Cryosphere Applications

Irena Hajnsek ^{1,2}, Giuseppe Parrella ^{1,2}, Armando Marino ², Shane Cloude ³

¹ Microwaves and Radar Institute, DLR Oberpfaffenhofen

² Institute of Environmental Engineering, ETH Zürich

³ AEL Consultants

Knowledge for Tomorrow

Application Showcases: Motivation

	Application		Motivation
Cryosphere	Land ice extinction (internal structure)	Internal	Glacier mass balance changes Indicator for climate change
	Snow water equivalent	Internal	Ground water recharge Indicator of climate change
	Sea ice: observation	Internal	Distinction of different sea ice features:
	Sea ice: thematic	External	Ship routing
	mapping Sea ice thickness	External External	Indicator for climate change
	Permafrost observation	External	Land-surface-atmosphere fluxes Climate change imapct Hazard: costal degradation, road destruction, deformation, ect.

Application Showcases: Methodology

	Application	Methods and used frequency (P/L/C/X)	Polarisation	Frequency
Cryosphere	Land ice extinction (internal structure)	Pol-InSAR decomposition and inversion (P/L)	Quad pol	Preferred: P/L
	Snow water equivalent	PoISAR decomposition and inversion (C/X)	Quad pol (dual pol)	Preferred: X/Ku
	Sea ice: observation	PoISAR observables and decompositions (L)	Quad pol (dual pol)	Wide swath needed
	Sea ice: thematic mapping	Statistical image segmentation based on PolSAR descriptors (C) Wishart classification applied to PolSAR entropy/alpha decomposition (L/C)	Quad pol	Wide swath needed
	Sea ice thickness	PolSAR decompositions, segmentation and empirical models (X)	Quad pol (dual pol)	Wide swath needed @ X
	Permafrost observation	Based on a PolSAR two-layer scattering model (L)	Quad pol (dual pol)	Preferred: P/L

Application Showcases: Testsites

	Applicatio n	Location	Data Origin	Sensor	Airborne /Spaceborne	Band	Polarisation
Cryosphere	Land ice extinction (internal structure)	Svalbard	IceSAR	E-SAR	airborne	L/P	Pol-InSAR
	Snow water equivalent	Sodankyla e	TerraSAR-X	TerraSAR-X	spaceborne	Х	dual/quad pol
	Sea ice: observatio n	Barentsea, Storfjord	IceSAR	E-SAR	airborne	L	quad-pol
	Sea ice: thematic mapping	Svalbard	Arctic Campaign	RadarSAT-2/ ALOS	spaceborne	C/L	quad-pol
		Bay of Bothnia					
	Sea ice thickness	Bellingsha usen Sea	Antartic Campaign	TerraSAR-X	spaceborne	Х	dual pol
	Permafrost observatio n	Alaska	Permafrost Campaign	ALOS	spaceborne	L	quad pol

Ice Extinction Estimation Using PollnSAR

Giuseppe Parrella and Irena Hajnsek Institute of Environmental Engineering, ETH Zurich, Switzerland

Motivation

What is ice extinction?

→ It indicates how fast a radiation extinguishes when propagating through an ice mass (usually expressed in dB/m)

Why to care about ice extinction?

- → Ice extinction is related to ice internal structure through physical parameters (e.g. density)
- Knowledge of extinction is needed to characterize glacier subsurface layers and support mass balance estimation
- ✓ Ice extinction could help in correcting penetration bias in InSAR and altimetry products

What is the benefit of using SAR polarimetry?

- ✓ Polarimetry allows a better understanding of the scattering mechanisms
 - Possibility to isolate the scattering from the ice volume and to estimate its physical properties using polarimetric scattering models

ETH

Test sites and data sets

E-SAR data @ L- (1.3 GHz) and P- band (0.35 GHz) - IceSAR2007 Campaign GPR profiles @ L-band (0.8 GHz), Density profiles (neutron probe)

Summit: Test site characteristics

Summit: Polarimetric signatures

Eton: Test site characteristics

ЕТН

Eton: Polarimetric signatures

Ice extinction estimation: Methodology

Results: Estimated Ice Extinction (Summit)

L-band

P-band

Validation

- → As expected, extinction is higher at higher frequency (L-band)
 - → This fits with the lower penetration depth expected for L-band, compared to P-band
- → Regions of higher extinction are likely related to higher concentration of melt-features
- Obtained values are in rough agreement with laboratory measurements⁽¹⁾ performed on pure ice
- \neg Exhaustive validation is complicated by a number of factors:
 - 1. Extinction is very **site-dependent**
 - 2. Values measured in laboratory appreciably depend on the method and the instruments used
 - 3. Comparison with other remote sensing techniques (e.g. GPRs and sounders) is limited by the **different geometry of acquisition**

⁽¹⁾ Sharma J.J., "Estimation of Glacier Ice Extinction Coefficients using Long-Wavelength Polarimetric Interferometric Synthetic Aperture Radar", Ph.D. Dissertation, Karlsruher Institut fuer Technologie (KIT), Germany, 2010.

ETH

Comparison with Single- and Dual-Pol

- No other SAR studies (including single- or dual-pol) about ice extinction does exist in literature
- ✓ Single/dual pol data do not allow polarimetric decomposition
 - Impossible to isolate volume scattering component
 - Additional complexity to model eventual surface and other scattering components
- ✓ Only polarimetric observations can provide information about:
 - Types of scattering mechanisms in the scene (entropy and alpha angle)
 - Presence of oriented volumes (polarization ratios, phase differences)
 - Scatterers shape and orientation (entropy and pol-ratios)

Conclusions

- → Polarimetry is fundamental for characterizing glacier internal structure
- Polarimetric decomposition techniques can be used to extract and interpret volume scattering from the glacier subsurface
- After estimating the surface-to-volume scattering ratio using the polarimetric decomposition, ice extinction can be inverted from interferometric coherences
- ✓ The presented method provides realistic estimates (compared to laboratory studies)
- Low frequencies, e.g. L- and P-band are strongly recommended for their penetration capabilities

□ Site: Etonbreen, Svalbard, DLR IceSAR 2007 experiment (L)

Snow Water Equivalent Retrieval

Giuseppe Parrella and Irena Hajnsek Institute of Environmental Engineering, ETH Zurich, Switzerland

Motivation

- ✓ Snow is a key component of the global water cycle and climate system
- About one sixth of Earth's population relies on seasonal snow cover and glacier for water supply
- ✓ Knowledge of snow properties is needed on large scale
 - To understand **climate change**
 - To develop global hydrological model for water management
- Many studies based on SAR using single/dual polarization data. They mainly aim to model backscattering coefficients from snow covered areas
- Polarimetry can help to model SAR backscattering from snow isolating the contribution of the snowpack from the underlying ground

Methodology

⁽¹⁾ Nagler T. et al., "Development of snow retrieval algorithms for CoReH2O", ESA-report n. 22830/09/NL/JC, August 2011.

Test sites and data sets

- The test site is around the city of Sodankylä (~67°N, 26°E), in Lapland, Finland
- Intensive Observation Area (IOA), open area in the boreal forest, selected as test site for Phase A studies of the CoReH2O EE7 Candidate Mission

Ground Measurements:

NoSREx campaign (winter 2009/10) including SWE, snow depth and density

- ✓ TerraSAR-X fully polarimetric acquisitions
 - 11th April 2010
 - 22nd April 2010
 - 3rd May 2010

ETH

R : 1/2<|HH-VV|²>, G : 2<|XX|²>, B : 1/2<|HH+VV|²>

Results and Validation (1/2)

- ✓ Entropy-based mask to extract open areas
- → Estimated SWE in IOA
 - 205mm on 11th April 2010
 - 191mm on 22nd April 2010
 - 164mm on 3rd May 2010

Results and Validation (1/2)

Validation by comparison of SWE estimated from polarimetric X-band SAR data with ground measurements

Date	Measured SWE [mm] (NoSREx)	Estimated SWE [mm]
11/04/2010	211	205
22/04/2010	193	191
03/05/2010	202	164

Comparison with Single- and Dual-Pol

- A dual-frequency dual-pol SWE estimation algorithm was proposed for the CoReH2O EE7 Candidate Mission
 - Based on a radiative transfer model: simulation of a ground and a snow volume scattering component
 - Needs a-priori information about soil and snowpack conditions
 - The choice of the surface scattering model significantly influences SWE inversion
- Fully polarimetric data allow applying polarimetric decomposition
 - Isolate snowpack scattering contribution
 - **No need** to invert scattering model for soil contribution
 - **Reduced amount** of needed *a-priori* information
 - SWE inversion procedure results significantly simplified

Sea Ice observation

Armando Marino and Irena Hajnsek

Institute of Environmental Engineering, ETH Zurich, Switzerland

Motivation

- ✓ Understanding the backscattering from sea ice is very challenging
 - It is a multi-layer medium and its behaviour is strongly influenced by many parameters as temperature, water content, salinity, surface roughness, conditions in ice formation, presence of ridges or frost flowers, etc
- ✓ Polarimetry is expected to provide two main advantages:
 - 1) To have a better understanding of the scattering process.
 - a) To separate different scattering mechanisms
 - b) To evaluate surface/volume parameters
 - 2) To correct for possible errors/ambiguities
 - a) To alleviate noise effects
 - b) To remove ambiguities (in single-pol) due e.g. to target orientation

Methodology

- The most of the work so far was focused at considering special combinations of polarimetric channels (i.e. **observables**) that allow an easier extraction of the polarimetric information.
- ✓ Three main categories of observables are commonly exploited:
 - 1) Backscattering at different polarisation channels.
 - 2) Ratios of intensity for polarisation channels.
 - **3) Coherences** between polarisation channels: defined as normalised cross-correlations.

Test sites and data sets: ICESAR 2007 campaign

- ✓ The data exploited in this analysis are from the ESA ICESAR campaign (2007 in Svalbard):
 - Sensor: **E-SAR** (DLR)
 - Frequencies: L-, C- and Xband
 - Polarimetry: L-band quadpolarimetric; C- and X- dualpolarimetric
- ✓ Three tests sites were selected for the sea ice observation:
 - Barents Sea
 - Fram Strait
 - Storfjorden

The following images are represented in Pauli RGB: Red: HH-VV; Green: 2*HV; Blue: HH+VV Area: ~3.5 X 13 km; boxcar 7X28 pixels, ENL=86; NESZ -30dB to -35dB; Incidence angle from 26° to 65°

Results: Avoiding misclassification in Storfjorden

✓ A ground survey confirmed that there was only First Year Ice in the scene.

ETH

Results: where is the open water, in Barents Sea?

RGB Pauli: boxcar

Detecting **open water** areas is an important task. It is hard to locate the water pool in this scene, looking only at the backscattering.

ETH

Consider the **Co-polarisations Ratio**, the open water areas appear very clearly in the image.

CoPolarisations Ratio

Comparison: can we do it with single pol?

Intensity of HV: Storfjorden

The HV channel is very bright in this area. If only this image would be used, it could be **mistaken for Multi Year Ice**

Intensity of HV: Barents Sea

The open water area is very hard to detect and its **backscattering** value is **comparable to** the one of many **other floes**.

Conclusions

- $\checkmark\,$ Polarimetry is important to extract information from sea ice
- ✓ Two examples were showed where polarimetry can help to:
 - **1)** Reduce misclassification (also for automatic algorithms)
 - 2) Detect special features as open water (that may be very hardly visible exploiting only one image)
- ✓ In the next future several satellites will be able to acquire polarimetry data exploiting large swaths (which are very beneficial for sea ice monitoring):
 - Sentinel
 - ALOS-2
 - RADARSAT Constellation Mission
 - Tandem-L

Cryosphere Applications

Irena Hajnsek ^{1,2}, Giuseppe Parrella ^{1,2}, Armando Marino ², Shane Cloude ³

¹ Microwaves and Radar Institute, DLR Oberpfaffenhofen

² Institute of Environmental Engineering, ETH Zürich

³ AEL Consultants

Knowledge for Tomorrow

Summary: Application Showcases

	Application	Contributors	Methods and used frequency (P/L/C/X)	Radar data preference / requirements / comments
Cryosphere	Land ice extinction (internal structure)	G. Parrella, I. Hajnsek	PolInSAR decomposition and inversion (P/L)	Preferred frequencies: P/L
	Snow water equivalent	G. Parrella, I. Hajnsek	PoISAR decomposition and inversion (C/X)	Preferred frequencies: X/Ku Dual-pol may suffice
	Sea ice: observation	A. Marino, I. Hajnsek	PoISAR observables and decompositions (L)	Wide swath needed
	Sea ice: thematic mapping	T. Eltoft	Statistical image segmentation based on PoISAR descriptors (C)	Wide swath needed
		L. Eriksson	Wishart classification applied to PolSAR entropy/alpha decomposition (L/C)	
	Sea ice thickness	M. Necsoiu	PolSAR decompositions, segmentation and empirical models (X)	Wide swath needed At X-band, dual-pol may suffice
	Permafrost observation	M. Watanabe	Based on a PoISAR two-layer scattering model (L)	Wide swath needed

