation 

system to assess the variable in an efficient and effective way, covering extensive areas at a fine 

spatial and temporal resolution. The definition and selection, name and definition of the three RS-

enabled EBVs was based on the expertises existing within the project consortium and 

independent from any efforts of defining and prioritising possible candidate EBVs and RS-enabled 

EBVs that might have existed at the time of the project’s start in 2018. 

In the following, the algorithm of the processing chain to derive Land Surface Phenology (LSP) is 

described in detail. The algorithm was chosen and developed by the University of Zurich and then 

transmitted to the German Aerospace Center (DLR) to be translated into a code suitable for cloud 

computing of larger areas of interest. The algorithm has been chosen and developed with the goal 

of a potential future global application based on high-resolution satellite data (10-30m) and with a 

computational efficient implementation. The ATBD includes a description of the necessary pre-

processing steps and the processing step of the core algorithm. In addition, results from the 

project performed on few test sites globally distributed are presented with a chosen validation 

approach. In addition, the last chapter presents restrictions of the current implementation and 

modifications that might be necessary for a potential global processing.  
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The organization of this document is structured in 9 chapters as shown in the table below. 

 

 Content 

Chapter 1 Introduction 

Chapter 2 Describes the scientific background, and addresses the current standard 

processing schemes 

Chapter 3 Provides information about the input data and pre-processing needed 

Chapter 4 Describes the implementation of the core algorithm with the processing 

chain 

Chapter 5 Provides information and a summary about the data product and the 

validation 

Chapter 6 Discusses practical considerations for implementation 

Chapter 7 Upscaling results for Senegal and Finland 

Chapter 8 Includes the references 

Chapter 9 Includes an appendix 
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2. Scientific background 

Land Surface Phenology (LSP) was first defined by Friedl et al. (2006) as “the study of seasonal 

patterns of vegetated land surfaces as observed from remote sensing”. The core term, 

“Phenology”, refers to the timing of recurring events in the life cycle of in particular plants as 

influenced by the environment (Lieth 1974). Typical studies on phenology focused on the timing of 

observable phases of plant life cycles – such as flowering, fruiting or leaf development, coloration 

and fall (Menzel and Sparks 2006). Single plant detection to estimate plant phenology requires 

very high spatial resolution data (<2m) that is not yet available free and open from satellite remote 

sensing. Even with such data, it is unclear if the phenological processes commonly understood by 

ecologist and plant-physiologists would be possible to be observed. Therefore, LSP focuses on 

the timing of seasonal activity of plants at ecosystem scale (Schwartz 2013) as observed from 

satellites. This measure is not identical to plant phenology but is strongly influenced linked, and its 

observational feasibility and maturity render LSP a valuable remotely sensed enabled Essential 

Biodiversity Variable (RS-enabled EBV). 

A number of approaches have been used to derive metrics from time series of Vegetation Indices 

(VIs) to provide information about vegetation activity over large areas, in a systematic and 

continuous way. VIs are combinations of multiple spectral values used to infer the amount of 

vegetation within a pixel (Campbell and Wynne. 2011). Since the 1980s, many VIs have been put 

forward including: the Normalized Difference Vegetation Index (NDVI); the Enhanced Vegetation 

Index (EVI); and vegetation cover percentage or fraction of Absorbed Photosynthetically Active 

Radiation (fAPAR). Since then, many LSP studies have used VI time series to derive information 

about the annual timing of vegetation growth, senescence and dormancy at resolutions ranging 

from moderate (>250m) to coarse (>25km) (Friedl et al. 2006; White et al. 2009). Many studies 

(e.g., Myneni et al. 1997; Zeng, Jia, and Epstein 2011) have shown the asset of using the 

moderate-resolution imaging spectroradiometer (MODIS) for global phenology monitoring, 

however, recent studies show a better agreement between satellite-based phenology in 

comparison with in-situ data when using Sentinel-2 data in comparison with MODIS time series 

(e.g., Lange et al. 2017). Higher spatial-resolution satellite observations thus allow for a reduction 

of the gap between LSP and plant phenology. 

For the current project, we use combined high-resolution optical information from Sentinel-2 

satellites and Landsat 8. We base the computations on the widely used NDVI as it is independent 

of the sensor (unlike EVI) and simple to calculate (in comparison to fAPAR). In order to extract 

phenological timing, we will use a model to fit the yearly profile. We use the mathematical model 

of the double logistic function that is also widely used in phenology studies. The model is stable 

against noisy observations and can reproduce steep green-up and senescence phases. Because 

of these advantages, the model is suitable for global use as even Arctic tundra can be 

represented. Note, we developed the LSP algorithm for natural vegetation only and the results are 

not tested or validated for non-natural vegetation areas such as agricultural land. The output of 

the algorithm is a pixel based analysis of the phenology with a measure for accuracy. Results are 

tested against several criteria to ensure reliability of the result. The results are represented in a 

multi-layer, georeferenced map (GeoTiff) for the region of interest. The results were validation 

with ground-based observation from so-called phenocam observations, a time series of canopy 

images, using the same algorithm as for the satellite-based LSP products. 
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3. Input Data 

LSP product is based on a pixel-wise analysis of the optical images of high-resolution satellites of 

Landsat 8 (30m) and Sentinel-2A&B (10m). The vegetation index (VI) of NDVI is used for the 

extraction of the phenological profile of a year and is calculated from the RED and the near-

infrared (NIR) channel (see Equation ( 1 ) ). The BLUE and GREEN channel are additionally 

needed for the proposed validation approach that uses the Green Chromatic Coordinates (GCC, 

see Equation ( 2 ) ).  

𝑁𝐷𝑉𝐼 =
𝑁𝐼𝑅 − 𝑅𝐸𝐷

𝑁𝐼𝑅 + 𝑅𝐸𝐷
 

( 1 ) 

𝐺𝐶𝐶 =
𝐺𝑅𝐸𝐸𝑁

𝐺𝑅𝐸𝐸𝑁 + 𝐵𝐿𝑈𝐸 + 𝑅𝐸𝐷
 

( 2 ) 

In order to reduce atmospheric influences on NDVI, bottom of atmosphere (BoA) reflectance is 

required for processing. Using BoA is crucial, in particular for the interpretation of the amplitude of 

vegetation activity and for high latitudes. When correcting L1C to L2A, influences of atmosphere 

are reduced.  

A flow chart for the current implementation of the pre-processing is shown in Figure 1. The input 

data for the LSP core algorithm is the NDVI timeseries or more specifically a data cube with the 

NDVI time series together with the corresponding time vector. Therefore, the flagging of invalid 

pixels (see Chapter 3.1 to 3.3) and the merging of different data sets (see Chapter 3.4) 
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Figure 1: Flow chart pre-processing and merging Sentinel-2 and Landsat 8 into NDVI time series 
as input for the LSP processor. Red boxes indicate data products and blue boxes indicate 
processing steps. The processing steps were completed using the gdal tools from the Open 
Source GEOSpatial Foundation.  

3.1. Sentinel-2 input data set 

For Sentinel-2 channels B02 (blue), B03 (green), B04 (red), and NIR (B08) with 10m spatial 

resolution are used. L2 processing is done with sen2cor as ESA does not yet provide L2A data 

sets before end 2018 globally1 and the current project is focused on the years 2017 and 2018. In 

addition, flagging of sen2cor is used. The quality band SCL (to be found under 

/S2x_MSIL2A_*.SAFE/GRANULE/L2A_*/IMG_DATA/R20m/L2A*_SCL_20m.jp2) is used for 

flagging and excluding invalid data. Pixels with the flags of 0, 1, 2, 3, 6, 8, 9, 11 are not used in 

the processing (Table 1). Note, the SCL is available for 20m resolution only, whereas the NDVI is 

calculated for 10m resolution. One 20m pixel, however, corresponds exactly to four 10m-pixels as 

the layers have aligned coordinate grids. 

Sen2cor has been chosen due to the fact that ESA provides the L2A images on an operational 

basis starting from December 2018 and will be therefore more and more used. In addition, it is 

expected that the (cloud) flagging algorithm will be further developed and improved as more and 

more will be using this data set. 

 

Table 1: Number keys for SCL-layer of Sentinel-2 image files classified with sen2cor 

                                                

1 https://earth.esa.int/web/sentinel/technical-guides/sentinel-2-msi/level-2a-processing  

https://earth.esa.int/web/sentinel/technical-guides/sentinel-2-msi/level-2a-processing
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0 No_Data 6 water 

1 Saturated_defective 7 unclassified 

2 Dark_area 8 cloud_med_prob 

3 cloud_shadow 9 cloud_high_prob 

4 vegetation 10 thin_cirrus 

5 bare_soil 11 snow/ice 

 

3.2. Landsat 8 input data set 

For Landsat 8, B2-B5 are in use (blue, green, red, NIR) as well as «pixel_qa» for the cloud 

flagging. L2A data from the LaSCR processor are provided by NASA and can be downloaded for 

instance from Google Earth Engine. In Table 2, the flags that are excluded from the LSP 

processing are given: 

Table 2: Excluded flags for processing for the Landsat 8 images, derived from pixel-qa layer 

Excluded Flags Reason 

480 992     #high confid cloud 

928 416     #mid confid cloud 

904 392 840    #cloud shadow 

324 388 836 900 1348  #water 

3.3. Land cover map 

For additional exclusion and reduction of processed data, land cover data (building and streets) 

could be used to flag the data (not implemented in the prototyped pre-processing steps). Ideally, a 

land cover map could distinguish between non-vegetated areas (e.g., buildings and streets), crop 

areas (not target area of this project) and water areas. Nevertheless, the land cover map should 

be in a similar resolution as the original data set of 10m. A high quality global data set does not 

exist yet but might exist in future (e.g., land cover project within ESA’s Climate Change Initiative 

CCI). Streets and building can be extracted for instance from the open street map data base, and 

rasterized with the raster of the sentinel-scenes to flag all pixels that touch a vector object. This 

approach has been chosen from UZH to do the preprocessing, however, is not part of the core 

LSP algorithm presented here.  

3.4. Data fusion of different data sets – Landsat 8 and Sentinel-2 satellite images 

Within the here presented work, Landsat 8 and Sentinel-2A and -2B were used together to have 

the maximum possible number of observations. Landsat 8 is available with 30m resolution and 

Sentinel-2 with 10m for the red, green, blue (RGB) and NIR bands. Landsat 8 images are 

available with a 16-day temporal resolution in comparison with 5-6 days for the tandem of 

Sentinel-2A&B. We therefore decided to be based on the higher resolution of the Sentinel-2 

images and down-sampled the Landsat 8 pixels with a nearest-neighbor approach. The 
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downsampling and reprojection of the Landsat 8 images to that of the Sentinel-2 images is done 

during the creation of the vrt file. This step, performed using the gdal command gdalbuildvrt, 

allows the user to set the desired resolution (in this case the Sentinel-2 resolution) and to stack 

the rasters in a datacube. Each row of the datacube then contains an NDVI image and the 

columns act as the required time series for the phenological calculations. The result showed that 

the effect of mixed pixels of the few available Landsat 8 observations can be neglected due to the 

dominating effect of the atmosphere in the time series. In addition, it is expected that 

misregistration between Landsat 8 and Sentinel-2 will be corrected and same image registration 

will be used (Storey et al., 2016). The harmonization, however, of the two data set also through 

project, such as proposed by Claverie et al. (2018) were not ready yet and in particular the 10m 

resolution of the Sentinel-2 is higher weighted than the difference in NDVI value caused by the 

misalignment. Nevertheless, a future user can choose the preprocessing steps as the core 

algorithm expects an NDVI time series or any time series (i.e., also fAPAR or EVI) per pixel for the 

processing.  
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4. Algorithm description Land Surface Phenology 

4.1. Overview 

Land surface phenology (LSP) describes the yearly activity profile of vegetation and the 

characteristics of this curve can be extracted and visualized in a map. A dense time series is 

required in order to reliably fit the vegetation activity. Within this project, the trade-off analysis 

showed that a double-logistic model is best suited to represent the yearly LSP (from yearly data 

sets). Beforehand, double vegetation seasons need to be detected, and the time of interest for 

one season (one double-logistic curve) will be used. Consecutive years are treated and 

processed separately. 

So far, high-resolution (<=30m) LSP assessment were rarely performed as with Landsat-only the 

time series is too sparse (16 days temporal resolution on average) to give stable and reliable 

results. Only in combination with Sentinel-2A and 2B is a yearly phenology curve dense enough to 

give reliable fitting results for most regions of the Earth. This also means that a high-resolution 

yearly data set is required for LSP monitoring. The combination of Sentinel-2 and Landsat 8 

observation is ideal for these purposes. 

We decided to use the double logistic representation with 6 unknown variables as in Equation ( 3 ) 

and depicted in Figure 2. Within the double logistic function represents v1  the vertical offset of the 

curve, v2 represents the amplitude of the function (high activity – dormancy), and v3 & v5 represent 

the slope of the curve at the turning points with the x co-ordinates v4 and v6 (the times of each 

turning point). 

𝑓(𝑥) = 𝑣1 +
𝑣2

1+𝑒−𝑣3∗(𝑡−𝑣4) −
𝑣2

1+𝑒−𝑣5∗(𝑡−𝑣6),  ( 3 ) 

 

 

Figure 2: Double-logistic curve fitted onto NDVI-pixel values. Explanation of parameters as 
defined in Equation ( 3 ). 

This same representation of the double-logistic curve has been used in several studies (e.g., Beck 

et al. 2006; Meroni et al. 2014). In comparison, there are also studies using 7 unknowns in order 
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to account for a summer decrease in canopy greenness (Elmore et al. 2012; Wu et al. 2017), 

where the double-logistic function is combined with a linear representation of the slope between 

the two branches of the logarithmic functions. Another possibility would be to use a seventh 

parameter to account for different baselines in each dormancy phase, as used by Fischer 1994. 

Nevertheless, we assume that the dormancy level (or winter NDVI) is constant between two 

consecutive years. This should be validated in future studies when a reasonable time series is 

available for Sentinel-2 observations. This assumption also precludes using “winter NDVI” values 

as used for instance in Beck et al. 2006 for MODIS time series. 

4.2. LSP core algorithm  

The NDVI time series per pixel (pre-processing see Chapter 3) will be processed individually 

according to the flow diagram in Figure 3. The processing includes the iterative double-logistic fit 

(Chapter 4.2.1), detection of double-growing season (Chapter 4.2.3), extraction of measures of 

uncertainty (Chapter 4.2.2), flagging procedure (Chapter 4.2.4) and extraction of the final product 

(Chapter 4.2.5).  

 

Figure 3: Flow-chart of main processing procedure from pixel based time series until the 
extraction of phenological parameters and drawing of maps. 

4.2.1. Extraction of LSP metrics 

The core of the algorithm is the double-logistic fit. As the classification algorithm from Sentinel-2 

and Landsat 8 L2-products still has some undetected outliers, e.g., from undetected clouds, an 

iterative process is needed. After each individual processing iteration, the algorithm tests whether 

there are more than 6 valid observations available, as this is the number of unknowns in the 

double-logistic model. If this criterion is not met, the pixel is directly flagged as invalid in the final 

product and will not be processed further.  
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The fit procedure uses the python package scipy optimize curve fit with the Trust Region 

Reflective algorithm for the optimization. The values for the six variables are given with bounding 

regions to constrain the fit. If convergence is not successful, a nearest neighbor constraint can be 

implemented, whereby the fitting values for a successful neighboring pixel are used as a starting 

point for the curve fit. This can help to overcome some local minima in the parameter space but it 

can also lead to artefacts in the calculations with results smearing out across the calculation 

space. This feature is therefore optional. Nevertheless, due to the 6 unknowns of the double-

logistic function and the high noise in the satellite observations, results of the fit can vary between 

different runs and convergence is sometimes slow or not stable. For more a more detailed 

discussion and recommendation regarding the used fitting procedure, see the outlook in Chapter 

6.1. 

The fitting is done in four iterations. The first iteration includes a fit of all valid observations after 

the L2-quality flagging. For observation with resulting residuals 40% larger than the absolute 

magnitude of the amplitude of the fitted curve (v2) are then flagged as invalid observations. In a 

next step, the fitting is performed up to three more times as long as there are still outliers, but only 

residuals that are below the phenological curve are eliminated (positive residual values). We only 

expect a few outliers with a higher NDVI value than the fitted curve because most effects lower 

the NDVI value (e.g., clouds, snow, cirrus clouds, shadow etc.). The remaining observations are 

the final observations used in the fitting procedure. When the last iteration is performed, the start 

of season (SOS) and end of season (EOS) are extracted from the fitted curve with the midpoint 

procedure. The midpoint (Mp) is defined as the average of the maximum and minimum NDVI in 

the phenology curve so that 

𝑀𝑝 = 0.5 ∗ (𝑁𝐷𝑉𝐼𝑚𝑎𝑥 − 𝑁𝐷𝑉𝐼𝑚𝑖𝑛) + 𝑁𝐷𝑉𝐼𝑚𝑖𝑛 ( 4 ) 

The amplitude is defined as 𝑁𝐷𝑉𝐼𝑚𝑎𝑥 − 𝑁𝐷𝑉𝐼𝑚𝑖𝑛 and the growing season length (GSL) as 𝐸𝑜𝑆 −

𝑆𝑜𝑆 in days. The code uses the longest group of consecutive days above the midpoint to calculate 

the dedicated days of start and end of season. In addition, the RMSE of the residuals is extracted 

as  

√
∑ 𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑠2𝑛

𝑖=1  

𝑛 − 1
 

( 5 ) 

with n the number of valid observations. 

The different types of phenological description are visualized in Figure 4. 
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Figure 4: Definitions of different parameter used for phenology description. 

4.2.2. Estimation of uncertainty 

The double-logistic curve fitting algorithm has 6 unknowns and the measurement noise of the L2-

data is high and therefore the curve is under-determined. Tests have shown that the fitted 

parameters are highly correlated and a traditional uncertainty analysis based for instance on a 

covariance matrix is not useful. Therefore, RMSE per vegetation state (Dormancy, Green-up, 

Peak and Senescence) is chosen as the measure of quality. The dormancy states before spring 

and after autumn are taken as one state based on our assumption that the dormancy NDVI does 

not change between two consecutive seasons. 

For the dormancy and peak states, the RMSE is based on residual NDVI, whereas for the green-

up and senescence phases, the RMSE is based on days. The phase transitions are estimated 

with the turning points (third derivative equals zero) as shown in Figure 5. Every RMSE per 

vegetation state comes together with the available number of observations for this time period. 

For the Green-up and Senescence phases, it is possible that some points fall in ill-defined regions 

where the RMSE cannot be calculated. For example, an observed NDVI during the Greenup 

phase may be higher than the maximum NDVI of the fitted curve and therefore the RMSE cannot 

be found for the observation as it lies beyond the limits of the curve in the vertical direction (y-

axis). In this case, the NDVI value is neglected when calculating the RMSE. As a result, RMSE 

values in days may be underestimated. 
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Figure 5: Double-logistic curve fitted onto NDVI-pixel values. Explanation for measure of quality. 
The RMSE during green-up and senescence state is based on the residuals in days of year 
between observation and modelled curve. RMSE for dormancy and peak state is based on 
residuals in NDVI between model and observations. 

4.2.3. Detection number of growing seasons 

The detection of the number of growing seasons requires a flexible smoothing approach without 

a-priori constraints on growing-season number or shape. Harmonics have been found to suit this 

purpose well. The double-logistic function fit does not qualify because it requires a-priori 

knowledge on the number of growing seasons. Splines or local smoothers tend to be more 

sensitive than harmonics to data gaps which are expected due to sustained winter cloudiness. 

The here used approach to derive the phenological metrics assumes a single growing season. 

The algorithm can a) fit the more dominant single growing season, b) interpolate over multiple 

growing seasons or c) flag the time series as invalid. The multi-season instances thus will not 

necessarily be flagged out and a detection of the number of growing seasons thus has been 

implemented as an uncertainty indicator for the phenological metrics. The users can therefore 

decide to include or exclude instances flagged with more than one growing season detected. Note 

that the algorithm is not suited for agricultural areas where commonly more than two vegetation 

seasons are expected.  

The number of growing seasons is detected as follows: 

1) Fitting of harmonic function based on the mean NDVI (NDVImean) in addition with three 

components representing 1, 2 and 3 vegetation cycles, respectively, per year or 

frequency: 

𝑁𝐷𝑉𝐼𝑑𝑠 = 𝑁𝐷𝑉𝐼𝑚𝑒𝑎𝑛 + ∑ 𝐴𝑖 ∙ cos(𝑖 ∙ 𝑥 + Φ𝑖)
𝐹𝐶𝑚𝑎𝑥

𝑖=𝐹𝐶1

 ( 6 ) 
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In Equation ( 6 ), FC represents the Fourier component where 𝐹𝐶𝑚𝑎𝑥  =  3, NDVImean is the 

mean NDVI, Ai is the amplitude at time i, Φi is the phase shift and x is the day number 

represented in radians. 

2) Use the midpoint (NDVI) value detected before (see Chapter 4.2.1, equation (4)) to 

determine the threshold between dormancy and growing season. 

3) Calculate number of clusters of observations above the midpoint level using run length 

encoding as visualized in Figure 6. The number of clusters represents the number of 

growing seasons with an expected maximum of 3.  

 

Figure 6: Schematic detection of double growing season based on the midpoint value. If 
several consecutive points lye lower than the midpoint value with afterwards consecutive 
points lying above, a multi-growing season time-series is detected. Picture from Garonna 
(2016) 

4.2.4. Flagging 

After the calculation of the LSP metrics, several criteria need to be met in order to exclude 

unreasonable and wrong results also excluding fitting results without a strong enough vegetation 

cycle.  

Several criteria define if a result is invalid: 

1. < 7 valid observations (see Chapter 4.2.1) 

2. Mean of all observations is <0.2 → NDVI is too low for vegetation signal 

3. Amplitude is <0.1 → amplitude is too low for a phenological signal 

4. SOS equals maximum or EOS equals minimum NDVI → no phenology 

5. SOS or EOS equals to first or last day of observation → no convergence 

6. More than 34% of the points were flagged in the iterative fitting procedure → no phenology 

7. P-Value of F-test against the assumption “the fit is better than using the mean(NDVI)” is > 

0.05 → fit not better than using mean value 

In the appendix, a list of the used flags in the binary system is shown. The binary system 

corresponds to the decimal number as listed in Table 3. 
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Table 3: Binary number corresponding to the flagging system. 

Flag type Corresponding Binary Number 

1) < 7obs 1 

2) Mean NDVI <0.2 2, 6, 10, 14, 26, 30, 34, 38, 42, 46, 58, 62, 66, 70, 74, 78, 90, 
94, 98, 102, 106, 110, 122, 126 

3) Ampl <0.1 4, 6, 12, 14, 28, 30, 36, 38, 44, 46, 60, 62, 68, 70, 76, 78, 92, 
94, 100, 102, 108, 110, 124, 12 

4) No phenological 
curve 

8, 10, 12, 14, 24, 26, 28, 30, 40, 42, 44, 46, 56, 58, 60, 62, 72, 
74, 76, 78, 88, 90, 92, 94, 104, 106, 108, 110, 120, 122, 124, 
126 

5) No dormancy 24, 26, 28, 30, 56, 58, 60, 62, 88, 90, 92, 94, 120, 122, 124, 126 

6) <66% valid 
observations after fit 

32, 34, 36, 38, 40, 42, 44, 46, 56, 58, 60, 62, 96, 98, 100, 102, 
104, 106, 108, 110, 120, 122, 124, 126 

7) F-test >0.05 64, 66, 68, 70, 72, 74, 76, 78, 88, 90, 92, 94, 96, 98, 100, 102, 
104, 106, 108, 110, 120, 122, 124, 126 

4.2.5. Output 

After the flagging procedure, the map with all valid pixels can be drawn. The output is stored as 

GeoTiff with the output variables as individual layers (SOS, EOS, GSL, amplitude, and quality 

measures of RMSE (one per state and one general), nValid observations, P-Value, number of 

growing seasons). SOS and EOS are presented in day of year (DOY) and GSL in days. All other 

varibles are unitless. In total 23 layers are available and listed in Table 4. The Tiff files are 

georeferenced in the Universal Transverse Mercator (UTM) coordinate system, with the x/y co-

ordinates starting from the upper left hand corner. 

Table 4: Layers stored in the output GeoTiff file and their definitions. 

Layer # Output layer Abbreviation 
Reference 
Chapter 

1 x-coordinate in UTM (East) x - 

2 y-coordinate in UTM (North) y - 

3 Pixelindex Ind - 

4 Number of total observations (available 
images) 

nobs 
3.4 

5 Number of valid observations (after L2-
flagging) 

nobsvalid 3.1 - 3.3 

6 Number of final observations used in curve fit nobsfinal 4.2.1 
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7 Start of Season (DOY) SOS 4.2.1 

8 End of Season (DOY) EOS 4.2.1 

9 Growing Season Length (days) GSL 4.2.1 

10 P-value P-Value 4.2.4 

11 Phenology quality flag phenoflag 4.2.4 

12 Curve fit RMSE dlogrmse 4.2.1 

13 Number of iterations niter 4.2.1 

14 Curve amplitude (dimensionless NDVI) dlogampl 4.2.2 

15 Growing season count gscount 4.2.2 

16 Dormancy phase RMSE DormRMSE 4.2.2 

17 Number of dormancy phase observations DormNobs 4.2.2 

18 Peak phase RMSE PeakRMSE 4.2.2 

19 Number of peak phase observations PeakNobs 4.2.2 

20 Green-up phase RMSE GreenuRMSE 4.2.2 

21 Number of green-up phase observations GreenuNobs 4.2.2 

22 Senescence phase RMSE ScenRMSE 4.2.2 

23 Number of senescence phase observations ScenNobs 4.2.2 
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5. Product 

5.1. Product description 

The output product is a GeoTiff file with 23 layers corresponding to the layers described in Table 4 

in Chapter 4.2.5, including the coordinates of the pixel, SOS, EOS, GSL, amplitude, RMSE quality 

measures, number of final observations used in the fitting, and P-Value. At each layer, a map can 

be generated. The individual pixel values can at a later stage be used for comparison with 

observation of different years. Figure 7 and Figure 8 show an example output from the algorithm. 

 

Figure 7: The print screen shows the statistics for the output file with 23 layers (or bands). As 
here, different layers that can be illustrated in a histogram. The histogram for Band 9, the growing 
season length, is displayed with a mean of 121 days and a range from 3 to 184. The band list is 
the same as listed in Table 4. 
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Figure 8: The overview image shows the results of SOS, EOS, Amplitude and RMSE for a part 
of the Kytalyk NP. The colorscale is adjusted depending on the histogram and existing values. 
In the image the structures of topography and vegetation are well visible. White pixels 
correspond to invalid pixels, mostly related to water. 

 

5.2. Accuracy analysis 

We provide the RMSE of the full fitted curve as measure for the quality of the fit. In addition, the 

P-Value also gives an additional measure for the reliability of the result. For the Green-up, Peak, 

Senescence and Dormancy phases, we also provide an RMSE value (in NDVI for Peak and 

Dormancy phases, and in Days for Green-up and Senescence) and the number of observations in 

each phase. 
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5.3. Validation Method 

For validating the satellite-derived LSP results, we adopt and adapt the methodology proposed by 

Zhang et al. (2018) and authors therein using phenocam time series observations. Hereby, the 

time series of canopy images is used to calculate the greenness over the season. To do so, we 

selected an area of interest defined by the operator, as in the methodology suggested by (Filippa 

et al. 2016), and calculated using RGB images for a given time of the day, using the GCC 

computed from the red, green and blue channels of the image (see Equation ( 2 ). The area of 

interest is chosen to be representative of the main vegetation or land cover type; disturbing 

signals, including non-vegetation areas, such as bare ground and sky and saturation effects of the 

camera (often seen in large distances) were be avoided to ensure a homogenous time series for 

the computation of LSP metrics. Often, phenocam cameras take up to one picture per hour; 

therefore, in order to reduce the data volume and to be consistent with the overflight time of the 

satellite, one image per day was select, in this case, we have selected images taken at 11 am 

local time from the phenocam time series, to be consistent with the acquisition of Sentinel-2 and 

Landsat 8 scenes.  

LSP metrics are computed for the spatially averaged phenocam time series using the same 

algorithm as that used to process the satellite GCC and NDVI image time series. Here, the RGB 

phenocam images were converted to the GCC time series that then was averaged over a polygon 

or region of interest, representative of a homogenous vegetation or land cover type, defined by 

the operator, as in the methodology suggested by Filippa et al. (2016). Subsequently, LSP metrics 

were computed for this averaged time series and area of interest. Polygons or regions of interest 

were selected in such a way as to reduce the influence of non-vegetation areas, such as bare 

ground and sky, minimize a possible saturation of the sensor for objects at large distances, and 

select on the main vegetation or land cover type and hence ensure a homogenous time series for 

the computation of LSP metrics.  

Subsequently, the satellite NDVI and GCC time-series, were clipped to the field of view (FOV) of 

the phenocams, the resulting time-series were averaged to a single value and LSP metrics 

computed. To address the effect of outliers affecting the averaging process, a threshold of a 

minimum number of valid observations for a pixel before averaging can be used. Many 

phenocams follow a unified phenocam installation protocol such as that used by the EuroPhen2 or 

the North America’s PhenoCam3 network. They often use a StarDot4 NetCam camera pointing 

North with a 40° opening angle. We additionally assume a maximum viewing distance of 300m 

corresponding to the field of view. The maximum distance, however, may change depending on 

the observation site. 

Note that quality control measures, such as minimal amplitude or P-Value, need adaption for the 

GCC time series as the absolute GCC values differ from NDVI values. Some phenocams also 

offer a Near Infra-Red (NIR) channel for calculating the NDVI, nevertheless, we intentionally 

exclude this channel as not all cameras have it available, in addition, few have calibrated the NIR 

with the red channel and the images are often not captured simultaneously.  

                                                

2 Europhen.org  

3 https://phenocam.sr.unh.edu/webcam/ 

4 www.stardot-tech.com  

http://www.stardot-tech.com/
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In general, GCC is expected to saturate earlier than the NDVI values, resulting in an earlier SOS 

and later EOS, respectively (e.g., Keenan et al. 2014; Browning et al. 2017; Filippa et al. 2018). 

This occurs since GCC is a measure of the “greenness” – the green light – and the NDVI is 

connected directly to the photosynthetic activity via the NIR channel. Photosynthetic activity can 

change when the vegetation stays “green”. In general, it has been shown that LSP metrics 

derived from GCC tends to have later SOS and earlier EOS because photosynthesis is assumed 

to start earlier and ends later than the change of greenness indicates (Keenan et al. 2014; 

Walther et al. 2016) resulting in general in a longer GSL. We therefore compare for the validation 

the GCC of the two independent data sets (satellite images and ground-based phenocam) with 

each other and in addition with the NDVI derived phenology from satellite images. 

5.4. Validation results and discussion  

We present here the results of the validation for four different phenocams available within the 

GlobDiversity project. The phenocams are located in two different biomes, the Arctic tundra 

(Toolik Lake (Alaska, USA) and Kytalyk National Park (NP) (Siberia, RUS)) and temperate forest 

(Laegern forest (CH), Bavarian National Park (GER)). To validate the NDVI-based LSP metrics, 

we compare the phenocam GCC time series and its derived LSP metrics, phenocam with the 

satellite GCC and NDVI time series and derived LSP metrics. These time series are plotted in 

Figure 9 together with two derived metrics (SOS and EOS). Shown are the results for Laegern 

and Kytalyk NP for 2017, and the results for Toolik Lake and Bavaria NP for 2018. In general, it is 

well visible that the phenocam time series (column 1, Figure 9) contains a dense time series, 

while in particular the satellite-derived time series for 2017 (columns 2&3, Figure 9) are based on 

fewer observation as Sentinel-2B was launched end of 2017 only. In general for satellite images, 

green-up phases and senescence phases are often dominated by unstable and cloudy weather 

conditions resulting in a poorly defined green-up and senescence phases in the NDVI and GCC 

time series.  
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Figure 9: LSP metrics for the four sites (Laegern, Kytalyk NP, Toolik Lake and Bavaria NP), 
computed using the phenocam GCC (column 1), satellite GCC (column 2) and satellite NDVI time 
series (column 3). 

 

The values for each metric (SOS, EOS, and GSL), computed with each time series (phenocam 

GCC, satellite GCC and satellite NDVI), and the difference between phenocam GCC and satellite 

GCC metrics as well as phenocam GCC metrics with satellite NDVI metrics for sites in 2017 and 

2018 are include in Table 5. We find that the differences between phenocam GCC and satellite 

GCC metrics are smaller than between phenocam GCC and satellite NDVI metrics, thereby 

confirming that satellite GCC metrics are closer to those derived from phenocam GCC. 

Nevertheless, the effect is more visible for higher latitudes (Toolik Lake and Kytalyk NP, column 

B&C, Figure 9) than for temperate forest (Bavarian NP and Laegern, column A&D, Figure 9) as 

also described by Walther et al. (2016). Nevertheless, the phenological curve from the Bavarian 

NP forest camera (column D, Figure 9) stands out with a very low amplitude in comparison with 

the phenocam time series of other pilot sites. This can be explained with the fact that this camera 

is a Bushnell animal camera trap, which is different than those used for the three other sites 

(Netcam SC), and therefore the sensors’ light sensitivity is different and results in a low amplitude 

of the GCC time series phenological curve.  

In addition, we find that for the temperate forest sites of Laegern and Bavaria, the results for GSL 

derived from the 2017 phenocam GCC, satellite GCC and NDVI time series, are within the 

expected range cited in literature (Figure 4). For example, Schieber et al., (2013) find that, on 

average, the GSL of beech species ranges from 128 to 181 days along a 200-1400 m a.s.l 

altitudinal gradient.  

Table 5 Values for each metric (SOS, EOS, and GSL), computed with each time series 
(phenocam GCC, satellite GCC and satellite NDVI), and the difference between phenocam GCC 
and satellite GCC, as well as phenocam GCC and satellite NDVI, , for sites in 2017 and 2018.  

  LSP phenocam Satellite phenocam GCC – phenocam GCC – 
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Metric 

GCC  GCC NDVI 
satellite GCC satellite NDVI 
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SOS 130 107 73 23 57 
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SOS 202 191 176 11 26 
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SOS 136 136 131 0 5 

EOS 264 262 313 2 -49 

GSL 128 126 182 2 -54 
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SOS 182 155 136 27 46 

EOS 231 210 286 21 -55 

GSL 49 55 150 -6 -101 
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SOS 113 113 113 0 0 

EOS 266 276 316 -10 -50 

GSL 153 163 203 -10 -50 

 

In Figure 10 the LSP metric (SOS, EOS, and GSL) values are plotted for each site and each year 

evaluated. The bar graphs serve to highlight the differences and similarities between metrics. For 

example, for Bavaria 2017 and 2018, SOS is remarkably consistent between the different time 

series, supporting the precision of the product (i.e. the closeness of the measurements to each 

other). In contrast, EOS and GSL for Bavaria 2017 and 2018 are more variable; this is to be 

expected, as senescence in temperate forests tends to occur disparately (Keenan et al. 2014). 

Furthermore, GCC and NDVI tend to measure different characteristics leaf reflectance. In effect, 

our results further agree with published literature in that the response of NDVI-derived metrics 

was distinct from GCC-derived metrics, with the former (NDVI), consistently resulting longer 

growing seasons (GSL), as can be clearly distinguished in Figure 10. 
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Figure 10: Bar plots of LSP metrics SOS, EOS, GSL, computed using satellite NDVI, Satellite 
GCC, and phenocam GCC time series, for each of the four sites (Laegern, Kytalyk, Toolik Lake 
and Bavaria NP), for the years 2017 (all sites) and 2018 (Toolik Lake and Bavaria NP). 

 

In conclusion, we are able to validate our results with the ground-based phenocam observations, 

nevertheless, the comparison of the time series highlight the restrictions imposed by a limited 

number of observation available when using satellite GCC and NDVI time series, which are often 

due to cloud cover. The results also highlight that the GCC time series retrieved from satellite and 

phenocam are comparable and can be used for validation; however, satellite-based NDVI results  

diverge when compared to GCC time series. Several other factors are in addition responsible for 

the differences observed in phenocam and satellite LSP metrics; specifically, phenocam GCC is 

derived from an RGB time series captured at an oblique angle across a vegetation canopy, and is 

further extracted and averaged across a region of interest, defined by the operator; in contrast, 

the satellite NDVI and GCC time series are based on Landsat 8 and Sentinel-2 surface 

reflectance measurements (in the green, red, blue and NIR bands), acquired from near-nadir view 

angles. Thus, it is expected that the LSP metrics derived from these distinct time series show 

some variation. Furthermore, and as identified by Keenan et al. (2014), changes in surface 

spectral properties, especially in spring, are primarily controlled by changes in leaf area; thus, the 

LSP metric SOS derived from phenocam GCC, satellite GCC and satellite NDVI time series, often 

reveal a strong agreement, especially for sites with a homogenous land cover or vegetation type 

and temperate deciduous character. This pattern was clearly identified for the Laegern and 
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Bavaria NP temperate forest sites, where SOS values were remarkably consistent (Figure 10). In 

contrast, autumn shifts in surface reflectance properties are mainly caused by decreases in leaf 

chlorophyll and the subsequent appearance of pigments, followed by leaf senescence. This 

process tends to be gradual and fluctuating across a given landscape, and as such it is reflected 

in the more variable EOS values we observe; furthermore, it is consistent the current literature 

(Bolton et al. 2020). Similarly, as a result of the oblique viewing angle of the phenocam, these 

sensors often capture the growth of sparse understory vegetation, such as herb and grass 

species emerging before forest canopy leaves during spring green-up; this process is especially 

prevalent in temperate forests. In contrast, satellites have near-nadir viewing angels which 

capture mainly canopy-level leaf emergence (understory vegetation emergence is mostly masked 

by the tree canopy), and therefore contribute towards the different dates of LSP metrics. 

Finally, our validation method does not consider a possible inhomogeneity in the vegetation types 

within the phenocam, FOV and corresponding area covered by the satellite. Estimation of the 

camera’s FOV projected on the satellite image is also an approximation only and strongly 

depends on the observation site topography and vegetation. The former effect is minimized by the 

operator by selecting carefully the area of interest in the phenocam image, while the latter is 

address by carefully selecting the corresponding satellite FOV. 

In light of these issues, the agreement between both the phenocam and satellite derived time 

series is acceptable and demonstrates the overall quality of the different time series used and the 

final derived LSP product.  
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6. Remarks on prototyped algorithm development 

and processing  

This chapter shall highlight some experiences made when prototyping the algorithm and running 

the algorithm on the different test sites. These points might need to be addressed when using the 

algorithm and when further developing the procedures. 

6.1. Fitting procedure 

The prototype contains two functions for the fitting procedure implemented in the code, however, 

significantly different in their performance. Originally, the development team had chosen the 

differential evolution based DEoptim fitting function in R that had a significantly more stable 

performance in the fitting procedure, in particular with the remaining cloudy observations, than 

any other used procedure and in addition does not need a starting value. In general, the time 

series is ill-posed and therefore a stable algorithm is crucial.  

The implementation in the prototype in python, however, showed significant draw-backs in run-

time. Next to DEoptim, the ‘scipy optimize curve fit’ function is also implemented in python. The 

scipy curve fit function is much faster than the DEoptim function and was therefore chosen for the 

processing of the pilot sites. The scipy curve fit function uses a Trust Region Reflective algorithm 

for the optimization. Bounds are given for each variable in the double logistic curve fit. If the fit is 

unsuccessful, the neighboring pixel implementation (described above) can be used, where the 

fitted values from successful fits are used as a starting point (see Chapter 6.4). In most cases, the 

fitting converges on an answer but in some cases, the fitting is unsuccessful and gives a Runtime 

Error. 

The main drawback of the second fitting function is the need of a good starting value to get the 

absolute maximum. This fact, however, prohibits an automated implementation for larger areas or 

even a global implementation. It is rather recommended to optimize the DEoptim implementation 

for future projects.  

6.2. Cloud and invalid pixel detection algorithm and high latitude areas of interest 

As mentioned above, the standard pixel classification from ESA and NASA was used, 

respectively. Nevertheless, the algorithm is not yet always and everywhere reliable. Therefore, 

one needs to expect remaining outliers and that is why the LSP algorithm uses an iterative 

procedure. After some testing, Landsat 8 is used in a more conservative way and more 

observations are kept (e.g. connected to indicated probability of cloud cover). This might lead to a 

bias in the time series, however, as many more observations from Sentinel-2 are available, the 

effect might be negligible.  

Regarding Sentinel-2, a high number of “unclassified” pixels have been observed in particular in 

the Kytalyk area. These pixels are generally kept within the procedure, however, are often 

connected to cloud or snow cover and resulted to more outliers in the curve. It is hoped that this 

influence will be reduced with further improvement of the Sen2cor algorithm leading to a more 

reliable phenological curve. It is also worth mentioning the handling of the validity of snow-cover 

pixels: in areas such as Laegern forest, snowy pixels certainly contaminate the time series and 

should be excluded. However, in high-latitude areas, snow is the dormancy state and green up 

follows directly the first snow melt. Therefore in these areas, the snowy pixels should be kept in 
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the time series. The algorithm presented here excludes the as snow classified pixels. 

Nevertheless, the influence is marginal due to the above described effect of “unclassified” pixels 

in high latitudes that are often snow-covered pixels.  

If a systematic effect is detected in the resulting LSP products one could check individual time 

series and fitted curves. For instance, a few not-flagged observations can bias a large part of an 

image due to too few observations being available, in particular during green-up and senescence 

phase. This could need manual intervention to flag these wrong observations. However, such 

effects can be reduced by using all available observations (Sentinel-2A, -2B and Landsat 8) as 

well as a high-quality cloud detection algorithm. 

6.3. Memory requirements 

Run time and memory are the biggest obstacles for the full phenology processing. For small areas 

of interest though, neither aspect is an insurmountable problem, and the pixel-wise calculations 

can be run in a few hours or less. However, in the current implementation large areas need 

considerably more time to run and more memory to load the NDVI time series datacube. The first 

problem, run time, can be addressed by splitting the datacube into smaller subsets to be run in 

parallel. Even then, large amounts of memory may still be required to load the datacube. A 

tradeoff between run time and memory is a key consideration for optimizing the algorithm. 

6.4. Constraints from neighboring pixels 

The time series for each pixel is handled independently. It is possible that neighboring pixels have 

similar fit values and the output of one pixel could be used for a faster convergence of the fitting 

process. The algorithm can implement a nearest neighbor fitting procedure where the results for 

neighboring pixels (one above and one before in the datacube) can be used as a starting point for 

the curve fitting of the current pixel. Nevertheless, when using the nearest neighbor fitting, a 

systematic “striping” for certain areas, in particular with few available data points, was detected 

and therefore this option was not used. This option again requires storing data and memory 

allocation could constrain performance. 

6.5. Availability of L2-images 

All Sentinel-2 and Landsat 8 observations need to be available in Level 2 (bottom of atmosphere). 

Note, that both, Nasa and ESA, give a limitation of the validity of their L2-algorithm to a certain 

latitude. Kytalyk certainly lies above this limit, however, due to the very fast and steep green-up, 

no limitation due to atmospheric effects were detected.  

6.6. Number of available observations 

Time series can contain more than 200 observations per pixel, however, due to cloud cover, this 

data can be reduced by around 50% on average (e.g., for temperate Europe). Observation areas 

in high latitudes (e.g. Artic regions), however, can easily have double the observation due to more 

overflights but also have higher cloud cover. 

6.7. Time stamp 

The time stamp for each observation is converted to a float value of days since 0AD, or 0CE. After 

the fitting procedure, the final values for Start and End of Season have a magnitude of 736587 
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and 736495 in 2017, for example. The fitting is not performed by day of year but by days since 

0AD. After the fitting, the Start and End of Season are converted to DOY values. An advantage of 

processing in days since 0AD is that phenological seasons can span December to January 

without causing any problems to the fitting since the time domain has no discontinuities. In 

addition, values for the estimated Start and End of Season can be given as initial parameters to 

help with the convergence. Nevertheless, some fitting procedures can have issues in 

convergence when dealing with large numbers in the strongly underestimated double-logistic 

curve. A temporarily reduction of the numbers (i.e., all time-stamps minus time-stamp of first 

observation) might be necessary for a faster and more stable convergence. 

Time stamp needs to include the time of overflight (not only DOY) in order to allow more than one 

observation per day from different satellites. It can be assumed that two different satellite do not 

have the identical overflight time (in seconds).  

6.8. Reduction to area of interest, naturally vegetated areas 

The calculation region can be reduced so that only pixels within a region of interest are 

processed. For instance, crop fields or covered areas can be excluded, if reliable land cover data 

exists. Open street map could be used to exclude streets and houses (= urban areas), or any 

other land cover map. Excluding non-vegetated areas reduces the number of to be processed 

pixels.  
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7. Upscaling results 

7.1. Introduction 

LSP metrics were retrieved for two pre-defined areas of interests, i.e. Finland and Senegal, for the 

year 2019 based on NDVI time series.   

Only vegetated areas were considered in this analysis. For Finland, the 2018 20 m Corine Land 

Cover product was used to distinguish vegetated from non-vegetated areas (Figure 11).   

 

Figure 11: 2018 Corine land cover product for Finland at 20 m resolution available from 
https://www.syke.fi/en-US/Open_information/Spatial_datasets/Downloadable_spatial_dataset#C 

For Senegal, the 2016 20 m ESA CCI land cover product for Africa was used (see Figure 12). 

https://www.syke.fi/en-US/Open_information/Spatial_datasets/Downloadable_spatial_dataset#C
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Figure 12: CCI 2016 20 m land cover prototype over Senegal available from 
http://2016africalandcover20m.esrin.esa.int/ 

As a preprocessing step, both land cover products were first resampled to the Sentinel-2 UTM 

tiling grid at 10 m resolution using nearest neighbor resampling and reclassified into vegetated 

and non-vegetated areas. 

Next, NDVI time series were calculated at 10 m resolution for all S2 products available over the 2 

countries. Herein non-vegetated areas detected by the SCL layer were set to No Data (see 

section 3.1) 

Subsequently based on those NDVI time series, LSP metrics were calculated using the prototype 

LSP algorithm. In order to run the LSP algorithm at country scale however, some changes to the 

implementation of the prototype algorithm were needed in order to prevent out of memory errors. 

In contrast to the pilot sites which consist of a single S2 tile (or only a couple of tiles) it was no 

longer possible to use a single vrt containing all the S2 input products. Instead, LSP was 

calculated by S2 tile, which were further split into small blocks of 256 x 256 pixels. In this effort, 

only blocks with vegetated pixels were processed. The overlap in the S2 grid between 

neighboring S2 tiles and UTM zones results in overlapping LSP metrics. Post-processing of the 

results into a common projection system (e.g. latlon or webmercator) is therefore advised but was 

not performed in this experiment as this depends on the user requirements. 

7.2. Results 

Table 6, summarizes the total number of LSP products and processing parameters, derived from 

single Sentinel-2 images for both Senegal and Finland. 

Table 6: Summary of the LSP upscaling processing results 

Parameter Senegal Finland 

Number of processed S2 tiles 40 65 

Number of processed NDVI images 4394 15546 

http://2016africalandcover20m.esrin.esa.int/
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Number of processed LSP blocks 37404 79772 

 

Based on the NDVI time series LSP metrics were calculated and visualized showing the spatio-

temporal variation in LSP. Figure 13 and Figure 14 demonstrate the Start of Season (SOS), End 

of Season (SOS) dates, Growing Season Length (GSL) and Amplitude (AMP) for whole Finland 

and Senegal respectively. Figure 15 finally, illustrates these layers zoomed in on a particular 

region in Finland (village of Karkkila). 
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Figure 13: Per pixel LSP metrics over Finland: Start of Season (SOS, DoY), End of Season (SOS, 
DoY) dates, Growing Season Length (GSL, DoY) and Amplitude (AMP). The visible diagonal is 
due to the overlap in neighboring UTM zones. 



 

31 

 

 

Figure 14: Per pixel LSP metrics over Senegal: Start of Season (SOS, DoY), End of Season 
(SOS, DoY) dates, Growing Season Length (GSL, DoY) and Amplitude (AMP) 
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Figure 15: Per pixel LSP metrics over a region (Karkkila, 60°31'57.9"N 24°12'42.9"E) in Finland 
(see Figure 13 for the legend): Start of Season (SOS), End of Season (SOS) dates, Growing 
Season Length (GSL) and Amplitude (AMP). Additionally, also the Corine Land Cover (see Figure 
11 for the legend) and a Bing maps image is given as reference 
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9. Appendix 

Decimal 
Flag 

#initial obs 
<7 

mean NDVI 
< 0.2 Amp. < 0.1 

non-
phenologica

l curve 
no 

dormancy 
< 66% valid 
obs after fit F-test >0.05 

0 0 0 0 0 0 0 0 

1 1 0 0 0 0 0 0 

2 0 1 0 0 0 0 0 

4 0 0 1 0 0 0 0 

6 0 1 1 0 0 0 0 

8 0 0 0 1 0 0 0 

10 0 1 0 1 0 0 0 

12 0 0 1 1 0 0 0 

14 0 1 1 1 0 0 0 

24 0 0 0 1 1 0 0 

26 0 1 0 1 1 0 0 

28 0 0 1 1 1 0 0 

30 0 1 1 1 1 0 0 

32 0 0 0 0 0 1 0 

34 0 1 0 0 0 1 0 

36 0 0 1 0 0 1 0 

38 0 1 1 0 0 1 0 

40 0 0 0 1 0 1 0 

42 0 1 0 1 0 1 0 

44 0 0 1 1 0 1 0 

46 0 1 1 1 0 1 0 

56 0 0 0 1 1 1 0 

58 0 1 0 1 1 1 0 

60 0 0 1 1 1 1 0 

62 0 1 1 1 1 1 0 

64 0 0 0 0 0 0 1 

66 0 1 0 0 0 0 1 
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68 0 0 1 0 0 0 1 

70 0 1 1 0 0 0 1 

72 0 0 0 1 0 0 1 

74 0 1 0 1 0 0 1 

76 0 0 1 1 0 0 1 

78 0 1 1 1 0 0 1 

88 0 0 0 1 1 0 1 

90 0 1 0 1 1 0 1 

92 0 0 1 1 1 0 1 

94 0 1 1 1 1 0 1 

96 0 0 0 0 0 1 1 

98 0 1 0 0 0 1 1 

100 0 0 1 0 0 1 1 

102 0 1 1 0 0 1 1 

104 0 0 0 1 0 1 1 

106 0 1 0 1 0 1 1 

108 0 0 1 1 0 1 1 

110 0 1 1 1 0 1 1 

120 0 0 0 1 1 1 1 

122 0 1 0 1 1 1 1 

124 0 0 1 1 1 1 1 

126 0 1 1 1 1 1 1 

 

 


