

→ 3rd ADVANCED COURSE ON RADAR POLARIMETRY

PolSAR App Ocean

M.Migliaccio

Università degli Studi di Napoli Parthenope Dipartimento di Ingegneria Centro Direzionale, isola C4 80143 Napoli, Italy

19-23 January 2015 | ESA-ESRIN | Frascati (Rome), Italy

European Space Agency

 Oil observation (hazard)

 Target at sea observation

SAR polarimetry data associated to appropriately tailored physical processing allows to:

- Detect oil at sea;
- Provide information on the kind of surfactant.

Physical processing is based on:

- Slick-free sea surface scattering calls for Bragg or tilted-Bragg scattering. It is a single-reflection scattering mechanism that, being quasi-deterministic, is expected to be characterized by a low polarimetric entropy, a high correlation between likepolarized channels and a low unpolarized backscattered energy.
- Therefore, a way to detect the presence of an oil slick is to use polarimetric indicators that indicate the departure of the cell under test from a Bragg scattering.

Pros:

- Unique detection capability robust with respect to weak damping look-alikes;
- No extra information requested;
- Better morphological oil slick detection;

Cons:

Polarimetric SAR data availability.

Target at sea observation esa

SAR polarimetry data associated to appropriately tailored physical processing allows to:

Detect metallic targets;

Target at sea observation

Physical processing is based on:

- non-Bragg scattering;
- intrinsic different scattering characteristics;

Target at sea observation

Pros:

- High detection and low false alarms;
- Robust in terms of incident angle;
- Threshold selection less critical.

Cons:

Polarimetric SAR data availability.

Physical vs image processing esa

 The important thing in science is not so much to obtain new facts as to discover new ways of thinking about them.'
William Bragg

Polarimetric features

feature	sea	oil
0 <h<1 entropy</h<1 	low	high
0 <a<sub>12<1 modified anisotropy</a<sub>	high	low
0°<α<90° mean alpha	0°	≈45°
μ conformity	>0	<0
0 <np<1 normalized pedestal</np<1 	low	high

feature	sea	oil
0<σ<∞ standard deviation CPD	low	high

Oil seeps (H, α , A₁₂)

Oil seeps (H, μ , μ >0)

DWH (H, α , A_{12})

DWH (H, μ , λ_1)

CPD σ

Physical vs image processing esa

Quad-pol:

- Polarimetric Matched Filter (PMF);
- Liu et al. detector;
- Polarimetric Notch Filter (GP-PNF).

Dual-pol:

• Symmetry.

Gulf of Mexico

Gulf of Mexico

Tokyo bay

Algorithm	Visual RGB	GP-PNF	PMF	Liu et al.	Entropy	Symmetry	HV
Detected	21	22	22	22	21	14	18
Missed	9(17)	8(16)	8(16)	8(16)	9(17)	16(24)	12(20)
False Alarms	0	0	1	1	several	0	0

- 1) The best detectors seem to be the quad-polarimetric ones (red curves), followed by the dual-polarimetric ones (blue and green curves).
- 2) The symmetry detector presents a very good ROC curve (not largely inferior to quad-pol detectors), but its P_d from the previous analysis was quite low.

- SAR polarimetry measurements associated to appropriately tailored physical scattering models allow to take full benefit of SAR spatial resolution and to generate reliable ocean added-value products.
- Many thanks are due to the PolSAR App team.