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1. Introduction 

This Algorithm Theoretical Baseline Document (ATBD) describes all technical issues from the 
prototyping of the Canopy Chlorophyll Concentration (CCC) in the context of the Remotely 
Sensed Essential Biodiversity Variables (RS-enabled EBVs) product of the ESA funded 
GlobDiversity Project. This document shall specify the process flow of the prototyped algorithm 
and the associated program in more detail. 

GlobDiversity is the first large-scale project explicitly designed to develop and engineer RS-
enabled EBVs. This project initiated and funded by the European Space Agency (ESA) supports 
the efforts of the Convention on Biological Diversity (CBD) and Intergovernmental Science-Policy 
Platform on Biodiversity and Ecosystem Services (IPBES), among others, and is adopted under 
the umbrella of the Group on Earth Observations Biodiversity Observation Network (GEO BON). 
The GlobDiversity project shall support the initiative to build a global knowledge of biological 
diversity of terrestrial ecosystems (= on land) and of relevance for society.  

There are three RS-enabled EBVs designed as part of the GlobDiversity project with each 
algorithm documented by such an ATBD: 

• Fragmentation (Wageningen Environmental Research WEnR, Wageningen University & 
Research) 

• Canopy chlorophyll concentration (Faculty of Geo-Information Science and Earth 
Observation ITC, University of Twente) 

• Land surface phenology (Dept. of Geography, University of Zurich (UZH), the hereby 
documented algorithm) 

Within the project, these three variables were investigated in detail to contribute to an observation 
system to assess the variable in an efficient and effective way, covering extensive areas at a fine 
spatial and temporal resolution. The definition and selection, name and definition of the three RS-
enabled EBVs was based on the expertises existing within the project consortium and 
independent from any efforts of defining and prioritising possible candidate EBVs and RS-enabled 
EBVs that might have existed at the time of the project’s start in 2018. 

In the following, the algorithm of the processing chain to derive Canopy Chlorophyll Concentration 
(CCC) is described in detail. The algorithm was chosen and developed by the University of 
Twente (ITC) and then transmitted to the German Aerospace Center (DLR) to be translated into a 
code suitable for cloud computing of larger areas of interest. The algorithm has been chosen and 
developed with the goal of a potential future global application based on high-resolution satellite 
data (10-30m) and with a computational efficient implementation. The ATBD includes a 
description of the necessary preprocessing steps and the processing step of the core algorithm. In 
addition, results from the project performed on a few test sites globally distributed are presented 
with a chosen validation approach. In addition, the last chapter presents restrictions of the current 
implementation and modifications that might be necessary for a potential global processing. 
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The organization of this document is structured in 8 chapters as shown in the table below. 

 Explanation 
Chapter 1 Provides an introduction 

Chapter 2 Describes the scientific background, and addresses the current standard 
processing schemes 

Chapter 3 Provides information about the input data 

Chapter 4 Includes the algorithms of the proposed processing 

Chapter 5 Provides information about the product and the error budget estimates 

Chapter 6 Outlines the implementations 

Chapter 7 Shows the results of the upscaling experiments for Senegal and Finland 

Chapter 8 Includes the references 
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2. Scientific background 

It is argued that the chlorophylls are Earth’s most important organic molecules as they are 
necessary for photosynthesis (Blackburn, 2007). Plants chlorophylls are of two types, chlorophyll-
a, and chlorophyll-b. Canopy chlorophyll Content (CCC) is defined as “the total amount of 
chlorophyll a and b pigments in a contiguous group of plants per unit ground area often expressed 
in mg/m2” (Gitelson et al., 2005). CCC is a compound variable. It is a product of chlorophyll 
content of a fresh green leaf per unit leaf area, and leaf area index (LAI). CCC is a terrestrial 
ecosystem functional EBV that describes chlorophyll pigments (distribution within the 3D canopy 
surface. Thus, CCC determines the total photosynthetically active radiation absorbed by 
vegetation (Gitelson et al., 2015, and 2005). Quantification of CCC has been long used for a wide 
range of ecological applications from being an important input variable of terrestrial biosphere 
models to quantify carbon and water fluxes (Luo et al., 2018) to primary productivity prediction 
(Houborg et al., 2013, Peng and Gitelson, 2011), and light use efficiency assessment (Wu et al., 
2012). Changes in CCC are an indicator of vegetative growth, disease, nutritional and 
environmental stresses (Korus, 2013, Zhao et al., 2011, Inoue et al., 2012). It is a plant pigment 
that provides valuable information about plant physiology and ecosystem processes (functions) at 
different scales and enables the ecologists, farmers, and decision-makers to assess the influence 
of climate change, and other anthropogenic and natural factors on plant functions. Monitoring the 
dynamics of CCC helps to understand the adaptation of forest, crops, and other vegetation 
canopies to such factors (Féret et al., 2017).  

Remote sensing data provide a unique way to measure vegetation properties. The spectral 
reflectance of vegetation is characterized by absorption features due to a chemical constituent of 
leaves such as chlorophyll, water, nitrogen, and carbon-containing compounds, comprising 
primarily protein, lignin, and cellulose. When incoming radiation interacts with vegetation, some 
part of it is reflected, some absorbed and rest is transmitted. A typical reflectance spectrum of a 
vegetation canopy can be subdivided into three parts, visible (400- 700 nm), near-infrared (NIR) 
(701 – 1300 nm) and middle-infrared (1301- 2500 nm) (Curran et al., 2018). The visible region 
mainly contains information about leaf pigments (i.e., chlorophyll a&b, carotene, and xanthophyll), 
the NIR domain about leaf structure, and the middle-infrared region contains information about the 
absorption of radiation by water, cellulose, and lignin (Table 1). 

Table 1: Spectral features and their relationship with vegetation biochemical content (Curran et 
al., 2018). 

Waveband Waveband 

width (nm) 
Characteristics Relation to 

vegetation amount 

Ultraviolet/blue 350-500 Strong chlorophyll and 

carotene absorption 

Strong negative 

Green 500-600 Reduced level of pigment 

absorption 

Weak positive 

Red 600-700 Strong chlorophyll absorption Strong negative 

Red edge 700-740 Transition between strong Weak negative 
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absorption and strong 

reflectance 

Near-infrared 740-1300 High vegetation reflectance Strong positive 

Middle-infrared 1300-2500 Water, cellulose, and lignin 

absorption 

Not specific 

Chlorophyll is the major absorber of radiation in the visible region, and the level of absorption can 
be used for retrieving CCC from remote sensing data for spatially extensive areas from the 
landscape to the global scale, using the strong and distinctive chlorophyll absorption bands in the 
visible spectral region. Numerous algorithms combining reflectance at discrete spectral 
wavelengths have been constructed to amplify the sensitivity of the spectral reflectance to 
chlorophyll content (Main et al. 2011). Theoretically, the “ideal” CCC retrieval algorithm from RS 
data should be sensitive only to chlorophyll content, but insensitive or little affected by any other 
factors. However, it is impossible to design an algorithm which is sensitive only to the desired 
variable and entirely insensitive to all other parameters (Hunt et al., 2012). Consequently, CCC 
retrieval algorithms remain always sensitive to the artifacts caused by canopy structure, 
radiometric distortions due to topography, atmosphere, solar illumination geometry, and sensor 
viewing conditions, and soil optical properties particularly in sparse vegetation (Darvishzadeh et 
al., 2008a, Ollinger, 2011, Gitelson et al., 2005). 

Canopy structure controls how the photons scatter within the canopy before escaping or being 
absorbed. One of the most common canopy structure descriptors is the leaf area index (LAI) that 
quantifies the number of leaf layers with which a photon can potentially interact (Ollinger, 2011). 
Another canopy structural variable that affects the relationship between CCC and reflectance is 
leaf angle distribution (LAD). The more vertically aligned the leaves, the deeper the light 
penetrates within the canopy (Ellsworth and Reich, 1993). Therefore, canopy structure quantified 
by LAI and LAD affects the accuracy of CCC retrieval from remote sensing data.  

In addition, bare soils have different spectral properties depending on mineral composition, color, 
moisture, organic matter content, salt and Sodium content, roughness, and texture. These soil 
property variations affect the spectral response of soil and canopies and induce noise to the 
relationship between canopy reflectance and vegetation parameters, such as CCC (Darvishzadeh 
et al., 2008a, Ollinger, 2011, Gitelson et al., 2005). Many studies have evaluated and compared 
the sensitivity of CCC retrieval algorithms to these structural, atmospheric, and soil optical 
property conditions (e.g., Vincini et al., 2016, Wu et al., 2008, Niemann et al., 2012). 

Nevertheless, several methods ranging from empirical to 3D radiative transfer model (RTM) 
inversion can be used to estimate CCC from remote sensing data. Algorithms that rely on the red-
edge and near-infrared region reflectance spectra are proved to be less sensitive to external 
factors and capable of accurately estimating CCC. The provision of reflectance spectra in narrow 
red and NIR bands with a high spatial resolution by Sentinel-2 spacecraft instrument enables to 
perform vegetation monitoring via CCC estimated from remote sensing data. A plethora of 
algorithms exist in the literature, and it is imperative to identify the one operationally feasible for 
CCC. Therefore, through literature review, experimental analysis, and robustness verification 
across biomes it is proposed to use physically based models (i.e., INFORM (Invertible Forest 
Reflectance Model) for forest ecosystem and PROSAIL (the PROSPECT leaf model and 
Scattering by Arbitrarily Inclined Leaves) for short plant ecosystems) as the standardized and 
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harmonized approach to retrieve CCC products from Sentinel-2 MSI. The simple ratio vegetation 
index (SRVI) based on the red band and near-infrared are also proposed as a backup algorithm. 
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3. Input Data 

3.1. Input Satellite and image types 

The RS-enabled EBV-CCC products development focuses here on passive Earth observation 
satellites that are specifically designed for environmental monitoring. Thus, Earth observation 
satellites, which carry instruments that operate in the visible and near-infrared region of the 
electromagnetic spectrum (EMS) with high spatial and high spectral resolution, are the preferred 
satellite types. A sun-synchronous polar or near-polar orbit satellite generally suited for generating 
CCC global products for monitoring change in the state of biodiversity over time.  
 
Prediction of CCC from remote sensing data using RTM inversion demands spectral information 
in a number of chlorophyll sensitive bands (wavelengths) in the visible and NIR region of the 
EMS. Thus, panchromatic image types with only one band do not fit the purpose. Hyperspectral 
images with hundreds of very narrow discrete/contiguous bands are the most superior and Input 
Satellite and image types preferable but rarely available. Satellite imageries with 10 - 15 spectral 
bands with several bands in the visible and NIR regions together with 10 - 30m ground resolution 
are the good alternative imagery for accurate mapping of global CCC products. Therefore, the 
potential input satellite data focus on the new data streams such as those offered by the Sentinel-
2 MSI mission. Sentinel-2 provides multispectral images with bands in the visible, NIR and MIR 
spectrum. Data from this satellite are available at 10, 20 and 60 m spatial resolution that can 
significantly contribute to CCC mapping. In this approach, we only use data with a resolution of 10 
m and 20 m. For a comparable data set and image cube, the images were resampled to 10 m 
(GDAL build VRT (Virtual Dataset) options were set to: resolution = highest and separate = true. 
The last parameter creates a new layer for every stacked band). 

3.2. Image Preprocessing 

Predictions of global CCC products are based on top of the canopy (TOC) or surface reflectance 
data. Satellite imagery radiance records have to be converted into TOC reflectance through 
radiometric and atmospheric correction. The remote sensing data must be orthorectified and 
georeferenced using standard sensor in-flight information. The images have to be resampled (if 
necessary) and mosaicked by removing the view angle effects via view-angle correction 
technique, and applying filtering techniques to correct for random and systematic noise. Finally, 
non-vegetated areas and clouds must be masked out.  
 
In this study, the experimental analysis focused on the evaluation of algorithms for CCC retrieval 
from Level-2A products of Sentinel-2 data. The preprocessing includes an atmospheric correction 
applied to Top-Of-Atmosphere (TOA) Level-1C ortho-image Sentinel-2 products, which resulted in 
an ortho-image Bottom-Of-Atmosphere (BOA) corrected reflectance product or TOC. The Level-
2A generation was performed through Sen2Cor Version 2.5 using the Sentinel-2 Level-1C product 
as input.  
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3.3. Sentinel 2 product 

As will be described later, not all scenes and bands from the given Sentinel-2 images are 
necessary. Only the following bands, which are required for the calculations of CCC, are used 
here: 04, 05, 06, 08 and 8A. Bands 04 and 08 were available in the spatial resolution of 10 
meters, and bands 05, 06, 8A and SCL (see later chapter SCL) were available in the spatial 
resolution of 20 meters. The highest spatial resolution was always chosen if scenes were 
available in different resolutions. 

3.4. Land cover product 

The proposed algorithms depend on the land cover type. On the one hand, a land cover map is 
used to segment vegetation and non-vegetated parts of the terrestrial ecosystems. On the other 
hand, it is used to group the vegetated areas into ‘short vegetation,’ and forest so that selected 
algorithms for each group applied separately. Vegetation types such as grasses, crops, shrubs, 
and bushes are considered ‘short vegetation’ and vegetation cover with tree treated as forest. 
Preferably, a land cover product with a higher spatial resolution (≤ 30 meters) should be used for 
this purpose.  Gong et al. (2019) have recently generated a high-resolution (10m) global land 
cover (GLC) product for the year 2017, which is freely and openly available at 
http://data.ess.tsinghua.edu.cn/fromglc10_2017v01.html. The ten GLC classes of this product are 
grouped into three generic classes that can be utilized for both masking and stratifying into short 
vegetation, and forest (Table 2).  

A global land cover dataset was downloaded to the processing servers. In the next step, a virtual, 
global scene was created using GDAL VRT, which serves as the basis for the following steps. 

Table 2: Classes and codes of the global land cover (GLC) product as adapted for the generic 
land cover classes required for the proposed algorithms 

GLC class name GLC class Code Generic class Generic class code 

Cropland 10 

Short vegetation 1 

Grassland 30 

Shrubland 40 

Wetland 50 

Tundra 70 

Forest 20 Forest 2 

Water 60 

Non vegetation 0 Impervious surface 80 

Bareland 90 
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Snow/Ice 100 

3.5. Sentinel-2 SCL Scene Classification Layer 

Scene Classification (SC) aims at providing a pixel classification map (cloud, cloud shadows, 
vegetation, soils/deserts, water, snow, etc.). This classification map is used to exclude pixels 
which are not suitable for further processing and would falsify the result. For full information about 
the process and the algorithms visit the ESA webpage. The classification mask is generated along 
with the process of generating the cloud mask quality indicator and by merging the information 
obtained from cirrus cloud detection and cloud shadow detection. The classification map is 
produced for each SENTINEL-2 Level-1C product at 20 m resolution, and byte values of the 
classification map are organized as shown in Figure 1. 

 

Figure 1: Scene Classification Layer 

For the product generation, only label number four (Vegetation) was used for further processing. 
Although also other classes contain information about vegetation, a conservative strategy was 
chosen for this prototype. Moreover, there the quality of this mask needs further evaluation. 
Therefore, results should be treated with caution. For example, the dark areas can also belong to 
dark vegetation and the unclassified layer (number seven) can also contain pixels that are 
necessary for processing. In this approach, it was more important to classify as well as possible 
and then to continue working with reliable masks. The change for other or many classes can be 
easily modified and adapted later in the source code. 

3.6. RTM input parameters 

The proposed RTM inversion methods require generating a large spectral lookup table (LUT) by 
varying leaf and canopy parameters as well as sensor geometry. Leaf reflectance and 
transmittance properties are simulated using the leaf model-PROSPECT, which is integrated with 
the two canopy RTMs. The main leaf input parameters required for PROSPECT includes 
chlorophyll content (Cab) in µg/cm2, leaf dry mass per unit area (Cm) in mg/cm2, leaf water mass 
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per unit area (Cw) in mg/cm2, and effective number of Leaf (mesophyll) internal structure (N) 
among others. The leaf level spectral property is up-scaled to canopy using the PROSAIL and 
INFORM canopy RTMs by using the leaf level simulated spectra, canopy structural variables, and 
sensor geometry (Figure 2). The type and number of canopy structural input parameters vary 
depending on the canopy RTM. Type and value range of each model input parameter are 
described in section 5. 

 

Figure 2: Overview of the input parameters of RTMs (i.e., Leaf and canopy parameters, sensor 
configurations and background reflectance) to simulate top of canopy reflectance (R(λ)) 

3.7. Final input product 

The final input product is a data stack of all required classes, scenes and images (Figure 3). This 
product is used by both, the SRVI and the LUT prototype. This product is a layer stack built with 
the GDAL open source tools and is called VRT (Virtual Dataset). The VRT driver is a format driver 
for GDAL that allows a virtual GDAL dataset to be composed from other GDAL datasets with 
repositioning and algorithms potentially applied, as well as altering or adding to the metadata. 
VRT descriptions of datasets can be saved in an XML format and are normally given the 
extension .vrt. The program builds a VRT that is a mosaic of the list of input GDAL datasets. The 
list of input GDAL datasets can be specified. With the option “separate”, each file goes into a 
separate band in the VRT dataset. Otherwise, the files are considered as tiles of a larger mosaic 
and the VRT file has as many bands as one of the input files. The use of virtual layers leads to a 
minimal copying effort on the processing systems, since no data has to be copied, but only virtual 
work is done on the scenes. The command gdalbuildvrt is used with the “separate” option to build 
the input data stack. The data stack includes the required Sentinel 2 bands for the SRVI and LUT 
calculations (Band 4, 5, 6, 8 and 8A); the land cover classification; and the cloud cover (Figure 5).  
All images were spatially resampled to 10 m (close to sample plots size) by using GDAL buildvrt 
option “resolution” (see: https://gdal.org/programs/gdalbuildvrt.html, visited 23.03.2020) with the 
parameter “highest” (in this case: 10 meters, because of band 04 and 08 and global landcover 
scene). The global landcover VRT scene was cropped to the specific extension of the Sentinel 2 
scene. The fourth band of the Sentinel 2 scene always serves as the basis for this. The cutting 
was done with a Python script called Rasterio. Afterwards, the cropped Landcover scene could be 
inserted into the layer stack without problems. Cloud and its shadow were identified by the 
integrated Sentinel-2 scene classification layer (SCL) and masked for this specific study by the 
automated processing. Non-vegetative areas masked out using available land cover products by 
using the generic class code zero. 
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Figure 3: Virtual Layer Stack (VRT) for the CCC algorithm 
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4. Algorithm description 

4.1. Theoretical description 

This part of the Algorithmic Theoretical Basis Document (ATBD) describes the algorithms 
proposed to produce Canopy chlorophyll content (CCC) over terrestrial ecosystems from 
atmospherically corrected surface reflectance. After a thorough literature review, experimental 
analysis, robustness and spatiotemporal consistency check, we proposed RTMs inversion and the 
simple ratio vegetation index (SRVI) for canopy chlorophyll content retrieval. This section outlines 
the physical principles and mathematical background of these selected algorithms. The proposed 
algorithms follow the recommendations issued in the Project Study Report (PSR) that was 
reviewing the state-of-the-art algorithms available in the literature. 

A review of the literature indicated that algorithms based on spectral information in the red band, 
the red-edge (which is a region within the red-NIR transition zone), and NIR are generally robust 
and could be applied for producing chlorophyll products. This is because there is a strong 
correlation between an increase in chlorophyll and an increase in the absorption of radiation 
energy in the red edge (Curran et al., 1990). The algorithms that can be applied to quantify 
chlorophyll using spectral information in the stated spectral region are plenty.  Verrelst et al. 
(2015) grouped all algorisms that can be used to quantify vegetation biophysical and biochemical 
variables from remote sensing data into four methodological categories: Parametric regression, 
non-parametric regression, Physically-based, and Hybrid methods.  

All approaches have their advantage and drawbacks. Some are superior to all other methods in 
the overall predictive ability of CCC, but not feasible for global application. Therefore, the 
selection of the algorithm should be a trade-off. This urges a hierarchical selection procedure. 
First, all algorithms with top predictive ability were identified from the vast spectrum literature. 
Second, selection requirement criteria were set and the methods evaluated by considering: i) 
volume of spectral information need ii) accuracy, and iii) computational efficiency. Subsets of 
algorithms are shortlisted based on those criteria, and finally, an experimental analysis performed 
to benchmark the algorithm that is applicable for global CCC product retrieval. 

During the experimental analysis, benchmarking was determined by computing the coefficients of 
determination (R2) between canopy chlorophyll content and the selected algorithms. For this 
purpose, canopy chlorophyll content collected from representative sample plots randomly 
distributed in the mixed mountain forest of the Bavarian Forest National Park (BFNP) together 
with TOC reflectance spectra extracted from Sentinel-2 L2A data in July 2017 were used. 
Algorithms with higher R2 and lower RMSE (high accuracy) were further investigated for their 
operational use to retrieve CCC consistently from Sentinel-2 imagery irrespective of the difference 
in vegetation structure and composition across a wide range of vegetation types. Thus, through 
robustness verification, LUT based inversion of INFORM on forest ecosystems (Ali et al., 2020) 
and PROSAIL over non-forest (short plant) ecosystems as well as the simple ratio vegetation 
index with band 8a and band 4 of Sentinel-2 proved to be more robust than all other tested 
algorithms (AD-1).  
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Consequently, the INFORM and PROSAIL inversions using LUT are found to be a plausible 
algorithm and recommended for retrieval of CCC products in terrestrial ecosystems from remote 
sensing data. See AD-1 on the algorithm selection process. 

4.2. Algorithms overview 

The analytical workflow in generating CCC products using the benchmarked algorithms is 
illustrated in Figure 4. To apply the proposed algorithms, the preprocessed image data has to be 
segmented into the forest and non-forest vegetation followed by applying the corresponding RTM 
inversion or SRVIs and recombining the results to generate the required CCC product (s). 

 

 

Figure 4: Canopy chlorophyll content generation workflow using RTMs inversion and SRVIs on 
Sentinel-2 surface reflectance data. The dark arrows show the process of the main algorithm 
(RTM inversion) and the red lines the process of SRVIs (optional algorithm). 

4.2.1. RTMs inversion 

a) Parameterization and generation of LUT using INFORM 

The Invertible Forest Reflectance model “INFORM” (Schlerf and Atzberger, 2006, Atzberger, 
2001) is a combination of the forest light interaction model (Rosema et al., 1992) and SAIL 
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(Verhoef, 1984) canopy RTMs with the PROSPECT (Jacquemoud and Baret, 1990) leaf RTM. 
INFORM is parameterized by leaf parameters such as Cm, Cw, Cab and leaf Structure parameter 
(N), canopy parameters such as stem density (SD), single tree leaf area index (LAIs), stand height 
(SH), crown diameter (CD) and average leaf angle (ALA), as well as external parameters such as, 
view zenith (θo), sun zenith (θs) and relative azimuth angle (Φ), and simulates canopy spectral 
reflectance of forest stands between the 400 and 2500 nm wavelengths’. The model has been 
successfully used to retrieve forest biophysical and biochemical parameters (Ali et al. 2020, 2017; 
Darvishzadeh et al. 2019; Schlerf et al. 2012; Wang et al. 2018). As demonstrated in Figure 4, 
INFORM (Canopy RTM) provides spectral reflectance on top of a canopy under specified 
conditions.  

To simulate the spectral property of forest ecosystems, INFORM is parameterized based on the 
range of input parameters determined through literature review and sensor configurations (A LUT 
of 100,000 spectra is generated by varying the free variables randomly within their range. This 
size of PROSAIL LUT (though is smaller than LUT of INFORM due to less model input 
parameters), is confirmed to be large enough for retrieval of vegetation parameters in different 
ecosystem (e.g., Atzberger et al., 2015, Darvishzadeh et al., 2008b). A random Gaussian noise 
value of 0.3% was also added to each simulated spectrum to account for model uncertainties and 
reduce auto-correlation between the spectrum and input variables.  

Table 3). In INFORM, LAI is represented by the leaf area indices of single trees. Hence, the 
ground truth values for LAIs were computed from Leaf area index (LAI) and canopy closure (CC) 
(i.e., LAIs = LAI/CC).  

A LUT of 100,000 spectra is generated by varying the free variables randomly within their range. 
This size of PROSAIL LUT (though is smaller than LUT of INFORM due to less model input 
parameters), is confirmed to be large enough for retrieval of vegetation parameters in different 
ecosystem (e.g., Atzberger et al., 2015, Darvishzadeh et al., 2008b). A random Gaussian noise 
value of 0.3% was also added to each simulated spectrum to account for model uncertainties and 
reduce auto-correlation between the spectrum and input variables.  

Table 3: INFORM input parameters used to generate the LUT as defined based on literature 
review and sensor configuration (sentinel-2 MSI). 

Parameter Symbol Unit 
range or fixed values 

Min Max 

Leaf dry mass per area  Cm g/cm2 0.005 0.03 

Equivalent water thickness  Cw g/cm2 0.006 0.035 

Leaf structural parameter N NA 1 2.5 

Leaf  chlorophyll content Cab µg/cm2 5 65 

Single tree LAI  LAIs NA 2 10 

Understory LAI LAIu NA 0.2 1 

Stem density SD n/hr 200 2000 

Stand height  SH m 5 40 

Crown diameter CD m 3 10 



 

14 

 

 

Average leaf angle ALA degree 40 60 

Sun zenith angle θs degree 25 35 

Observation zenith angle θ0 degree 0 15 

Azimuth angle Φ degree  50 210 

Scale  NA 0.5 1.5 

Fraction of diffused radiation Sky1 fraction 0.1 

 

b) Parameterization and generation of LUT using PROSAIL 

PROSAIL, which is a one-dimensional bidirectional turbid medium radiative transfer model, is 
used for the simulation of the canopy bidirectional reflectance data in ‘short vegetation’ such as 
wetlands, taiga, and tundra. There are different versions of PROSAIL. Here we used the latest 
version (version: PROSAIL-D), but other versions of the model (e.g., PROSAIL-H) can be used 
instead. PROSAIL requires leaf input parameters such as Cab, N, Cm, and Cw, and canopy and 
sensor configuration parameters. These canopy and sensor parameters are the sun zenith angle, 
observer zenith angle, relative azimuth angle, soil factor, LAI, hot spot size parameter, and two 
leaf inclination distribution function (LIDF) parameters. The solar and observation angle 
parameters are obtained from the metadata file of the remote sensing data (Sentinel-2). The hot 
spot is parameterized as a function of LAI based on previous studies (Yin et al., 2016). The 
parameters soil factor, Cab, N, Cm, Cw, and LAI are taken as free variables (Table 4). The model 
default values are used for other parameters. The variation ranges of the free variables are based 
on prior knowledge in the literature.  

A LUT of 100,000 spectra is generated by varying the free variables randomly within their range. 
This size of LUT is confirmed large enough for retrieval of vegetation parameters in different 
vegetation (e.g., Atzberger et al., 2015, Darvishzadeh et al., 2008b). A random Gaussian noise 
value of 0.3% was also added to each simulated spectrum to account for model uncertainties and 
reduce auto-correlation between the spectrum and input variables.  

Table 4: The PROSAIL radiative transfer model input parameters used to generate the lookup 
table 

Parameter Symbol Unit 
range or fixed values 

Min Max 

Leaf dry mass per area  Cm g/cm2 0.005 0.025 

Equivalent water thickness  Cw cm 0.05 0.03 

Leaf structural parameter N  1.2 2.2 

Chlorophyll content Cab µg/cm2 5 70 

Carotenoid content Car µg/cm2 8  

Anthocyanin content Ant µg/cm2 0  

brown pigment content Cbrown  0  

Leaf area index  LAI m2/m2 0.2 8 
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Leaf inclination distribution function type TypeLidf  2 

Leaf inclination distribution function a LIDFa degree 20 70 

Leaf inclination distribution function b LIDFb  0 

Hot spot factor  Hspot  0.5/LAI 

Soil reflectance factor psoil  0.3 0.6 

Sun zenith angle ts degree 25 35 

Observation zenith angle t0 degree 0 15 

Azimuth angle psi degree 50 210 

c) LUTs Inversion 

For both LUT generated by INFORM and PROSAIL, LUT inversion involved matching the 
similarity between measured spectra (Sentinel-2) and simulated spectra (INFORM or PROSAIL). 
Spectrum matching was performed using the least root mean square error (RMSE) comparison of 
the measured and simulated spectra according to Eq.1. 

𝑅𝑀𝑆𝐸 =	'∑(#!"#$%&"'$#!('"))"')*

&
                                                                            Eq. 1 

where Rmeasured is a Sentinel-2 reflectance at wavelength λ and Rmodelled is a simulated reflectance 
at wavelength λ in the LUT, and n is the number of wavelengths. 

LUT inversion is traditionally very slow. To speed up the processor, we use a kd-tree for quick 
nearest-neighbour lookup (Maneewongvatana and Mount, 1999). The increased efficiency of the 
processor comes from the fact that not every entry in the LUT is compared to the input spectral 
data. Instead, the binary tree splits the LUT into nodes, subspaces of the LUT, and the 
comparison is made against the data in these nodes. The sliding midpoint method ensures that 
the nodes are appropriately sized in every dimension. Here, the dimensions are the 3 Sentinel 
bands. It is especially important that a node is not too small in any one dimension. The binary tree 
can find the N closest neighbours of given spectra (where N, in this case, equals 100), and the 
algorithm can be made more efficient by choosing the approximate closest neighbours. 

The inversion was carried out using those Sentinel-2 bands found between 650 and 750 nm 
(three bands: Band 4, 5 &6), which are found in the red and NIR transition zone wavelength range 
where an increase in chlorophyll content increases absorption. The solution to the inverse 
problem is the set of input parameters corresponding to the reflectance in the database that 
provided the smallest RMSE. Because of the potential insufficiency in model formulation and 
parameterization, and noise related to calibration and preprocessing errors in the observed 
reflectance, the least RMSE solution might not necessarily provide the best estimates. For this 
reason, for each measured spectrum, the 100 closest matching spectra are selected from the 
LUT. From the multiple available solutions (q), we chose the median CCC value of the multiple 
solutions as a final solution after experimenting the performance of other statistical measures of 
central tendency such as mean and mode for several closest matching spectral subsets. 

4.2.2. The simple ratio vegetation indices 

a) Mathematical description 
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Two simple ratio vegetation indices optimized for forests and non-forest vegetation were proposed 
as optional algorithms, which can be used for the comparative purpose. The SRVIs use spectral 
information in two spectral bands to compute CCC. Optimization of the benchmarked algorithms 
during experimental analysis revealed that SRVI based on spectral band 4 and band 8a of 
Sentinel-2 MSI outperformed other indices for retrieving CCC in forest ecosystems.  

The simple ratio vegetation index 1 (SRVI_1) proposed for forest ecosystems is a ratio of 
reflectance of a band centred at 865 nm and 665nm. In terms of Sentinel-2 MSI band setting 
SRVI is computed using Eq. 2. And the simple ratio vegetation index 2 (SRVI_2) proposed for 
non-forest vegetation is the one proposed by Inoue et al. (2016), which is calibrated and validated 
for retrieving CCC from remote sensing data for a wide range of crops and natural grasses (Eq. 
3). 

SRVI-1 = '()
'*
	= #+,-

#,,-
                 (Eq. 2) 

SRVI-2 = '(
'+
	= #+.-

#/01
                 (Eq. 3) 

where R865, R835, R704, and  R665 are reflectances in the centre wavelengths of the 
Sentinel-2 band setting. 

As discussed in the previous sections, the computation of SRVI requires radiometrically and 
atmospherically corrected reflectance (Top-of-canopy reflectance). Besides, the selected 
algorithms have to be applied only on vegetative land covers. Therefore, vegetated and non-
vegetated pixels have to be identified first. Globally available land cover products can be used for 
this purpose. Alternatively, a threshold value can be applied to the reflectance value in the red 
edge region to distinguish between the vegetated and bare land pixels. Nonvegetated land pixels, 
i.e., pixels which are barren have a high reflectance in this region. Therefore, pixels with high 
reflectance in the red edge region(e.g., 30% or more reflectance) can be considered non-
vegetated/bare lands (Curran et al., 2018).  

Likewise, pixels with cloud cover can be removed by observing the difference in reflectance 
between bands in the red edge and NIR. Particularly, the reflectance of pixels with low cloud 
cover is a mixture of reflectance from the ground and top of the cloud. Since such pixels do not 
indicate the actual ground vegetation condition, they have to be removed. Pixels with low cloud 
cover have a very similar reflectance in the transition zone between the visible and NIR region 
(Curran et al., 2018). Therefore, pixels with minimal reflectance difference in two or more bands of 
this region can be flagged as cloud mixed-pixels and avoided. 

b) Fitting linear equations 

The canopy chlorophyll content is retrieved by investigating the relationship between SRVIs and 
measured CCC values. This has been done by fitting an equation on the relationship. Equation 4  
and equation 5 indicates the linear relationship between SRVIs extracted from Sentinel-2 level 2A 
product and ground measured CCC for forest and non-forest vegetation, respectively. 

CCC (g/m2) in forest = 0.071*SRVI-1 + 0.217              (Eq. 4) 

CCC (g/m2) in ‘short vegetation’ = 0.325 *SRVI-2 – 0.358            (Eq. 5) 
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4.3. Invalid CCC values 

The CCC values have to be within the global CCC range (0-10 g/m2) (Singh, 2018). Because of 
uncertainties associated with models and remote sensing data, predicted values may go beyond 
the expected range. In the case where any of the selected algorithms provide estimates outside 
this limit, it is removed during the processing as an invalid value. Values greater than the 
threshold value were labelled as NA, after consultation with the ITC developers of the algorithms. 

4.4. Source code 

4.4.1. General 

The original source code developed by ITC was delivered as Matlab code (LUT) and as 
theoretical pseudo code in the ATBD (SRVI). Both prototypes are written in Python 3. Python is 
characterized by its simplicity and speed of prototyping but is an order of magnitude slower than, 
for example, C++. After various tests and considerations of the subsequent target platform in Task 
4 at VITO, it was decided to write everything in modern Python, since the program with the 
appropriate functions is fast enough for the test sites. The program can be called for SRVI and 
LUT approach separately, but also for both approaches at the same time. This is implemented 
with a flag when the function is called. The program expects the previously mentioned Sentinel-2 
L2A and landcover files for the VRT data cube and an output folder. For the LUT approach, the 
two pre-calculated INFORM and PROSAIL LUTs are needed. The program dependencies consist 
in the functionalities or packages GDAL, Rasterio, Numpy, Scipy and system libraries for folder 
creation and file searching. 

After calling the program, the VRT data cube is created first. This internal object is then passed to 
the selected LUT and/or SRVI functions and the results are written to the specified output folder 
with the respective extension lut.tif or srvi.tif. The program processes the data cube pixel by pixel 
and does not use internal subtitling. All temporary data is kept in the main memory (RAM), and 
the results are calculated directly, which is possible on any modern computer. The final result is 
available as GeoTiff and can be viewed and analyzed with any GIS program. 

4.4.2. SRVI approach 

The calculation is done step by step (Figure 8), the logic is conceivable as a binary tree and as 
specified in Figure 5. The first step is to inspect the Sentinel-2 SCL file and check if the pixel 
belongs to the vegetation class. If it is not such a class, the result pixel value is written with the NA 
value. Otherwise, the Global Landcover File is inspected. Here a distinction is made between the 
two classes, forest and short vegetation. If it is not such a class, the result pixel value is written 
with the NA value again. Depending on the class, the corresponding algorithm is now applied to 
the pixel. The program automatically recognizes the correct bands (layers) and calculates the 
CCC value. All values above 10 are assigned the NA value, as already written in (Singh, 2018). 
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Figure 5: SRVI algorithm implementation Work flow. 

 

4.4.3. LUT approach 

The calibration and implementation of the benchmarked algorithm can be performed on different 
platforms. In this specific case, the predictions of the CCC values using the selected algorithms 
were carried out originally by using the Matlab R2017b software. Each RTM has sets of source 
codes for the generation of LUT and inversion. The PROSAIL source code for different platforms 
such as Matlab, Python and Fortran can be downloaded from 
http://teledetection.ipgp.jussieu.fr/prosail/. The INFORM code for Matlab platform was obtained by 
personal communication of the authors. Its GUI version can be found 
http://ipl.uv.es/artmo/index.php/download.  

After image preprocessing (section 4.2), the spectral information of the level 2A product of 
Sentinel-2 is stored in band-sequential (BSQ) ENVI standard file format. The implementation of 
the proposed algorithm starts and ends with the reading and writing of ENVI files. The LUT 
approach takes two LUTs as input: one from INFORM and one from PROSAIL, as described in 
Section 5.2.1. The LUTs contain 200,000 spectra records with their corresponding model input 
parameters. Another code file that reads the Sentinel-2 images and searching the best match of 
each pixel spectral from the LUT using Eq. 1 runs in the backward mode to find the equivalent 
CCC for each pixel spectrum. 
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5. Product 

5.1. Product description 

The output products from any of the selected algorithms contain the pixel value of CCC in g/m2 
retrieved from Sentinel-2 data. There is a significant variation in CCC within and between 
individual plants of the same species depending on the availability of nutrients and environmental 
factors (Hamblin et al., 2014). Hence, both high spectral information and high spatial resolution 
are required for quantification of vegetation biochemical variables. There is a common consensus 
that higher spatial resolution satellite sensors can resolve finer details of canopy variables while 
the lower spatial resolution sensors lose, the finer details (Knyazikhin et al., 1999). Thus, the 
products presented here are obtained by resampling all the Sentinel-2 data into 20m resolution. 
Figure 6 shows the spatial distribution of CCC predicted by INFORM inversion and the SRVI in 
the temperate forest ecosystem. 

 

Figure 6: Canopy chlorophyll content (g/m2) derived from Sentinel-2 data using INFORM inversion 
(a) and SRVI (b) in Bavarian forest national park, Germany. 

5.2. Accuracy analysis (expected accuracy) 

CCC is not a directly observable variable in the field. Errors associated with measurement of leaf 
chlorophyll content and LAI adds up errors to what is assumed to be measured CCC. Therefore, 
there is no as such "true" value of CCC. On the other hand, the prediction of CCC from remote 
sensing data has several error sources such as radiometric and atmospheric correction (see 
section 6.3). In other words, 'true' CCC is difficult to validate unless undertaken with careful field 
sampling and analysis in a chemistry laboratory (Hamblin et al., 2014). On the other hand, CCC 
products validation is not a onetime activity, and at least seasonal (4 times per year) in-situ 
assessments are required (Knyazikhin et al., 1999). Acquiring such dataset from a range of 
biomes representing a logical subset of the whole terrestrial ecosystems is very expensive and 
time-consuming. Since there is a lack of field data for most of the pilot sites (which is generally the 
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case for upscaling of chlorophyll and many other RS-EBVs), the following verification strategies 
are proposed:  

1. Geographical consistency: through observing spatial distribution differences between pairs 
of CCC products generated by the LUT and SRVI approaches across biomes. 

2. Compute statistics such as R2, RMSE, and Bias for pairs of products of LUT and SRVI as 
a measure of robustness. 

3. Temporal consistency analysis: check the consistency of the robustness between pairs of 
products through time. 

4. Comparison of products: compare the products generated by the proposed algorithms with 
existing small and large scale CCC products in the literature. 

R2, RMSE, and Bias are computed by applying Eq. 6, 7 and 8, and were used to measure the 
closeness/agreement of CCC retrieved from remote sensing data to field-based measurements, 
or the robustness of products generated by the two candidate algorithms. 

𝑅, = 1 − ∑(-2$-2
3)*

∑(-2$-4. )*
          Eq. 6 

𝑅𝑀𝑆𝐸	(%) = 	'∑(-2$-2
3)*

&
𝑦/./ ∗ 100        Eq. 7 

𝐵𝑖𝑎𝑠 = 	
∑-2$-2

′

&
           

 Eq. 8 

where 𝑦0 and 𝑦01 are the actual and predicted values for sample 𝑖, and n is the number of samples 
considered. 

5.3. Error budget 

Like other variables, the accuracy of retrieving CCC from remote sensing data is affected by a 
number of error sources emanating from the remote sensing data itself such as satellite data 
calibration, geo-registration, cloud screening, and atmospheric correction, or uncertainty and 
discrepancies between measured and simulated spectral datasets due to simplification of RTM 
input parameters. Depending on the method applied and ancillary data used for correcting those 
effects, the accuracy of CCC product varies. Soil brightness and sensor view angle also alter 
reflectance in different bands. Although RTM inversion takes into account the effect of soil 
background and view angles, care must be taken while applying SRVI for different soil 
background and view angles. Generally, lower view zenith angles (-30 to +  30 degrees) have 
minimal effects (Dash and Curran, 2004).  

Another source of error is impracticality and expense of collecting field data over a large number 
of different ground/atmosphere combinations over sufficiently long timescales. A lack of 
agreement can depend amongst others on uncertainties from field data measurement tools and 
enumerators, and sample systematic and random errors. It is more challenging to measure 
chlorophyll content and LAI reliably in the field. There are currently a wide variety of approaches 
in use for the field measurement of LAI and chlorophyll content. There can be Bias associated 
with these different measurement schemes. Bias could stem from sampling error due to the 
number and location of the measurements, and/or the quality of the theory that relates these 
measurements to the actual canopy variables (Knyazikhin et al., 1999). 
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5.4. Validation (verification) summary 

The prototyped products presented in section 6.1 are validated with CCC collected from the field 
in BFNP. Validation of the CCC product predicted by the SRVI (865, 665 nm) resulted in R2 = 0.75 
and RMSE = 13.52%. The CCC product obtained by INFORM inversion provided R2 = 0.66 and 
RMSE = 21.72%. The SRVI prediction shows the over-estimation of lower CCC values and under-
estimation of higher CCC values. Whereas the RTM inversion does not demonstrate such a trend 
(Figure 7). 

 

Figure 7: Scatter plot of the measured (in situ) CCC and predictions made by candidate 
algorithms: validation results of INFORM inversion by using LUT (a) and the Simple Ratio 
Vegetation Index (SRVI) (b). The line in Black colours show the 1:1 relationship, whilst the line in 
red indicates the relationship between the fields measured and predicted values of CCC. 

The robustness of the proposed algorithms across biomes is verified by computing R2, RMSE, 
and Bias between the CCC products predicted by the two algorithms.  Higher R2 with lower RMSE 
and Bias close to zero combination is considered as an indicator of robustness. The linearity and 
robustness measures between RTMs based and the SRVI based products in five biomes were 
reported in the project study report (PSR). The products from the two approaches are in good 
agreement. More discrepancy observed in the tundra biome. This discrepancy could be partly 
attributed to the low level of CCC in the Tundra Biome (0 to 0.5 g/m2). The SRVI approach 
generally has a limitation of overestimating lower CCC values and underestimating higher CCC 
values. The low level of chlorophyll in this biome (tundra) may exacerbate the weakness of the 
CCC product derived by SRVI. Validation using in-situ data can help to understand the underlining 
cause better. 

Besides, the temporal consistency of the robustness was investigated to check if the relationship 
changes through time. For this purpose, the proposed algorithms were applied on cloud-free time-
series Sentinel-2 MSI data available for the period June 2017 to September 2018. The 
relationship between the pairs of methods does not show a significant difference through time 
(details can be found in the verification section of the PSR document (AD-1)). The time series 
scatter plots have a similar pattern to the result obtained by applying the methods in single time 
Sentinel-2 data, which confirms that the proposed algorithms temporally consistent, and can be 
used to generate CCC products from Sentinel-2 data acquired any time. 
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Overall, the geographical and temporal consistency, as well as computing measure of robustness 
between CCC products of the LUT inversion and SRVI in ten representative pilot sites in five 
biomes of the world, have shown that the two approaches retained spatiotemporal consistency 
and robustness across biomes. The two approaches were more robust and exhibited lower 
spatiotemporal discrepancies in wetlands, shrubs, savannah and grasslands than other biomes. 
This study has found that generally, the SRVI methods overestimate CCC of tundra biomes, 
which have very low CCC range (< 0.5 g/m2). Whereas in heterogeneous biomes with a wide 
range of CCC, such as forest ecosystems, systematic over/underestimation was predominant in 
the relationship of the two approaches. Consequently, the statistical measures such as R2, RMSE 
and Bias between CCC products of the two approaches were less vigorous in Tundra and Forest 
biomes compared to wetlands and grasslands. Therefore, investigation in all pilot sites revealed 
that the systematic errors stem from the drawbacks of statistical approaches, and reaffirmed the 
fact that CCC product at a global scale should be based on RTMs inversion using LUT 
approaches, which account for spatiotemporal variations. 
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6. Practical considerations for implementation 

6.1. Memory requirements 

Commonly, RTM inversion requires computing RMSE between the individual pixels spectra and 
all records of the LUT. It demands a lot of memory and takes a considerably long time. This 
looping requirement of the merit function makes RTM inversion using LUT computationally the 
most expensive method. For this reason, we have implemented a different approach using the 
tree algorithm (see 5.4.3), which has significantly reduced the computation time. The tree 
algorithm was found to reduce the time for a single pixel calculation by a factor of 10,000. The 
maximum amount of RAM was 4GB. 

The SRVI approach is already very performant due to the simple nature of the calculation and the 
vectorised nature of matrix calculations in Python. During prototyping, a single Sentinel tile could 
be processed in less than a minute (often only seconds), using a maximum amount of 4 GB RAM. 

The SRVI and LUT approaches can be calculated subsequently in the prototype. The LUT 
approach takes more time than the SRVI approach to calculate the CCC, so this is the limiting 
factor. One tile (or granule) was therefore computed within 30 minutes with a maximum amount of 
8 GB RAM. For the processor, a normal current processor with about 3 Ghz is sufficient for the 
calculations. Hyper-threading is not necessary because the application is not optimized for 
multiprocessing. Of course, this depends on the computing system, but also common notebooks 
are capable of running this prototype. 

6.2. System requirements 

Modern Intel or AMD processor with 3 Ghz, 8 GB RAM and enough space for the input and output 
data 

6.3. Error handling 

Running the inversion with smaller area size helps reducing memory problems. Therefore, 
inversion in several blocks of an image is recommended whenever a memory problem occurs. 
The size of a sentinel granule should not be exceeded and has not been tested. With appropriate 
memory, you can still improve the speed, but the tiles are already well chosen and it is more 
advisable to create small sub tiles and calculate them with several processor cores at once. 

6.4. External databases 

Land cover product to distinguish vegetated and non-vegetated areas and further forest from non-
forest vegetated areas. Land cover products of any type, preferably fine resolutions can be used 
for this purpose. 

6.5. Manual interaction 

No manual user intervention is necessary during processing. 
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6.6. Algorithm validation 

Comparison of products can be used as algorithms robustness verification. R2, RMSE and Bias 
can be computed between the RTM inversion and SRVI CCC sample products to verify the 
agreement of algorithms in predicting CCC. 
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7. Upscaling results 

7.1. Introduction 

Time series of CCC were retrieved for two pre-defined areas of interests, i.e. Finland and 
Senegal, for the year 2019. Only the SRVI approach was applied due to the computational cost of 
the RTM inversion model.  

For Finland, the 2018 20 m Corine Land Cover product was used to distinguish vegetated and 
non-vegetated areas and forest vs low vegetation (Figure 8).   

 

Figure 8: 2018 Corine land cover product for Finland at 20 m resolution available from 
https://www.syke.fi/en-US/Open_information/Spatial_datasets/Downloadable_spatial_dataset#C 

For Senegal, the 2016 20 m ESA CCI land cover product for Africa was used (see Figure 9)  
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Figure 9: CCI 2016 20 m land cover prototype over Senegal available from 
http://2016africalandcover20m.esrin.esa.int/ 

As a preprocessing step, both land cover products were first resampled to the Sentinel-2 UTM 
tiling grid at 20 m resolution using nearest neighbor resampling and reclassified into vegetated 
and non-vegetated areas and forest vs low vegetation as required by the SRVI algorithm. 

7.2. Results 

Table 5, summarizes the total number of CCC products and processing parameters, derived from 
single Sentinel-2 images for both Senegal and Finland. 

Table 5: summary of the CCC upscaling processing results 

Parameter Senegal Finland 

Number of processed S2 tiles 40 65 

Number of processed CCC products 4394 15546 

 

Figure 10 illustrates a mosaic (i.e. covering a Sentinel-2 orbit) of several CCC products, for one 
specific day for Senegal. 



 

27 

 

 

Figure 10: mosaic of several CCC images taken on December 26th 2019 over Senegal. The 
Sentinel-2 orbit (290 km width) is clearly visible. White areas are either not covered on that day by 
the S2 orbit or are masked due to either the SCL flags or LC flags. 

Based on those time series of CCC, temporal statistics were calculated and visualized showing 
the spatio-temporal variation in CCC. Figure 11 and Figure 12 demonstrate the 10th, 50th (i.e. 
median) and 90th percentile for whole Finland and Senegal respectively, as well as an RGB 
composite of the 3 layers. Figure 13 finally, illustrates these layers zoomed in on a particular 
region in Finland (village of Karkkila). 

 

Figure 11: per pixel CCC time series percentiles over Finland: 10th percentile (P10), 50th percentile 
(P50), 90th percentile (P90) and an RGB composite with R= P10, G= P50 and B=P90) 



 

28 

 

 

Figure 12: per pixel CCC time series percentiles over Senegal: 10th percentile (P10), 50th 
percentile (P50), 90th percentile (P90) and an RGB composite with R= P10, G= P50 and B=P90) 
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Figure 13: per pixel CCC time series percentiles over a region (Karkkila, 60°31'57.9"N 
24°12'42.9"E) in Finland (see Figure 11 for the legend): 10th percentile (P10), 50th percentile 
(P50), 90th percentile (P90) and an RGB composite with R= P10, G= P50 and B=P90). 
Additionally, also the Corine Land Cover (see Figure 8 for the legend) and a Bing maps image is 
given as a reference. For the legend, the reader is referred to Figure 11 and Figure 8. 
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