PhysioGlob Marco Bellacicco ENEA – Climate Modelling Laboratory - Centro Ricerche Frascati (Rome)

LIVING PLANET FELLOWSHIP HYDROSPHERE

General Context

Assessing the inter-annual **Physio**logical response of phytoplankton to **Glob**al warming using long-term satellite observations

Why is important study phytoplankton from space?

- Phytoplankton produces ~50% of the primary production of the Earth
- Phytoplankton are basis of oceanic trophic chain through the photosynthesis process: fundamental actress in the **global carbon cycle**
- Phytoplankton are sentinels of changes in the ocean because they rapidly respond to environment perturbations

Goals:

- Which is the physiological response in terms of temporal oscillations – of phytoplankton to global warming/climate change on both global and regional scales?
- Which are the main drivers of the phytoplankton changing and physiological temporal oscillations?

What is the physiological response and how we can detect it from space?

What is the physiological response and how we can detect it from space?

Backscattering-based phytoplankton carbon - C_{phyto} - from space $C_{phyto} = [b_{bp} (\lambda) - b_{bp}^{k} (\lambda)] \cdot SF \quad (Behrenfeld et al., 2005)$

C_{phyto} is phytoplankton carbon biomass [mg C m⁻³]

b_{bp} is the total particulate backscattering retrieved by satellite [m⁻¹]

b^k_{bp} is the *background* contribution of non-algal particles to total b_{bp} (*i.e.* heterotrophic bacteria, viruses, particles aggregates)

SF is a scaling factor equal to 13000 mg m⁻² taken from literature (*Behrenfeld et al.,* 2005)

What we have:

- Daily Chl from OC-CCI at 4 km resolution (1997-today) v4.2
- Daily R_{rs} from OC-CCI at 4 km resolution (1997-today) v4.2
- In-situ C_{phyto} data for validation (*Martinez-Vicente et al.,* 2017)

Status @MTR

Backscattering-based phytoplankton carbon - C_{phyto} - from space $C_{phyto} = [b_{bp} (\lambda) - b^{k}_{bp} (\lambda)] \cdot SF \quad (Behrenfeld et al., 2005)$ $C_{phyto} \text{ is phytoplankton carbon biomass [mg C m^{-3}]}$ $b_{bp} \text{ is the total particulate backscattering retrieved by satellite [m^{-1}]}$ $b_{bp}^{k} \text{ is the background contribution of non-algal particles to total } b_{bp} (i.e. \text{ heterotrophic bacteria, viruses,})$

particles aggregates)

SF is a scaling factor equal to 13000 mg m⁻² taken from literature (*Behrenfeld et al.,* 2005)

Is Quasi Analytical Algorithm - used in OC-CCI - a good algorithm to retrieve b_{bp} from R_{rs} ? Can we improve it?

Does b^k_{bp} varies in space and time or not? Which is the best method for its computation?

Status @MTR

- 1. Focus on QAA algorithm for detection of b_{bp} from space: a possible update?
- 2. Does b^k_{bp} varies in space and time or not?
- 3. Estimation of a refined C_{phyto} from space and validation with in-situ data
- Extraction and study of the main oscillatory modes of the physiological signal (ChI:C_{phyto}) in relation to physical and climate forcing agents on a global ocean scale by using long-term satellite observations (from 1997 up to today)

- Focus on QAA algorithm for detection of b_{bp} from space: a possible update? Raman Correction necessity (Pitarch et al., 2020)
- 2. Does b^k_{bp} varies in space and time or not?
- 3. Estimation of a refined C_{phyto} from space and validation with in-situ data
- Extraction and study of the main oscillatory modes of the physiological signal (ChI:C_{phyto}) in relation to physical and climate forcing agents on a global ocean scale by using long-term satellite observations (from 1997 up to today)

$$C_{phyto} = [b_{bp} (\lambda) - b_{bp}^{k} (\lambda)] \cdot SF$$

- Focus on QAA algorithm for detection of b_{bp} from space: a possible update? Raman Correction necessity (Pitarch et al., 2020)
- 2. Does b^k_{bp} varies in space and time or not?
- 3. Estimation of a refined C_{phyto} from space and validation with in-situ data
- Extraction and study of the main oscillatory modes of the physiological signal (ChI:C_{phyto}) in relation to physical and climate forcing agents on a global ocean scale by using long-term satellite observations (from 1997 up to today)

Results @MTR – Task #2

b^k_{bp} varies in space and time capturing seasonal cycle at mid- and high

b^k_{bp} spatially and temporal resolved

latitudinal regions

Inclusion of its spatio-temporal variability in C_{phyto} is mandatory

$$C_{phyto} = [b_{bp} (\lambda) - b_{bp}^{k} (\lambda)] \cdot SF$$

- Focus on QAA algorithm for detection of b_{bp} from space: a possible update? Raman Correction inclusion (Pitarch et al., 2020)
- 2. Does b^k_{bp} varies in space and time or not?
- 3. Estimation of a refined C_{phyto} from space and validation with in-situ data
- Extraction and study of the main oscillatory modes of the physiological signal (ChI:C_{phyto}) in relation to physical and climate forcing agents on a global ocean scale by using long-term satellite observations (from 1997 up to today)

- Focus on QAA algorithm for detection of b_{bp} from space: a possible update? Raman Correction inclusion (Pitarch et al., 2020)
- 2. Does b_{bp}^{k} varies in space and time or not? $b_{bp}^{k}(\lambda) = f$ (lat, lon, time) by using a non-linear/linear model between Chl and b_{bp} (Bellacicco et al., 2019; 2020)
- 3. Estimation of a refined C_{phyto} from space and validation with in-situ data
- Extraction and study of the main oscillatory modes of the physiological signal (ChI:C_{phyto}) in relation to physical and climate forcing agents on a global ocean scale by using long-term satellite observations (from 1997 up to today)

Status @MTR

$$C_{phyto} = [b_{bp} (\lambda) - b_{bp}^{k} (\lambda)] \cdot SF$$

10/20

$$\mathbf{C}_{\mathsf{phyto}} = [\mathbf{b}_{\mathsf{bp}} \left(\lambda \right) - \mathbf{b}_{\mathsf{bp}}^{\mathsf{k}} \left(\lambda \right)] \cdot \mathsf{SF}$$

- Inputs Data:
 - ✓ ESA OC-CCI daily ChI and R_{rs} (λ) v4.2 time-series at 4 km resolution for the period 1997-2019
- Algorithm:
 - ✓ Application of QAA to R_{rs} (λ) for b_{bp} retrievals including the Raman-Correction on R_{rs} (λ)

$C_{phyto} = [b_{bp} (\lambda) - b_{bp}^{k} (\lambda)] \cdot SF$

- Inputs Data:
 - ✓ ESA OC-CCI daily ChI and R_{rs} (λ) v4.2 time-series at 4 km resolution for the period 1997-2019
- Algorithm:
 - ✓ Application of QAA to R_{rs} (λ) for b_{bp} retrievals including the Raman-Correction on R_{rs} (λ)

$C_{phyto} = [b_{bp} (\lambda) - b_{bp}^{k} (\lambda)] \cdot SF$

- Inputs Data:
 - ✓ ESA OC-CCI daily ChI and R_{rs} (λ) v4.2 time-series at 4 km resolution for the period 1997-2019
- Algorithm:
 - ✓ Application of QAA to R_{rs} (λ) for b_{bp} retrievals including the Raman-Correction on R_{rs} (λ)

- 1. The in situ C_{phyto} database is a compilation of data for a total of N=557 data points and consists of carbon biomass of picophytoplankton organisms (i.e., cell size < 2 μ m).
- 2. Only pixels with a good (S > 0.95 and r > 0) satellite relationship between ChI and b_{bp} were retained so that the original 557 data points decreased to a **total of 396 matchups.**
- The final matchup database encompassed from oligotrophic to mesotrophic waters and OWCs from 1 to 13. OWC from 1 to 6, corresponding to less productive waters, representing 56% of the in situ data.

Bellacicco et al., (2020; RS)

2nd year – Task #3

Bellacicco et al., (2020; RS)

OWCs	N. obs.	This Study			Bel18			Gra15			Beh05			Bre12			MV17		
		δ	σ_Δ	∇	δ	σ_Δ	∇	δ	σ_Δ	∇	δ	σ_{Δ}	∇	δ	σ_{Δ}	∇	δ	σ_Δ	∇
1:2	19	-1.9	5.0	5.0	-2.6	6.2	8.8	9.2	6.0	259.4	5.2	6.2	174.9	0.7	6.2	78.0	8.5	7.2	250.0
3	30	-1.8	3.4	-13.9	-2.8	3.4	-27.3	9.1	3.3	211.8	5.0	3.4	129.8	0.5	3.4	38.2	7.9	3.9	189.2
4	51	-1.7	7.6	18.2	-2.1	8.5	31.3	9.4	8.6	193.1	5.7	8.5	141.1	1.2	8.5	77.0	10.7	10.6	213.6
5	76	-1.6	6.6	8.1	-3.2	7.9	5.9	8.2	7.7	122.8	4.6	7.9	85.8	0.03	7.9	39.2	9.4	9.2	142.6
6	49	1.5	7.9	38.7	-0.2	9.3	26.9	11.0	9.0	131.4	7.6	9.3	99.7	3.1	9.3	57.2	14.4	11.4	163.0
7	59	-1.9	8.4	-0.4	0.2	9.5	13.7	11.3	9.0	102.9	8.0	9.5	76.0	3.5	9.5	39.7	15.2	12.4	132.3
8	44	-0.5	10.1	38.8	5.2	10.3	73.6	15.8	9.9	164.99	13.0	10.3	139.9	8.5	10.3	101.3	23.3	13.1	220.0
9	26	1.9	11.8	39.2	13.8	12.3	113.4	23.6	12.2	181.5	21.6	12.3	166.5	17.1	12.3	135.5	36.4	14.6	259.1
10	27	4.6	16.5	103.4	17.2	17.6	206.2	26.7	17.0	278.2	25.0	17.6	266.2	20.4	17.6	231.2	41.1	22.6	396.0
11:13	15	3.2	14.0	51.7	12.2	15.2	148.8	22.6	15.2	275.9	20.0	15.2	241.4	15.5	15.2	187.3	31.5	30.4	355.6
1:6	225	-1.0	6.8	14.0	-2.2	7.9	12.0	9.3	7.7	164.0	5.6	7.9	114.7	1.1	7.9	54.8	10.7	9.6	178.4
7:13	171	0.5	11.8	36.6	7.3	13.7	86.5	17.8	13.0	173.8	15.1	13.7	150.7	10.6	13.7	113.3	26.0	18.4	235.4
All	396	-0.4	9.2	23.7	1.9	11.8	44.2	13.0	11.1	168.2	9.7	11.8	130.3	5.2	11.8	80.1	17.3	16.0	203.0

The new C_{phyto} algorithm proposed here performs better than any previously published model, with a relative error of 24% with respect to a reference in situ dataset.

2nd year – Task #3

Bellacicco et al., (2020; RS)

OWCs	N. obs.	This Study			Bel18			Gra15			Beh05			Bre12			MV17		
		δ	σ_Δ	∇	δ	σ_Δ	∇	δ	σ_{Δ}	∇	δ	σ_{Δ}	∇	δ	σ_{Δ}	∇	δ	σ_Δ	∇
1:2	19	-1.9	5.0	5.0	-2.6	6.2	8.8	9.2	6.0	259.4	5.2	6.2	174.9	0.7	6.2	78.0	8.5	7.2	250.0
3	30	-1.8	3.4	-13.9	-2.8	3.4	-27.3	9.1	3.3	211.8	5.0	3.4	129.8	0.5	3.4	38.2	7.9	3.9	189.2
4	51	-1.7	7.6	18.2	-2.1	8.5	31.3	9.4	8.6	193.1	5.7	8.5	141.1	1.2	8.5	77.0	10.7	10.6	213.6
5	76	-1.6	6.6	8.1	-3.2	7.9	5.9	8.2	7.7	122.8	4.6	7.9	85.8	0.03	7.9	39.2	9.4	9.2	142.6
6	49	1.5	7.9	38.7	-0.2	9.3	26.9	11.0	9.0	131.4	7.6	9.3	99.7	3.1	9.3	57.2	14.4	11.4	163.0
7	59	-1.9	8.4	-0.4	0.2	9.5	13.7	11.3	9.0	102.9	8.0	9.5	76.0	3.5	9.5	39.7	15.2	12.4	132.3
8	44	-0.5	10.1	38.8	5.2	10.3	73.6	15.8	9.9	164.99	13.0	10.3	139.9	8.5	10.3	101.3	23.3	13.1	220.0
9	26	1.9	11.8	39.2	13.8	12.3	113.4	23.6	12.2	181.5	21.6	12.3	166.5	17.1	12.3	135.5	36.4	14.6	259.1
10	27	4.6	16.5	103.4	17.2	17.6	206.2	26.7	17.0	278.2	25.0	17.6	266.2	20.4	17.6	231.2	41.1	22.6	396.0
11:13	15	3.2	14.0	51.7	12.2	15.2	148.8	22.6	15.2	275.9	20.0	15.2	241.4	15.5	15.2	187.3	31.5	30.4	355.6
1:6	225	-1.0	6.8	14.0	-2.2	7.9	12.0	9.3	7.7	164.0	5.6	7.9	114.7	1.1	7.9	54.8	10.7	9.6	178.4
7:13	171	0.5	11.8	36.6	7.3	13.7	86.5	17.8	13.0	173.8	15.1	13.7	150.7	10.6	13.7	113.3	26.0	18.4	235.4
All	396	-0.4	9.2	23.7	1.9	11.8	44.2	13.0	11.1	168.2	9.7	11.8	130.3	5.2	11.8	80.1	17.3	16.0	203.0

The new C_{phyto} algorithm shows the lowest error (14.0%) across most of the OWCs in which the picophytoplankton population dominates. On the contrary, the highest errors (36.6%) occur in OWCs 7–13 in which larger phytoplankton cells are supposed to dominate \rightarrow the algorithm performance has to be interpreted with caution in those areas.

Bellacicco et al., (2020; RS)

r,002,002,002,002,003 $\sigma_{\rm std} b^{\rm k}_{\rm bp}$ [m⁻¹] (b

 $b_{\rm bp}^{\rm k}$ [m⁻¹]

(a)

0,000,000,000,000,000,000,000,000,000,000,000

Caveats:

- C_{phyto} assumes a constant value of 13000 mg m⁻² as in Behrenfeld et al. (2005) → Future efforts should be to investigate a refined scaling factor relating b_{bp} to C_{phyto} coupled with the b^k_{bp} space–time variability; additional laboratory work should be done to evaluate if change in SF values can affect the C_{phyto} estimations
- 2. C_{phyto} algorithm relies on a tight relationship between b_{bp} and Chl, which is also influenced by the algorithms used for Chl and b_{bp} retrievals coupled with environmental conditions \rightarrow *This points is a future challenge to be solved with other statistical methods mostly in the subtropical gyres.*
 - The algorithm validation is restricted only to in situ C_{phyto} data associated with picophytoplankton carbon
 → one future necessity is to improve the in situ C_{phyto} dataset with new measurements representative of all phytoplankton size classes.

Bellacicco et al., (2020; RS)

r,002,002,002,002,003 $\sigma_{\rm std} b^{\rm k}_{\rm bp}$ [m⁻¹] (b

 $b_{\rm bp}^{\rm k}$ [m⁻¹]

(a)

0,000,000,000,000,000,000,000,000,000,000,000

Caveats:

- C_{phyto} assumes a constant value of 13000 mg m⁻² as in Behrenfeld et al. (2005) → Future efforts should be to investigate a refined scaling factor relating b_{bp} to C_{phyto} coupled with the b^k_{bp} space–time variability; additional laboratory work should be done to evaluate if change in SF values can affect the C_{phyto} estimations
- 2. C_{phyto} algorithm relies on a tight relationship between b_{bp} and Chl, which is also influenced by the algorithms used for Chl and b_{bp} retrievals coupled with environmental conditions \rightarrow *This points is a future challenge to be solved with other statistical methods mostly in the subtropical gyres.*
 - The algorithm validation is restricted only to in situ C_{phyto} data associated with picophytoplankton carbon
 → one future necessity is to improve the in situ C_{phyto} dataset with new measurements representative of all phytoplankton size classes.

Last Steps – Task #4

Sub-Goals:

- to classify components of single, and coupled, time series into trends, oscillatory patterns, and noise;
- to evaluate similarities among the inter-annual variabilities of parameters;
- to understand the spatio-temporal structure associated with oscillatory modes in the biological/physiological proxies and global ocean physical fields following *Ghil et al.*, (2002), *Marullo et al.*, (2011) and *Groth et al.*, (2017).

Methodology:

- Multi-Channel Spectral Analysis (M-SSA)
- Principal Component Analysis (PCA)

Main Conclusions

- 1. Assessment of QAA for b_{bp} retrievals with in-situ and satellite data.
- 2. Demonstration of b_{bp}^{k} spatio-temporal variability and importance of its inclusion in C_{phyto} computation $\rightarrow b_{bp}^{k}$ is thus not a single constant value but can be a series of maps.
- 3. Development of new C_{phyto} algorithm with higher accuracy in respect to others published models.
- Highlight of the necessity to increase number of b_{bp} in situ observations to improve robustness of the satellite algorithms and to estimate satellite products uncertainties.
- 5. Highlight of the necessity to increase C_{phyto} in situ data of the different size classes to increase robustness of the satellite algorithms.

Final Step & Papers for 2nd year

- 1. M-SSA & PCA analysis of the ChI:C_{phyto} time-series alone and together with others parameters.
- One paper about inter-annual ChI:C_{phyto} oscillations modes in relation to physical forcings (*e.g.* temperature, ocean heat content in the mixed layer depth, clouds coverage, etc...) and, in case of relevance, climate indexes (*e.g.*, QBO, NAO, NPO, ENSO).

Publications

·e

Papers published within PhysioGlob (1st Year):

- Bellacicco, M., Vellucci, E., Scardi, M., Barbieux, M., Marullo, S and D'Ortenzio, F. (2019). Quantifying the impact of linear regression model in deriving bio-optical relationships: the implications on ocean carbon estimations. *Sensors*, 19, 3032.
- Bellacicco, M., Cornec, M., Organelli, E., Brewin, R., Neukermans, G., Volpe, G., Barbieux, M., Poteau, A., Schmechtig, C., D'Ortenzio, F., Marullo, S. Claustre, H. and Pitarch, J. (2019). Global variability of optical backscattering by non-algal particles from a Biogeochemical-Argo dataset. *Geophysical Research Letters*, 46 (16), 9767-9776.

Other papers published (1st Year):

• Bellacicco, M., Vellucci, V., D'Ortenzio, F. and Antoine, D. (2019). Discerning dominant temporal patterns of bio-optical properties in the northwestern Mediterranean Sea (BOUSSOLE site). *Deep-Sea Research: Part I*, 148, 12-24.

Papers published/in revision within PhysioGlob (2nd Year):

- Pitarch, J., Bellacicco, M., Organelli, E, Volpe, G., Colella, S., Vellucci, V. and Marullo, S. (2020). Retrieval of particulate backscattering using field and satellite radiometry: assessment of the QAA algorithm. *Remote Sensing*, 12 (1), 77.
- Bellacicco, M., Pitarch, J., Organelli, E., Martinez-Vicente, V., Volpe, G., and Marullo, S. (2020). Improving retrieval of carbon-based phytoplankton biomass from ocean colour observations. *Remote Sens. 12, 3640;* doi:10.3390/rs12213640.
- Pitarch, J., Bellacicco, M., Marullo, S. and H. J. van der Woerd. Global monthly maps of Forel-Ule index, hue angle and Secchi disk depth from twenty years of ESA-OC-CCI data (1997-2018) (*under discussion on Earth System Science Data*).

Publications

Other papers published (2nd Year):

- Mansour, K., Decesari, S., Bellacicco, M., Marullo, S., Santoleri, R., Bonasoni, P., Facchini, M. C., Ovadnevaite, J., Ceburnis, D., O'Dowd, C. and Rinaldi, M. (2019). Particulate methanesulfonic acid over the central Mediterranean Sea: Source region identification and relationship with phytoplankton activity. *Atmospheric Research*, 104837
- Karam Mansour, Stefano Decesari, **Marco Bellacicco**, Salvatore Marullo, Rosalia Santoleri, Paolo Bonasoni, Maria Cristina Facchini, Jurgita Ovadnevaite, Darius Ceburnis, Colin O'Dowd, Matteo Rinaldi (2020). Linking Oceanic Biological Activity to Aerosol Chemical Composition and Cloud-Relevant Properties over the North Atlantic. *Journal of Geophysical Research: Atmospheres*. doi: 10.1029/2019JD032246.

Italian National Agency for New Technologies, Energy and Sustainable Economic Development

Collaborations with:

ISMAR

marco.bellacicco@enea.it

`**F**R

Plymouth Marine **E**

For Vergata