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Summary

«  With the un-abating global population increase our natural resources are
stressed as never before, and the global day/night monitoring of the
terrestrial covers from the mesosphere to the litho-sphere becomes all the
more urgent.

* Microwave radar sensors are ideally suited for space imaging because
those are almost weather independent, and microwaves propagate through
the atmosphere with little deteriorating effects due to clouds, storms, rain,
fog aerosol and haze: Globally humidity, haze and aerosols next to
cloudiness are increasing at a rather rapid pace.

« Thus, optical remote sensing from space especially in the tropical and sub-
tropical vegetated belts is already and will become ever more ineffective,
and microwave remote sensing technology must now be advanced strongly
and most rapidly hand in hand with digital communications technology.
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Summary continued

« The basic radar technologies to do the job at day and night are the
multimodal Synthetic Aperture Radar (SAR) sensors, first developed for air-
borne sensing implemented as for example in 1978 with the first space-
borne digital Sea-Sat L-Band SAR which had severe limitations in that it
was of fixed wide swath-width at a single arbitrary polarization (HH) and of
rather poor 25m resolution.

* In the meantime, fully polarimetric multi-modal high resolution SAR systems
at multiple frequencies and incidence angles were introduced first with the
multi-band AIRSAR of NASA-JPL culminating in the once-only pair of SIR-
C/X-SAR shuttle missions of 1994 April & October. This resulted in true
day/night space remote sensing of the terrestrial barren and vegetated land
and ocean covers using multi-band polarimetric SAR.

« Thereatfter, the Canadian CCRS, the German DLR and the Japanese
NASDA & CRL {now JAXA & NICT} took over steadily advancing the
Convair-580, the E-SAR (now F-SAR) and Pi-SAR airborne highly
advanced fully polarimetric sensors platforms, respectively.
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Summary continued

These separate international multi-modal fully polarimetric and also interferometric
airborne SAR developmental efforts culminated in a well coordinated group effort of
three independent teams eventually launching and operating Fully Polarimetric
Satellite SAR Sensors :

L-Band (ALOS-PALSAR-I launched by JAXA/Japan in 2006 January with ALOS-
PALSAR-II launched by JAXA/Japan in 2014 May 24;
C-Band (RADARSAT-2 launched by CSA-MDA in 2007 December

X-Band (TerraSAR-X launched by DLR-Astrium in 2007 July with the follow-on
tandem mission TanDEM-X launched in June 2010) .

Thus, international collaboration on advancing day & night global monitoring
of the terrestrial covers was demonstrated with the launch of the set of three
fully polarimetric multi-modal SAR Satellites at L-, C-, X-Band and its first
tandem satellite-pair update of the DLR TanDEM-X

These efforts will be topped by the near-future joint DLR-JPL/JAXA
DESDynl/Tandem-L wide-swath, high-resolution fully polarimetric sensor
implementation for both polar and equatorially orbiting satellite sensors.
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Evolutionary Development of Planet Earth:

« Wegner — 1912

* Discovering Plate Tectonics

» Hilgenberg — 1932

« Exploring Historical Planetary Evolution
« Of Planet Earth
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The terrestrial tectonology: Alfred Wegener’s tectonic plate theory and the
two major seismic belts

The theory of plate tectonics was pioneered by
Alfred Wegener in the early 20th C. He was
originally drawn to the idea when he tried to
explain the ancient climates.

WIDEBAND INTERFEROMETRIC SENSING AND IMAGING POLARIMETRY 10



UIC 50"  Communications, Sensing & Navigation Lab £k Gompuiat Engineering

MAJORTECTONIC PLATES l;:

DF THE WDHEIﬁF Y- Hurth A.rnr-_-r
. - piate-

" s plat
. il
thpLﬂE F;E;L*T \'t plate
) l.'ﬂut ‘I:"' .
Ewa : ‘|‘_

N Cocos plate ™
s

il Vo azc
Auﬂnﬂgﬁh‘-indra GIHE

_ platgf South American

Fiate

From BBC news site

WIDEBAND INTERFEROMETRIC SENSING AND IMAGING POLARIMETRY 11



University of lllinois . . . . . v - .
UIC 50"  Communications, Sensing & Navigation Lab £k Gompuiat Engineering

7 Section I-Palaeogeography

{

S ‘,
Plate 3. Four views of a smaller globe with continents and shelves almost covering the total surface, leaving - “
few spaces between land areas. Redrawn from Jordan, 1964. &
s
c

NOSNYT!

Plate 4. As the earth grew, the Sialic Crust cracked, and the continents drifted apart. Redrawn from
Schmidt-Thome, 1972. (After Haber, and Jordan.)
GEerHARD O. W, KReMP

1932 HILGENBERG Model of Primondial Earth
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* O. C. Hilgenberg of Germany in 1933 showed that if the radius in a model
of earth could be reduced to two-third of its length, all the continental blocks
could be adjusted in a perfectly snug-fit manner. The concept of earth’s
expansion was revived in the 1960s by S. W. Carey of Australia.

« It can be noted that in the primordial small earth there were no oceans
although epicontinental seas or lakes were present. The ocean-forming water
at that stage must have been associated with the mantle. Under such
condition, namely, association of large quantum of water under pressure, the
mantle rock must have been considerably fluid (Sen, 1983-2003).

« This vital clue has been based on experimental studies conducted by
Roy and Tuttle (1961) confirming depression of melting point of silicate
rocks under hydrothermal and ultrahigh pressure condition.
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Fundamental Earth Parameters
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Introduction: Why is “Air- and Space-borne Multimodal SAR Remote
Sensing” of relevance to Applications in Geology and Tectonology

— #=7)/ Lithosphere
Crust 0-100 km ; — =4/ (crust and upper-
thick ANy (A - most solid mantle}

To scale

Earth Layers
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Introduction: Why is “Air- and Space-borne Multimodal SAR Remote
Sensing” of relevance to Applications in Geology and Tectonology

Oceanic-continental convergence

Ocean-Continent Convergence

Oceanic-oceanic convergence

Plate Actions Ocean-Ocean Convergence
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Electromagnetic Spectrum from SLF - ULF - Visible - UV

* lonospher & ULF/ELF Signatures: Green
& Hattori postulates

* Vision in Optical Spectral Window:
Planck’s law

* HF Ground-Penetrating Radar and SAR
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Vector (Polarization) Electromagnetic Spectrum
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Vision in optical window

* Planck’s Law
Max Planck *

Discovered reason why terrestrial
creatures make use of one and the same
optical spectrum from interpretation of his

radiation law:
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Transmission Spectrum of Atmosphere
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lonospher & ULF/ELF Signatures:

« Schumann resonances

* Green postulates

« Hattori postulates
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Sun — Earth Interaction
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Terrestrial lonosphere & Magnetosphere
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Schumann resonance

« Basic Resonance of Earth-lonosphere Cavity

« Excited by Electric Storm Discharges: Lightening

« Approximate fundamental resonance length:

« Circumferential length at ~ 4km above earth surface Ls
« Basic Resonance frequency: fso =Ls/c ~ 8.6 Hz

« Because Earth-lonosphere cavity is not perfectly con-
spherical, a complete eigen-frequency calculation was
developed by Winfried Otto Schumann (1988 — 1974) of
which the first three eigen-frequencies are pertinent:

fso=86Hz fsi= 141Hz fso= 21.4Hz : fsa= 287Hz ... ..
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Green postulate

 The 3 Hz minimum was suggested by
Arthur William (Bill) Green, and utilized by
Dr. Jack Dea at NOSC, Point Loma, San
Diego first because man-made local
disturbances had not been too prevalent,
and the basic principles had been
developed by him during early 1990ies at
the sea-side USN-NOSC Laboratory
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Green and Hattori postulates

* The Terrestrial eigen-frequency spectrum

pPOSsess among others, two specific natural
resonances at 0.1 Hz and at 3 Hz which
are utilized for detecting natural and also
man-induced disturbances, known as the
Hattori and the Green resonances for
earth-quake pre-cursor detection, as
demonstrated next
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Recent electromagnetic signatures associated with the Chi-Chi and Chia-
Yi earthquakes of 1999.
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University of lllinois
at Chicago

UIC

Recent electromagnetic signatures associated with the Chi-Chi and Chia-
Yi earthquakes of 1999.
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Discrimination of seismo-magnetic signals
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Monitoring of ongoing surface deformation along Cheleng-Pu fault

Data fusion of DEM and
RADARSAT SAR images
By CSRSR.

Talwan

3800m
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The Western Pacific Rim of the Circum Pacific Rim and Taiwan
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The Western Pacific Rim of the Circum Pacific Rim and Taiwan

From gis.geo.ncu.edu.tw/921
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The Western Pacific Rim of the Circum Pacific Rim and Taiwan
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The destruction along the Cheleng-Pu fault caused by the Chi-Chi
earthquake of 1999 September 21
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Recent electromagnetic signatures associated with the Chi-Chi and Chia-
Yi earthquakes of 1999, May to December in Taiwan

LY CHEICEnRR eI PP PR NN ARERRE LY SUBIES3ERRCECIRELEeRLINNIRRNRRASS

i
CHi-Chi sarhquake |

o) " Chia-Yi eanhnunk.‘
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POy ano
“wa “ »o
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gammo
. - -
- - -

ganma
P E 48 13

Cay of manth

The raw data in LY station in March, April May, August, September,
October, November and December, 1999.
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University of lllinois
at Chicago

Recent electromagnetic signatures associated with the Chi-Chi and Chia-
Yi earthquakes of 1999.
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The raw data in HL and LP in March, April May, August,
September, October, November and December, 1999.
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Monitoring of ongoing surface deformation along Cheleng-Pu fault
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The destruction along the Cheleng-Pu fault caused by the Chi-Chi
earthquake of 1999 September 21
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The destruction along the Cheleng-Pu fault caused by the Chi-Chi
earthquake of 1999 September 21

ey
‘ %
4
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PART-Il, Microwave Polarization Radar & Polarimetric SAR

4. The Electromagnetic Microwave Spectrum & Signatures over
land & ocean

5. Background on Polarization Radar Theory & Scattering
Matrix Acquisition

6. Polarimetric Airborne SAR Sensors
7. Satellite POLSAR sensors
8. Scattering matrix decomposition theories and algorithms\
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The Microwave Spectrum & Signatures

* Electromagnetic Environment

* Resonant signatures over land & ocean
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Multi-Altitude Near-Range and Remote Sensing in Wide-Area Environmental
Surveillance for Real Time Monitoring of the Earth’s Biosphere

for an ecological investigation of the Earth through observation and identification of harmful
anthropogenic influences due to the interaction of:

oceans —

Atmosphere/Stratosphere/Mesosphere

Biosphere (Water)
7, =
81 << g(f) >> 1 Je
1, =1207[Q]

¢ for an early warning system of natural and man-made environmental catastrophes and to take quick

actions to buffer the impact to the catastrophe under the increasing pressures of a relentlessly un-
abating population explosion:

V. ~3x10°[m/s]

Hydrosphere

Severe weather D —

Typhoons
Earthquakes —>

Volcanic Eruptions
* Global Weather Changes

Degeneration into steppe

— Retreating Glaciers
Pollution of Ground Water

| | Pollution of Air

* Destruction of the Biosphere
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Hydrologic cycle with volcanologic & seismic activity
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Background on Polarization Radar Theory &
Polarimetric SAR Scattering Matrix Acquisition

« Kennaugh's basic Polarization radar
concept: The radar target operator

« Kennaugh-Huynen Polarization Fork

 Characteristic Coherent Radar Co/Cross-
Polarization Signatures

* The completely coherent case

* The partially coherent case
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Kennaugh’s Polarization Radar formulation

E'(r) = [S]|E" (r) (4.1)
Jones Vector v Scatter;\ Antenna Height
E
E X (s} R = B
A ¢ Sﬁ hy=—
1E; | t & S R R |E, |
e T ~ Ex’ E $
o P, E)’ -\ = ¥y’
7 BelseonE s 7
: t :Z’/ F2 \‘\.I/Y‘
J Y V=h-E-(h,E) z‘ \A
)’\ [S]E" -AE=0
Transmitter (T) Receiver (R)
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Huynen’s Polarization Fork and its Significance to
(Radar)-Polarimetry

Xi-Boerner' Solution of the Polarization Fork

(10
[S1=[U*(p)]exp(v[L]")m exp (v[L]")T[U"(p)]"exp (jE)
|0 tan?y
e'J'l _p(¢n' tu)e'.fh
1
[U(p)] =
PP ot (s ta) e e¥

m=|A|
Pont =H = Pimi s P2 =V =Pim2
Pent,2 = £ taN(/2 -y )exp[i(2y + =/2)]
Pim1,2 = +€XPLi(2y +7/2)] (LR)
Prst,2 = £ €XP(j27) (45°/135°)

Huynen’s Solution of the Polarization Fork
1 0

[H]=[U* (¥, T, v)]m [U(¥,7,,v)]exp(E)

0 tan?y
[U(y,71,,v)]=e*WlemFlevit]
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Pauli Spin-Matrices: SU(2) Unitary Rotation Group
) 10 0o -1 0 j -j 0
U1=1o ; 1 o]'m [jO 01]'
Rotation on the Polarization Unit Sphere

m=|Ay|=(0g=Span{[S]} +2Det{[S ]} ): Target Strength

(b Orientation Angle, V Target-Reflection Angle, T Target-Ellipticity
Y Characteristic Target Angle

Oy Kennaugh’s Polarimetric Excess

y [J]= ,» [L]=
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Characteristic Polarization States Standardized Huynen Fork
X, X-Pol Null = Co-Pol Max m - Target Strength

C,2 Co-Pol Nulls - Pair ¢ - Orientation Angle
M,, X-Pol Max - Pair v - Phase Change Angle
S,, X-Pol Saddle Point - Pair t - Ellipticity

y - Charakteristic Angle

Representations of Optimal Polarization States

WIDEBAND INTERFEROMETRIC SENSING AND IMAGING POLARIMETRY
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I-2 SAR Polarimetry and SAR Interferometry.

(S(HV)] =

(a) Target 10
XPOL~Nulls
XPOL-Maxs %2 /\x
BN
2
1 |
1
S Is |2 ’ MM
2 AB NN 900
00
0 1800  360° 9 o — 0 180°  360°
2=l e 24
26 = ¢ —
(d) (£)

A General Example
(a) Target Shape (c) Co-Polarization Spectrum (e) Relative Co-Polarization Phase
(b) Polarization Fork (d) Cross-Polarization Spectrum (f) Relative Cross-Polarization Phase
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Relative Co-polarisation phase plot

350

300

Ellipticity
°

Ellipticity

120 150 180 210 240 270 300 330
Tilt

d

PRelative Cross—polarisation phase plot

s-pol null &
co-pol max
5.

135° xepol max
50 £
-pol max 4 =
=
o
co-pol null
co-pol null -~
co-pol subma
s=pol saddle
RC it Ellipticity
a0 1z0 150 180 210 Z40 270 300 330 360
Tilt

The Kennaugh Spinorial (Huynen) Polarization Fork and Polarization Power and Phase Plots
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I-2 SAR Polarimetry and SAR Interferometry.

Optimization of the Kennaugh Matrix by means of the Lagrange Method
(Boerner with Chan , Tanaka , Kostinski , Yan , Liu , Liineburg ,...)

Principle:  Separation of the received Stokes Vector into a fully polarized and an unpolarized
Component Vector: g = g, + Zup

850 P8o (1-p)go

g-; = gsI - g1 + 0
852 82 0
853 83 0

p = Degree of Polarization

[ entire power density of the scattered field at the receiver

Max pgs, fully polarized part of the scattered intensity ( i.e., the useful "coherent partial
component" in Polarimetry )

Min (1-p)gs unpolarized noise component, where 1/2(1-p)g,, is always received

Y2(14P)8sw maximum total intensity of the coherent component: pg,
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I-2 SAR Polarimetry and SAR Interferometry.

| P

p=1 p=.8 p=20
coherent distributed partially total polarization
point scatterer coherent scatterer noise

PARTIALLY POLARIZED: b) Dependence on the received power density from the degree of
polarization p

Optimal Polarization States for the Partially Polarized Case
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The Electromagnetic Vector Scattering Operator [S]

Es(r)
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E (l Incident Wave
E*(r) u Scattered Wave
ES jkr B _
= ° Sy Oxy

Scattering Matrix

Scattered Waves

Scatterer

_E;(

e

— [S]El (r)
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SCATTERING MATRIX

BISTATIC CASE
SCATTERING MATRIX or JONES MATRIX

E:| e[Sy Sx || EL

E; r 1Sy Sy ||E/

DEFINED IN THE LOCAL COORDINATES SYSTEM
[S] IS INDEPENDENT OF THE POLARISATION STATE OF THE INCIDENCE WAVE

[S] IS DEPENDENT ON THE FREQUENCY AND THE GEOMETRICAL AND
ELECTRICAL PROPERTIES OF THE SCATTERER

TOTAL SCATTERED POWER

span([S])=Trace([SIS]” )=l Sux > +1 Sy [ +1Svx I +1Suy I
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Backscattering Matrix
MONOSTATIC CASE
BACKSCATTERING MATRIX or SINCLAIR MATRIX

In the case of Backscattering from Reciprocal Scatterers:

FSA _ __ g FSA
— T Ovx

RECIPROCITY THEOREM S/ =S5 & S

| )
= _e"“[Sxx SXY} E
SXY SYY EYI

BSA CONVENTION
\_ ( ) Y,

-

E, r

TOTAL SCATTERED POWER

span([S])=Trace([SIST" )=l Sux I +21 Sy, I +1Syy I
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Polarimetric airborne SAR sensors

There exist several airborne multi-modal
SAR Imaging platforms that support fully
polarimetric POLSAR systems — such as

t
t
t

ne NASA-JPL AIR/TOP-SAR
ne DLR ESAR - replaced by FSAR

ne ONERA RAMSES SAR

And by today more than 12 airborne
platforms, of which the FSAR is used here
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POLARIMETRIC AIRBORNE SAR SENSORS

P — S =)

AES1 AIRSAR DOSAR RENE

AeroSensing (D) NASA / JPL (USA) EADS / Dornier GmbH (D) UvsQ / CETP (F)
GulfStream Commander DC8 DO 228 (1989), €160 (1998), 6222 (2000) Ecureuil AS350
X-Band (HH), P-Band (Quad) P, L, C-Band (Quad) S, C, X-Band (Quad), Ka-Band (VV) S, X-Band (Quad)

ESAR EMISAR MEMPHIS / AER II-PAMIR STORM
DLR (D) DCRS (DK) FGAN (D) uvsQ / CETP (F)

DO 228 G3 Aircraft Transal €160 Merlin IV

P,L, S-Band (Quad) L, C-Band (Quad) Ka, W-Band (Quad) / X-Band (Quad) C-Band (Quad)

C, X-Band (Sngl)

PHARUS PISAR RAMSES SAR580
TNO - FEL (NL) NASDA / CRL (J) ONERA (F) CCRS (CA)
CESSNA - Citation IT GulfStream Transal C160 Convair CV-580
C-Band (Quad) L, X-Band (Quad) P.L,S,C, X, Ku, Ka, W-Band (Quad) C, X-Band (Quad)

+ CASSAR (China), MIT/Lincoln Lab (USA), P3-SAR (NADC / ERIM -USA), Military Systems ..
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New features:
- significantly enhanced resolution and image quality

- simultaneous data recording in up to four frequency bands
- modular design for easy reconfiguration
- single-pass polarimetric interferometry in X- and S-band
- fully polarimetric capability in all frequencies

E-SAR technical characteristics

X C L P

RF [GHZ]
BW [MHZ]
PRF [kHZz]
Rg res. [m]
Az res. [m]
Pol/InSAR
Rg cov [km]

Sampling

96 53 13 0.35

50-100 (selectable)
upto 2

1.5 15 20 3.0

0.2 03 04 15

-+ -I- +/o +/o
3-5

6-8 Bit complex; 100MHz;

max number of samples 4 K per
range line; 1 recording channel.

=

Communications, Sensing & Navigation Lab £k’

F-SAR technical characteristics

Electrical and
Computer Engineering

X cC S L P
RF [GHZz] 96 53 3.2 13 0.35
BW [MHZz] 800 400 300 150 100
PRF [kHZz] up to 12
Rg res. [m] 0.3 06 075 15 225
Az res. [m] 0.2 03 03504 15
Pol/InSAR +/+ +/o +/+ +/o +/o
Rg cov [km] 12.5 (at max.bandwith)
Sampling 8 Bit real; 1000MHz;

max number of samples 64 K per
range line; 4 recording channels.
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E-SAR and F-SAR

. The E-SAR and F-SAR are operated onboard DLR’s DO228-212 D-CFFU by the Microwaves and Radar
Institute in cooperation with DLR’s Flight Facilities based in Oberpfaffenhofen

The F-SAR is currently in development and is planned to fully replace the E-SAR until middle of 2011
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F-SAR X-Band Quad-Pol

ey o — N W 5
- & Y g : o 2 4 N i

WIDEBAND INTERFEROMETRIC SENSING AND IMAGING POLARIMETRY




University of lllinois 7 Electrical and

= it Communications, Sensing & Navigation Lab £ Compuier Engineering

Quad-Pol

Zoom
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Main Satellite POLSAR sensors

 L-Band: ALOS-PALSAR JAXA/Japan in Jan 2006 —
followed by ALOS-PALSAR-2

* (C-Band: RADARSAT-2 CSA-MDA in Dec 2007 —
followed by RADARSAT-3 & 4
« X-Band: TerraSAR-X DLR-Astrium in July 2007 with

follow-on tandem mission Tan-DEM-X (Fig. 2) launched
iIn June 2010

« Tandem L-Band: All of these efforts will be topped by
joint DLR-JAXA TanDEM-L wide-swath, high-resolution
fully polarimetric sensor implementation,
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Table 1. Comparison of High-Level Parameters

Parameter

PALSAR

RADARSAT-2

¥ Electrical and

Communications, Sensing & Navigation Lab ECE corewtar Bogineucioy

TerraSAR-X

k

ALOS / PALSAR
Japanese Space Agency (JAXA)
L-Band (quad), 2006

=

RadarSAT-II
Canadian Space Agency (CSA)

C-Band (quad), 2007

Orbit: LEO, circular Sun-synchronous | Sun-synchronous Sun-synchronous
Repeat Period (days) 46 24 11
Equatorial Crossing time (hrs) | 22:30 (ascending) | 18:00 (ascending) 18.00 (ascending)
Inclination (degrees) 98.16 98.6 97.44
Equatorial Altitude (km) 692 798 515
Wavelength (Band) 23 cm (L) 5.6 cm (C) 3cm (X)
Fully polarimetric mode Yes Yes Yes

TerraSAR-X
German Aerospace Center (DLR) / Astirum
X-Band (quad), 2007
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TerraSAR - X (1 & 2)
(2010)

Pol — INSAR Sensors
TanDEM-X
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TandemSAR-L : JAXA & DLR
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The TerraSAR-X satellite bus claims heritage from the
successful Champ and Grace Missions. The spacecraft
bus features a primary structure with a hexagonal cross
section. The active phased array SAR antenna is
attached on the Earth-facing panel in the figure. The solar
array is body-mounted, a satisfactory scheme for the sun-
synchronous orbit plan. The X-Band down link antenna is
mounted on a 3.3 m long deployable boom in order to
prevent interference with the X-Band SAR instrument.
This concept enables simultaneous data acquisition and
data down link.

Table 1. Selected Mode Parameters

Mode (selected) Resolution (m) Swath (km) Polarization
Standard, stripmap 3 30 1 HH or VV
High-resolution Spotlight 1 10 1 HH or VV
ScanSAR 16 100 1 HH or VV
Quad-pol (experimental) 3 15 1 Full polarization
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NATIONAL SPACE DEVELOPMENT AGENCY OF JAPAN

ALQOS Satellite System

. Data Relay
Antenna

HEH G
GPS Antenna

PALSAR

Solar

PRISM AVNIR-2

¥ Electrical and

Communications, Sensing & Navigation Lab A%k Compuier Engineering

. o §

Advanced Land Observing Satellite

Launch Date

June 2004

Launch Vehicle

H-11A

Spacecraft Mass

4,000kg

Generated Power

7KW

Orbit

691.65km
Sun Synchronous

Répeat Cycle
(Sub-Cycle)

46 days
(2 days)

JALray

AVNIR-2: Advanced Visible and Near Infrared Radiometer type 2
PALSAR: Phased Array type L-band Synthetic Aperture Radar

n
Earth

-

DFIighi/l PRISM : Panchromatic Remote Sensing Instruments for Stereo Mapping
irectio
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at Chicago
ALOS ALOS-2
Launch Jan. 24, 2006 May 24, 2014
Orbit type Sun-synchronous
Altitude 690 km 628 km +/- 500 m (for reference orbit)
Revisit time 46 days 14 days
LSDN 10:30 12:00 +/- 15 min
Sensor PALSAR, PRISM, PALSAR-2
AVNIR-2

:

,

(I f‘lwll'

SA& antenna\',*”

Solar paddles

- , -
,.'lw.‘j 3' = -"

Ca
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PALSAR PALSAR-2

Band L-band Synthetic Aperture Radar

Antenna Active Phased Array Antenna type | Active Phased Array Antenna type
one dimensions scan two dimensions scan
(range) (range and azimuth)

Antenna size 3m(El) x 9m(Az) 3m(El) x 10m(Az)

Bandwidth 14/28 MHz 14 — 84MHz

Peak transmit > 2000 W 5100W

Power

Observation 35—-350km 25 —490km

swath

Resolution Range :10mto 100 m Range :3mto 100 m
Azimuth: 10 m to 100 m Azimuth: 1 mto 100 m




PALSAR-2 Specifications .

Spotlight |Ultra Fine ngh Fine ScansAR ScanSAR
sensitive nominal wide
Bandwidth 84MHz 84MHz 42MHz 28MHz | 14MHz |28MHz| 14MHz
Resolution Rg X Az: 3m 6m 10m 100m 60m
3X1m
Rg X Az: 350km 490km
Swath 259>< poir | 5Okm 50km 70km 5-scan) (7-scan)
Polarization SP SP/DP SP/DP/QP/CP SP/DP
NESZ -24dB -24dB -28dB -26dB -26dB | -23dB -23dB
S/A Rg 25dB 25dB 23dB 25dB 25dB 20dB
Az 20dB 25dB 20dB 23dB 20dB 20dB

SP:HHorVvVorHV, DP: HH+HV or VV+VH , FP : HH+HV+VH+VV , CP : Compact pol (Experimental mode)

Main applications:

Fine beam (DP) . Forest and land cover monitoring / DINSAR
ScanSAR (DP) . Rapid deforestation / wetlands / (ScanSAR)INSAR
Spotlight (SP) . Emergency observations

Ultra Fine (SP) . Global map, INSAR base mapping

High sensitive (QP) : Global map
ScanSAR wide (SP) : Polarice
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Mode (selected)
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ALOS is one of the largest Earth observing satellites
ever developed, at 3850 kg. It is in a near-exact 45-
day repeat sun-synchronous orbit, 690 km altitude
above the equator. The active phased array SAR
antenna is obliquely Earth-facing, aligned with the
spacecraft velocity vector. The solar array is
arranged at right angles to the orbit plane, consistent
with the near-mid-day orbit phasing. The X-band
down-link must be shared with optical instruments,
which constrains SAR operation times.

Table 1. Selected PALSAR Mode Parameters

Resolution (m)

Swath (km)

Looks

Polarization

Standard, stripmap 20x 10 70 2 HH or VV

Fine 10 70 1 HH or VV
ScanSAR (5-beam) ~100 350 8 HH or VV
Dual polarization (as above) (as above) (as above) (HH, HV), (VV, VH)
Quad-pol 30x10 30 2 Full polarization
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Scattering matrix decomposition theories and
algorithms

* In order to relate polarimetric properties to
scatterer characteristics, attempts were made
first by Kennaugh, then Huynen to make use of
the coherent Kennaugh matrix decomposition,
which for the partially coherent case was then
explored among others by Barnes & Holm,
Durden & Freeman, and more recently by
Yamaguchi & Singh.

* However, the full decompositions of Huynen &
Kennaugh may still be superior (Touzi)
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VECTORIAL FORMULATION OF THE SCATTERING PROBLEM

SCATTERING MATRIX [S] _ |:2xx Syy i|

YX SYY
| | ST
- 1 S2
SCATTERING VECTOR S :=V([S])= ETrace([S] [5”])= - eC,
S4

With: V([S]) MATRIX VECTORISATION OPERATOR | DT

[#] SET OF ORTHOGONAL 2x2 MATRICES

—>

FROBENIOUS NORM OF S
ISIF =S"-S=S, P+|S, " +|S; " +|S, [
= Span([SD=| Syx I” +1Syx > +1Sx I +1Syy I
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PAULI SCATTERING VECTOR  k =V ([S])= %Trace([S] lw. )

SET OF 2x2 COMPLEX MATRICES
FROM THE PAULI MATRICES GROUP

AT R PR T . O O [l
!

1 .
ﬁ[SXX + SYY SXX - SYY SXY + SY)( J(SXY - SYX )]T ]

[k

Advantage: Closer related to physical properties of the scatterer




UIC 50"  Communications, Sensing & Navigation Lab £k Gompuiat Engineering

LEXICOGRAPHIC SCATTERING VECTOR 2=V ([S])= %Trace([S] lv.)

SET OF 2x2 COMPLEX MATRICES
FROM THE LEXICOGRAPHIC MATRICES GROUP

bd-{15 ol 4o o4 o4 o)
| ]

[ Q=[Sxx Swy  Svx SYY]T ]

Advantage: Directly related to the system measurables
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SCATTERING VECTOR TRANSFORMATIONS

Pauli Scattering Vector: Lexicographic Scattering Vector:
) Sxx F Syy | _Sxx |
k=i Syx ~ Svyy 0= Sy
-2 Sxy + Syx - Syx
_j(va _ SYX )_ L SYY _

UNITARY TRANSFORMATION
lS=[D4]'L2 and Q=[D4]_1K=[D4]T*K ~ ]

1 0 O 1
111 O -1
WHERE [D,] IS A su(4) MATRIX [D,]=—
IN ORDER TO PRESERVE THE NORM J2]o 1 1 0
OF THE SCATTERING VECTOR 0 j —j O




UIC 50"  Communications, Sensing & Navigation Lab £k Gompuiat Engineering

4 N

THE DIFFERENT
TARGET POLARIMETRIC
DESCRIPTORS

(K] KENNAUGH Matrix

TRANSMITTER: X&Y J k /

RECEIVERS: X&Y

STATISTICAL DESCRIPTION
PARTIAL SCATTERING POLARIMETRY




UIC 227" Communications, Sensing & Navigation Lab £k Sommiidl Bngineering

Incoherent decomposiﬁon of FULL-POL-SAR data

Eigenvalue analysis H/alpha/Anisotropy (1997)

Model-based scattering power decomposition

8 FDD: Freeman & Durden: 3-component (1998)
8 Y40: 3-comp. + helix scattering = 4-comp. (2005)

8 Y4R: 4-comp. with rotation (2011)

8 S4R: Y4R + extended volume scattering (2012)

¥ 8 G4U: S4R with additional unitary transform (2013)

r] Hybrid Model-based/Eigenvalue decomposition
8 Hybrid Freeman/Eigenvalue Decomposition (2009)

l 8 General Hybrid Decomposition (2013)
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Polarization matrices and their relations

3 x 3 polarization matrix

C'|) Covariance
<[ ]> (HV, LR basis)

Data it
AL acquistton 4 grder ([T]) Coherency
statistics
[SHV)] =[ ?*H ‘;HV ] 4 x 4 polarization matrix

_ _ real valued elements
Scattering matrix

(HV, LR basis) ((K]) Kennaugh
(IM])  Mueller




Electrical and

UIC 0" Communications, Sensing & Navigation Lab £k onpeer Engineering

Full-Pol-SAR Data

Space-borne  Air-borne

_ _ 4
|
Scattering Matrix
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POLSAR image analysis
Scattering matrix HV Basis ..
= Quad. Pol. data
HH, 2HV, VV .I
HH ||HV ||VV
Pauli Basis .. Color-Composite

<Average> HH-VV, 2HV, HH+VV

Eigenvalue Entropy, Alpha-angle, Anisotropy

>
I)\l A2 ||A3

Scattering Power Decomposition ~ pg double
Covariance matrix bounce
Coherency matrix .. bs oy

surface volume
Pd, Pv, Ps, Pc scattering scattering
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Surface + Double + Volume + Helix scattering
scattering bounce scattering

expansion matrix

1550

570

30 o 0 s
1 8 0 200 200 000
o] e LI610 Llo1 %5
3'_5"[} a 10 TDDI i [P
00 0 0 00 0zj 1

550

57 0

3010 o0 8

Scattering Power

Pc

The four-component decomposition of scattering powers Ps, Pd, Pv, and Pc
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under the condition of mono-static radar Sy = Syy

Coherent

[ S ]relative = ‘
Sy \ e Sca’c‘cevmg matrix

= (1/2) Trace {S[y3}-L. wlz"

Scattering vector
v-{ves 3] v2lo ) vely o)

CO’/KZVGVICY or Covariance matrix @

HH VV

28y

Incoherent

<[T: S SN NI

29,08,
T et

2 SHV an Sy 2 Suy

How many mdependent po [anmetnc mformatwn ?
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Tll T12 T13
Advantages of Coherency Matrix ({ T1)=|T, Ty Tx
T13 T23 T33

Elements are related to phys ical scattering nature

The second order statistics of polarimehfic informaﬂon

All the infovmaﬁon contained is the same as those of 3X3

covariance matrix

Easy to fovmula‘ce and unitary ‘tmnsfovm
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FDD

Freeman and Durden 3-Component Scattering Power Decomposition '

[T]= fs[Ts1+ fq[Tq 1+ fy[Ty]

1 p 0 |05|2 a 0 20 0
Tl=fs|p |A% 0]+fg|a” 1 0+f\,%0 10
0 0 O 0 0 0 001

with reflection symmetry< S, Si > =0, ( SovSiy ) ~ 0 for natural distributed targets

L3

TOfél/ Power ( 77))= Surface Double Volume |

Scattering Bounce _
Scattering scattering

Ps Pd Py
[1] A. Freeman and S. L. Durden, ‘A Three-component scattering model for polarimetric SAR data,
1EEE TGRS, Vol 36, No. 3, pp. 963-973, May 1998.

W\
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FDD v40 Component Scattering power decomposition

LT = AT D e +Jif([T]>double+ﬁ([T])ml+f([ ]

for general case < S Sy > <

~

helix

\/

1 B 0 foo

2 c
=f| B8 |B]" 0 +510 1
0O 0 0 _0$J

_@@TB _ 6 parameters out of 9 are counted in the

<[ T ]> =T, @@ expansion

T % 7 % @ 3-component decomposiﬁon counts 5 out qf 9
72 [Freeman and Durden Decomposition, FDD]
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Y4R
How can be reduced the effects of the polarization orientation shifts from the
decomposition results?

Rotation Q .
* scattering
E mechanisms
0 a2 e<

O Sk




UIC

University

at Chic

ago

of lllinois

5 = Tll TIE TIS
Rotation of data matrix (T =| T T Ty
T3 Ty T
([7(6)]) = [RO) ITD) [RO)] 2oLyt [2ReAT)
1 0 0 o2 Ty, - Ty
[R(8)] = 0 cos29 sin29
0 —sin 24 26
S =7 eos This rotation makes 75;(8) = j Im (T3)
Four-component _
decomposition | P=2|Im(T5(0) | | Helix scattering power
|
Volume scattering T,,(8) + T (8) —2 Re (T1»(9))
ower 101og — -
P T1,(0) + T5, (0) + 2 Re (T14(6))
_2dB v 2dRB \
|

15

R:T?[ETAQ}Jﬂ I P,=

|
| p,=2[27,6)-P]

| if P.< 0. then P.=0 (remove helix scattering) =3 comp.

(P,. P;. P,) decomposition

S = nﬂm Lp,
D=Ty,(®)-35P-SP,
C=T(6)- %P

: §=T1(0)- o)

: D =T5(6) - T33(6)
|
|

C=T,(®

S =Ty, (0) - J,

TP =Ty, (8) + T, (B) + T3;(8)

no

yes

Co=T(0) Ty (0) - Tsy(0) + P,

Surface yes 1o Double bounce
scattering scattering
P:S'Jr|c|2 P_D+|C2
K] - S d D
P:D—|C|_ P:S—|C|_
d S § D
T r T
if [ P,>0,P,>0 | P,>0.P,<0 | P<0, Pﬁ>0]
1 1
. ] . ] . | J
Decomposed power 1 1 : P,
1
P\!R!”P\"R: EP\!‘D( []d:O : P\-"Pr' P\:O : P\:Pa':O
TP=P+P,+P,+P VP =TP-P -P | P,=TP-P -F, | P,=TP-P,

Four comp.

Three comp.

Three comp.

Two comp.

rw 3
B

7 Electrical and
» Computer Engineering



lectrical and
emputer Engineering
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4-component scattering power decomposition algorithm
using rotated coherency matrix

q Rader line of sight

Deorientation ¢

A

Rotation of imsge
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S4R

Volume scattering matrix for the HV component - f (7(6)] p(6) dO

(. ° sk [S]= 10 , 00
HYV from dipoles Re (5, 5,,) > 0 '_ _ o) [01]
H0)=1sin0 ?:% 9):%(:050 ) _ hny olume scattering W
~ 10 log <|SVV|> -4dB -2dB 0dB 2dB 44dB .g
2 | . | . |
:g 0=n -0=0 <|SHH| > ! I ! -§
‘ 1550 200 15-5 0 .

g | R Rt 310‘_57 0}»L
s ] I\:Iﬁ' 00 8 001 00 8 %
_c°§ 0--1 "‘l / p(®) =% sin pO) = 5= p(O) =5 cos 6 $_

& . . * QD
g |HV from oriented dihedrals Re (5,,S$,,) <0 se[ ) o] o

p(@);%cos(? for —%<9<g 000 —
1
L] o re——— .................E 1 0 7 0
| 15100 J
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G4U

How can the comp lete Full-POLSAR informaﬁon be utilised in decomposition models?

Unitary
transform

=>

Rotation

4 scattering
mechanisms

|

O

Gulab §!Qgh Y. Ywhl and _S.-E. Park,

unitary transformation of coherency matrix,” IEEE Trans. Geoscie. Remote Sens., vol., no. , pp., Sept. 2015.
online available



~ Unitary transformation Iy f ER

( . | of data matrix ([T =(k,k,)y=|Ts Ts Ty
ni Ty Ty Ty

(7O =[RONITIROT 201 (2 Re {?})
27 433
G u Four-component
4 decomposition > Fo=2{In{Tx)]
\_ J Surface scattering [ yes C,>0 -
Volume () -2Re (T)(

power

HV from dipoles and dihedrals ul—

1
0
0

‘ TP=T, +Ty + Ty

0 0
cos 26 sin 26
-sin 26 cos 26

1

()PC

—_

!

j

T
P, = % [2755(6) - P.] : P,=2[2T3(6)-P] P,= % [274:(6) - P]
Iz’f P, <0, then P.=0 (remove helix scattering)
5=Tu-%1’v : S=Ty-5P : S:T“—%Pv S=T,
D=TP-P,-P,-§ : D=TP-P,-P.-S : D=TP-P,-P.-§ D=TP-P,-P.-§
C=Tul0) + Til0) - % P, : C=T,(0) + T:5(6) : C=Ty(0)+ T,(6) + % P, C=Tx(0)+ T;6)

C,=2T, +P.-TP

Surface scattering -
Gulab Singh, Y. Yamaguchi, and S.-E. Park, dominant \ "
“General four-component scattering power f p_g,lCP Double bounce b _p.lCF
decomposition with unitary transformation of S dominant ) Fu D
coherency matrix,” IEEE Trans. Geoscie. P, = Q l P‘:S_%
Remote Sens., (in press) -
For P, and P, . i [ P,>0,.P,>0 | P,>0,P,<0 | P,<0 R,>0]
v . I : I , I

Decomposition powers : : :

P pop-0 ! PP, P, P : PP Py=0 1 PP P=0

P-TP-P. : TP=P +P,+P, +P, ! P,=TP-P-P ! P,=TP-P,-P,

Two component

Four component

Three component

Three component
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Four-component decomposition New rotated decomposition

Scattering power decomposition by rotation of coherency matrix
for Niigata City area in Niigata Prefecture of Japan
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ALOS-1, 071106

Quad-Pol
G4U

Yoshio
Yamaguchi
&

Gulab Singh

2014 Dec. 10
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c

S

Univer

UIC

G4U Rotated four component decomposition GU4/Yamaguchi
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PART-IIl POLSAR Applications for environmental remote sensing and
geophysical hazard detection and subsequent disaster assessment

9. Application to environmental remote sensing in agriculture,
forestry & aquaculture\

10. Application to earthquake detection and damage assessment
11. Application to volcano eruption assessment

12. Application to Tsunami detection and disaster assessment
13. Application to Mega-cyclone disaster assessment
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Monitoring of surface deformations using
differential SAR interferometry and Polarimetry

* Application to Earthqguake Detection

 Application to Volcano Eruption

 Application to Tsunami Detection and
Disaster Assessment

« Application to Mega-Cyclone Disaster
Assessment
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ALOS/PALSAR Footprint

503km g Epicenter

Off-Tohoku 9.0
Earthquake with
Super-Tsunami
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. 2010791 &7 Sl
2 1/a11 ALOS PALSAR
St o+ 201 ok
“ 5 25T H0E
2010’10’7-8
o 7 ALOS PALSART—
O+ o+ waS Zia
ERSDAC L1.0%% F
2
§+ 2 + i +|  2010/10/28 (FBD)
2011/3/15 (FBS)
[EHEHLEER)
g-\- + =k + +
2011/2/2 (FBS)
" 2011/3/20 (FBD)
o
Y +  0m22 + +H [EREEHEER]
) =
2011/3/20
2010/9/29 (FBD)
b 2011/4/1 (FBS)
[ EHEER]
+
+ X~|
(2011/3/11 M9.0)
BRAROE LR
4
{
A -
o 3
R
E1) 25
b
10 - 2
R
i} 15
=
1
= 05

meters
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15T
0 (SRR W'

' Ichinoseki e

Ishinomaki harbor
38*25’N, 141*18’E
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Destruction of City and Harbor of Ishinomaki by 110311 Tsu-nami (Harbor-Wave)
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Before

NG

Matsushima Air Held T S t2
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Off-Tohoku M9 Seaquake & Tsunami 110311

ALPSRP257090760-P1.1__A

Scattering power
decomposition
S4R

20101121

Scattering power
decomposition
S4R

20110408
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Off-Tohoku M9 Seaquake & Tsunami 110311
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Off-Tohoku M9 Seaquake & Tsunami 110311

[:] collapsed by tsunami

. |coveredby tsunami
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ALOS-PALSAR Polarimteric Mode

Ascending Indonesia 2007/3/10

Data no.
ALPSRP059887030
ALPSRP059887040

2009/3/15

Jﬂ;_l_:iik::l‘lu Humhaﬁ%ﬂ Data nO

= Plime Ba ALPSRP167247030
ALPSRP167247040

Java

©JAXA, METI

Yoshio Yamaguchi
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Indonesia

—-71.942N
112.870E

2007/3/10

ALPSRP059887030-P1.1__A

\K\\'}/{‘ ;5, AN :"_ RSP
©JAXA, METI ?\w /,% ;'} N NS
Scattering power e

Decomposition

SemerqZ

ligata University Decomposed image (Ps, Pd, Pv)

WIDEBAND INTERFEROMETRIC SENSING AND IMAGING POLARIMETRY




UIC 0" Communications, Sensing & Navigation Lab £k onpeer Engineering

Mount Semeru puffs steam behind a cloud of sulphur gas
from Mount Bromo in the Tengger caldera on Java.
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2007/3/10 Y40 »
-7.942N b by ps
112.870E ;

Indonesia

Pauli-basis

HV-basis
(HH,2HV,VV)

©JAXA, METI
ALPSRP059887030-P1.1__A
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Y4R

Semeru / -

G4U
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Gau Y4R

Y40 Y4R4C

Comparison of YAMAGUCHI & Gulab SINGH Decompositions
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Mt. Merapi

7.400S
110.464E

Lo, . Surabaya
o ; (=)
Sur: 3
;&1 ) Kediri
: J

.—)Yogﬁ'zlakaré

Malang

ALPSRP262863760-P1.1__ D
© JAXA, METI

2010/12/31

Polarimetric scattering
power decomposition
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MERAPI Volcano viewed from Main Boulevard of UGM in YOGYAKARTA, JAVA/INDONESIA
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o= 1

M

Gunung Merbabu A

&
Gunung Merapi

MWing M‘e'}apcti;ation on
3-07-15

Miigata University
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[Nature,
January
2005]

Tsunami Physics

- The wave fravels

COre Wi crashad
bowwards. the noaroy

shorn of Inconasa.
Hnotnor Damed od
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BOD &I pead Feoir [ odi2an
waber, 'win a wadeangth
iof H00 & and an

dveragqe wave h o
just gﬁ. o cu-nlmﬁ'u-:-.

‘ Colhsion

Wiher this wawe omiend
sralioay Wi, [ Shodsed
bix bens of Eiormesdnes o
hour, its warrekangth
shorinngd 20 about

5 lm, and Hs haight is
thought b Fave Soaned
bx mina Hhan e mites.
Thee trough of the wane
oftan hits batons the
crest (2s shown).
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Tsunami Physics

* Before the earthquake
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ind an Oooan was sidng
uredor tha cond nortal
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oo mial oSl s
por tharks %0
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ol [ sl
[Nature,
January nli'ﬂ t!ﬁﬂ
2005] : the

This fzdt niptumed
vintoridy, allowing tha
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CTRATING & Wave orost
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Tsunami Wave Appearance

Source: www.waveofdestruction.org

« Atsunami wave crest has three
general appearances from shore:

— Fast-rising tide
— Cresting wave

— A step-like change in the water
level that advances rapidly
(called a bore)

« Series of waves
— Most tsunamis come in a series of waves that may last for several hours

— The outflow of water back to the sea between waves can cause more
damage than the original incoming wave fronts

— The first wave is rarely the largest
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North-East Indian Ocean Tsunami, 2004 December 26

<M . Myanmar =
by

T

107

-15° T T T
70° 80" 8o’ 100° 110
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http://earthobservatory.nasa.gov/Newsroom/NewImages/Images/sunda_trench_earthquake.pdf
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“Natural hazards are inevitable.
Natural disasters are not.”
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ALOS-PALSAR Polarimteric Mode: 2007 ~ 2010

Ascending Indonesia 2007/3/10

Data no.
ALPSRP059887030
ALPSRP059887040

2009/3/15

Jﬂ;_l_::'ikijl‘lu Sumhﬂﬁ%ﬂ Data NO.
= Plime Ba ALPSRP167247030
ALPSRP167247040

©JAXA, METI

Yoshio Yamaguchi
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Indian Ocean Tsunamis: 1833 & 2004

10 20 40 inches 8 24 40 inches

1833  MAXIMUM WAVE HEGHT OFFSHORE N 2004  wanum wave HEIGHT OFFSHORE |

Hannah Fairfield/The New York Times, Science Section, January 4, 2005
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The 26-Dec-2004 Tsunami

- _F - - .y

heanir ) viren fidghl jar

i 4 A0 WK Arf-  lany e cunng the
4700 imunamiimoc
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Maximum water elevation

meters

10.00
2.00
145
1.50

- 125

 1.00

0.75

0.50

0.25

0.00

A.Piatanesi - INGV
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Banda Aceh Overview

(Before Tsunami) (After Tsunami)
Imagery collected April 12, 2004 Imagery collected January 2, 2005
DigitalGlobe DigitalGlobe
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South-East Asia
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Feb 26, 2005 Mw6.7

* Mar 28, 2005 Ms8.4 el ol
2004
oy . Singapore

O

o T Jakarta

V e :ﬂ
_ Krakatau
- e, e
= e .

.

A flurry of ruptures have occurred since 2000
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Krakatau Tsunami Travel Time
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SAR Meteorology

 Although various airborne & satellite weather
radars had been developed, the need for
meteorological SAR is in urgent need because
of detecting close to surface phenomena over
land and ocean:

The first positive implementation resulted from
TerraSAR-X, being demonstrated for both cloud
cover and volcano plume assessment; and the

Addition of a Ka Band fully polarimetric POLSAR
Satellite sensor would be of great use.

WIDEBAND INTERFEROMETRIC SENSING AND IMAGING POLARIMETRY 145



UIC 507" Communications, Sensing & Navigation Lab £k Eompuier Bngineering

The TerraSAR-X Satellite
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Physical interpretation of rain cell signatures
« Partial backscattering at hydrometeors (precipitation volume)
« Attenuation of incident wave

Received signals

Amplitude
%

- ———  Backscattered wave (attenuated) (B)

— Transmited wave ——  Backscattered wave from hydrometeors (A)
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Overview of effects

Effects:

« delay

e attenuation
* noise

« scintillation

caused by:

e atmospheric gases
e rain, precipitation
« clouds, fog

* lonosphere
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Transmission spec

trum of the atmosphere / Attenuation

e

= a4 —
yi i3S

Gaseous attenuation negligible
—> focus on precipitation

Specific Attenuation [dB/km]

0 20 40 &0 #20 100
Rainrate [mm/h]
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Slant range reflectivity profile (,,A-scope®) for the rain
cell cut from a very recent TerraSAR-X measurement

Back'scatterin'g at
/ hydrometeors

Area with strong
attenuation

L

Backscattering
without visible

attenuation effects
00 100 200 300 400 500 600 0 160 260 360 400 560 660 700

Range —
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Recent examples of propagatlon effects recorded W|thTerraSAR X

Data acquwed over Sheffleld UK
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L]
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Eyjafjallajokull 4‘

WA
A Eyjafjallajoku

=l

A Main volcanoes
[ Tholeiitic basalt
[ Alkalic basalt
[ Transitional alkalic basalt
[ Late Pleistocene/ Holocene rocks|
[_] Other rocks

Atlantic Ocean
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NASA-JPL UAVSAR on Global Hawk
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Most affected regions

ANNUAL average rainfall total (mm)

|
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Upcoming High- aIt|tude PoISAR Sensors
@ uavsar JPL ‘ =

Gulf-Stream Il
L (Quad - Pol)

(HH-VV, HV, HH+VV)
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Prediction of Future Megastorms: California & East Coast

o
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PART-IV, Needs for Multi-Band &Tandem Satellites & Future
Outlook

14. New space borne Tandem SAR satellite sensors, P, L, S, C,
X, K, V, W-bands

15. Additional Back-up Airborne FSAR Test measurements in all
pertinent bands

16. Development of additional UAW Multi-Band POLSAR sensors

17. Development of Equator-orbiting wide-swath, multi-band
POLSAR Satellite sensors

18. Identification of regional needs for Equator-orbiting sensors:
Pacific ocean & islands,

Africa & Atlantic, South & Central America
19. Natural and Man-made Interferences and its reduction
20. Acquisition of Natural Background Terrestrial Radiation
21. Textbooks and Tutorials
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Outlook & Future Needs

- New Sensors, space-borne: TandemSAR-X, TandemSAR-L (Destiny), . . .
-New Sensors, air-borne: F-SAR (P, L, S, C, X, K, V, W), ...

- New Sensors, ultrahigh air-borne: JPL-UAV (Global Hawks), . . . ..

- Algorithm Developments: Fully Polarimetric RP-POLINSAR assessment

- Applications: Focused increase providing clear-cut successes

POLINSAR 2011 Single & Tandem Space-
borne POL-SAR Sensors, Increase number
of Text books & Training Workshops
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Global Monitoring of Bio-, Geo-,
Cryo- and Hydrosphere processes
with hith temporal and spatial

resolution.
(Prof. A. Moreira — POLINSAROQ9)

Radar Interrerometry
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TerraSAR - X (1 & 2)
(2010)

Pol — INSAR Sensors
TanDEM-X

WIDEBAND INTERFEROMETRIC SENSING AND IMAGING POLARIMETRY




7 Electrical and
+ Computer Engineering

Communications, Sensing & Navigation Lab £

WIDEBAND INTERFEROMETRIC SENSING AND IMAGING POLARIMETRY




¥ Electrical and

Communications, Sensing & Navigation Lab ECE corewtar Bogineucioy

WIDEBAND INTERFEROMETRIC SENSING AND IMAGING POLARIMETRY




¥ Electrical and

Communications, Sensing & Navigation Lab ECE corewtar Bogineucioy

'y -

NTERFE

WIDEBAND |




University of lllinois 7 Electrical and

UIC Communications, Sensing & Navigation Lab £7Hk7 Sompuier Engineering

Tandem-L: Imaging Capacity and Coverage

Analysis for a Nearly Egautorial Orbit
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Digital Beamforming
with Reflector Antennas

Digital Feed
Array with
T/R-Modules
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Digital Beamforming
with Reflector Antennas

Digital Feed
Array with
T/R-Modules
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Digital Beamforming with Reflector Antennas
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Simulation Parameters for a Tandem-L Satellite

with a nearly Equatorial Orbit

Repeat Periode 3 days

Repeat Cycles 44
Near Range 180 km
Swath Width 547 km

Orbit Inclination 20 degrees
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TanDEM-X Tandem-L

1 global coverage / year 2 global coverages / week
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Development of equatorially orbiting wide-
Swath, multi-band POLSAR sensor technology

 The challenge is to develop equatorially orbiting SAR, preferably
POL-SAR satellite sensors, within the desirable P/L/S/C/X/Ka multi-
bands, which does pose severe technological problems due to the
steep incidence-angle illumination on one hand, and because of the
fact that the major SAR Technology Designers reside far outside the
equatorial belt not being excited about SAR sensor development for
the tropical belt anywhere.

« Once this urgent goal is achieved, local regions could be observed
daily up to 12 to 14 times well suited for equatorial monitoring within
orbits of +/- 20* latitude, covering both the land and ocean regions
essential for environmental protection and meteorological
forecasting, respectively, on a hitherto unprecedented global level.
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Satellite Image of Terrestrial Vegetation Cover
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Simulation Parameters for a Tand

em-

_ Sate

e

with a nearly Equatorial Orbit covering total

Equatorial belt, +/-23.5° —

Repeat Periode 3 days #
Repeat Cycles 44 i F
Near Range 180 km
Swath Width 547 km
Orbit Inclination 20 degrees

Change of Inclination Angle from 35 ° to 20°
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Simulation Parameters for a Satellite with a

500 km Swath (Access Range) and a

nearly Equatorial Orbit, +/-23.5°

Repeat Periode 3 days

Repeat Cycles 46
Near Range 180 km
Swath Width 680 km

Orbit Inclination 35 degrees

Change of Inclination Angle from 20 °to 35 °
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Daily Coverage for SAR in Nearly Equatorial Orbit

covering +/- 18°

Repeat Periode 1 day
Repeat Cycles 15
Swath Width 370 km
Near Range 180 km
Far Range 550 km
Looking Direction Right
Orbit Altitude 554 km
Orbit Inclination 8 degrees

Change of Inclination Angle from 12°to 8 °
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Daily Coverage for SAR in Nearly Equatorial Orbit

Repeat Periode 1 day
Repeat Cycles 14
Swath Width 600 km
Near Range 180 km
Far Range 780 km
Looking Direction Left
Orbit Altitude 880 km
Orbit Inclination 12 degrees

Change of Inclination Angle from 8° to 12°
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Recent Advances in Fully Polarimetric Space
SAR Development and Its Applications

Conclusions:

The Vector (Polarization) Electromagnetic Spectrum:
A Natural Global Treasure

Terrestrial Remote Sensing with PolSAR :
The Radiology of the Health of the Earth
at all weather and volcanic conditions
and at day and night < leading to the
Diagnostics of natural and man-made diasters
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