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Motivation

• Tropospheric O3 is a secondary product of anthropogenic emissions of NOx, CO,
CH4.

• O3 is a potent phytotoxin – once absorbed into the leaf via the stomata, it
reacts to form radical oxygen species, damaging cells and inhibiting
photosynthesis. Damaged plants grow less and age faster (senescence).

• Consequences for food security (reduction in crop yield) climate change (lower
GPP; less CO2 sequestered by terrestrial carbon sinks) and air quality
(vegetation less capable of removing tropospheric O3)

• Despite emissions reductions in Europe & N. America, [O3] unlikely to fall further
under most IPCC Representative Concentration Pathways (RCPs) (Eyring et al,
2013).

• Climate changes resulting in more droughts/heatwaves could also result in
more high-O3 smog episodes (Meehl et al, 2018).



Motivation
• Prior studies of O3-induced vegetation damage have been
limited to fumigation experiments, long-term in-situ
measurements of forests, or modelling studies – limited to
mainly N. America and Europe

• Long-term satellite datasets for O3, meteorology, and GPP
exist, but have not been exploited to date to look at this
problem

• Potential for global analyses of forests using satellite
datasets to more accurately determine carbon lost due to O3

damage, and to improve modelling future vegetation
feedbacks due to climate change

• Previously, Fishman et al (2010) successfully modelled
soybean crop yield loss due to O3 over midwestern USA
using satellite O3 data from the Total Ozone Mapping
Spectrometer (TOMS). Can similar functions be determined
for forest GPP using newer, more advanced datasets?

Fishman et al (2010)



Satellite datasets
• O3: Copernicus Atmosphere Monitoring Service (CAMS) Reanalysis (ECMWF)

• 3-hourly dataset, Spatial resolution: ~80 km. Splined to give hourly data
• Satellite O3 observations have poor surface sensitivity, and their daily temporal
sampling is also hampered by cloud cover. The CAMS reanalysis assimilates
satellite O3 (OMI, GOME-2, SCIAMACHY) and precursor species observations
(NO2, CO, and AOD) which have better surface sensitivity.

• CAMS therefore offers better spatiotemporal resolution data with better
agreement with surface measurements than raw satellite observations

• Meteorology: ERA5 Reanalysis (ECMWF)
• Hourly dataset, Spatial resolution 0.25° x 0.25°
• Direct satellite observations of photosynthesis parameters (e.g. air temperature,
vapour pressure) are not possible. ERA5 assimilates both satellite and surface
observations to provide long-term climate records for such variables



Satellite datasets
• GPP: MOD17A2 (NASA, University of Montana)

• Monthly resolution, 0.05° spatial resolution
• Derived from observations of absorbed photosynthetically active radiation (APAR) by
MODIS

• Land cover classification: ESA-CCI (ESA)
• Annual land cover (300 m) maps derived from multiple hyperspectral satellite

missions (e.g. AVHRR, PROBA-V)
• Combined with EEA biogeographic zones to classify vegetation according to plant
functional types (PFTs) used in the LRTAP Mapping Manual (Boreal coniferous,
Mediterranean deciduous, etc.)

• Phenology (growing season): AVHRR GIMMS LAI3g (Boston University)
• 15-day temporal frequency and a 1/12° spatial resolution of LAI
• Growing season onset and offset DOY derived from this dataset using the 4GST
algorithm discussed in Peano et al (2019)



Land cover classification example (2012)



Calculation of stomatal conductance to O3
(𝒈𝒔𝒕𝒐)

• Stomatal opening & gas interchange dependent on
whether conditions favour photosynthesis:

• Photosynthetically active radiation (PAR)
• Vapour pressure deficit (VPD)
• Soil water content (SWC)
• Air temperature (T)
• Growing season (phenology)



Calculation of stomatal conductance to O3
(𝒈𝒔𝒕𝒐)

• Jarvis model as used in DO3SE (Emberson et al, 2000):
𝒈𝒔𝒕𝒐 = 𝒈𝒎𝒂𝒙 ∗ 𝒇𝑷𝑨𝑹 ∗ 𝒇𝒑𝒉𝒆𝒏 ∗ max 𝒇𝒎𝒊𝒏, 𝒇𝑻 ∗ 𝒇𝑽𝑷𝑫 ∗ 𝒇𝑺𝑾𝑪

• Maximum possible gsto (gmax) scaled by f terms (0 – 1) based on variables
calculated from ERA5 and phenology from processed LAI3g data

• fphen = 1 if DOY falls within growing season, else is 0

• fmin: Minimum possible stomatal conductance as a fraction of gmax

• Plant functional type specific terms (fmin, gmax, Topt, etc.) taken from LRTAP
Mapping Manual (UNECE, 2017)

• gsto calculated for summer growing months (April – September) during 2003 –
2015, as [O3] peaks during this time



Calculation of stomatal conductance to O3
(𝒈𝒔𝒕𝒐)
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Calculation of stomatal conductance to O3
(𝒈𝒔𝒕𝒐)

• SWC parameterisation taken from Anav et al 
(2018)

𝒇𝑺𝑾𝑪 = min 𝟏,max 𝒇𝒎𝒊𝒏,
𝑺𝑾𝑪 −𝑾𝑷
𝑭𝑪 −𝑾𝑷

• FC: SWC at field capacity

• WP: SWC at wilting point

• FC and WP taken from ESDAC Soil Hydraulic
Database regridded to ERA5 horizontal and
vertical resolution

• Tree roots are known to penetrate up to 1 m
below surface, so the mean SWC of ERA5
layers 1-3 was used

ERA5 Soil 
layer ERA5 soil depth ESDAC SHD depths 

binned

1 0 – 7 cm 0, 5 cm

2 7 – 28 cm 15 cm

3 28 – 100 cm 30, 60, 100 cm

4 100 – 280 cm 100, 280 cm



Calculation of stomatal conductance to O3
(𝒈𝒔𝒕𝒐)

LRTAP Mapping Manual (2017)



Mean O3 𝒈𝒔𝒕𝒐 for July 2010



Estimation of O3-induced GPP reduction

• Previously used in Anav et al (2011) and Proietti et al (2016)

• Typically 𝑨𝑶𝑻𝟒𝟎 (∫ [O3] – 40 ppb 𝒅𝒕 ) is used to estimate O3 effects on
vegetation

• If 𝒈𝒔𝒕𝒐×𝑨𝑶𝑻𝟒𝟎 represents O3 uptake by vegetation, then change in
photosynthesis (and so GPP) due to O3 can be expressed as a dimensionless
value, 𝑰𝑶𝟑 by multiplying this with an appropriate sensitivity parameter α:

𝑰𝑶𝟑 = 𝜶×𝒈𝒔𝒕𝒐×𝑨𝑶𝑻𝟒𝟎

Dimensionless = [mm-1 ppb-1] × [mm hr-1] × [ppb hr]

• Values for α taken from literature references:
• Coniferous trees: 0.7 × 10−6 (Reich, 1987)
• Deciduous trees: 2.6 × 10−6 (Ollinger et al, 1997)

• 𝐼6"can be interpreted as the fraction of GPP in O3-free conditions lost due to O3
exposure



Results (monthly means)



O3-induced GPP reductions using forest in-situ O3
measurements (Proietti et al, 2016)

-Comparable
magnitudes and
spatial distribution of
GPP reduction
estimates
-However, comparison

is limited by the
spatial sampling of
the in-situ stations



Annual mean trend (dots: p < 0.05)



Parameter importance using Random Forest 
regression 

• GPP reduction has nonlinear dependence on O3 concentration and meteorology –
which has the largest influence?

• Fit Random Forest regression model of 𝑰𝑶𝟑 against component parameters.

• “Gini importance” (frequency parameter appears in decision trees) calculated for
each parameter over different regions

• Strong dependence on soil moisture

T VPD SWC PAR O3 concentration
British Isles 16.10 6.62 19.71 4.58 53.00
Iberian Peninsula 15.87 4.70 29.90 40.67 8.86
France 11.40 21.15 29.40 28.66 9.39
Mid-Europe 7.98 3.27 62.02 4.82 21.91
Scandinavia 5.94 2.87 58.33 2.69 30.17
Alps 3.16 3.39 11.80 6.22 75.42
Mediterranean 4.43 7.26 53.04 30.43 4.84
Eastern Europe 15.99 10.66 18.50 6.25 48.59



Comparison with Yale Interactive terrestrial 
Biosphere (YIBs) model data

• Yue and Unger (2018) used
YIBs model to investigate
global fire and anthropogenic
O3-induced GPP reductions
between 2003 – 2011.
• O3 concentrations modelled

using GEOS-Chem and ERA-
Interim data

• Overall good agreement…

• … but Italian and Greek GPP
reductions are consistently
overestimated by ~ 12%,
potentially due to differences
between the CAMS and GEOS-
Chem O3 concentrations



Regression modelling of GPP reductions
• Can GPP-O3 reductions be directly inferred from satellite data?

• MODIS GPP is regressed against: VPD, SWC, Temperature, PAR, and POD0

• POD0 = (∫ 𝑔789×[𝑂:] 𝑑𝑡)
• Nonlinear effects (2nd order polynomial, two-way interaction terms, and GPP lag

terms) included – 21 candidate variables
• To minimise effect of multicollinearity, use induced smoothing LASSO (ISLASSO;

Cilluffo et al, 2020) to perform variable selection and reliably calculate p-values
& standard errors

• O3 effect on GPP estimated by calculating 𝒅 𝑮𝑷𝑷
𝒅 𝑷𝑶𝑫𝟎

from model fit (p < 0.05 terms
only)

• Fit models for each vegetation type using 2003-2013 data, and validate against
2014-2015 data



Case study: Alps

• Validation R2: 0.934, negative 𝒅 𝑮𝑷𝑷
𝒅 𝑷𝑶𝑫𝟎

caused by T*O3 coefficient

• High O3 concentrations caused by Po Valley emissions and high terrain blocking dispersion of air mass. Warm
temperatures and low VPD also ensure high stomatal conductance for much of the summer

• GPP reductions nearing 20% consistent with Proietti et al (2016) and previous literature-based analysis. However, strong
multicollinearity between variables prevents this method working as well elsewhere.

Parameter Coefficient Std err p-value
T 85.837 13.127 0.000
T2 -0.148 0.023 0.000
VPD 296.532 124.946 0.018
SWC 2116.363 620.532 0.001
PAR 2.257 0.272 0.000
PAR2 -0.001 0.000 0.000
O3 143.123 21.353 0.000
GPP (Lag 1) 0.931 0.120 0.000
T*VPD -1.500 0.441 0.001
T*SWC -5.861 2.145 0.006
T*O3 -0.559 0.075 0.000
VPD*SWC 683.315 240.201 0.004
SWC*PAR -1.398 0.454 0.002



Conclusions
• This work has demonstrated for the first time that satellite O3, land cover, vegetation, and

meteorological data can be used to estimate O3-induced GPP reductions. The magnitude and spatial
distribution of these predicted reductions show strong similarity to prior land surface model and in-situ based
analyses.

• Satellite data could potentially be used to assess O3 damage to more remote ecosystems and better
understand vegetation feedbacks in a changing climate.

• Potential overestimation over the Mediterranean requires further investigation.

• Average monthly O3-induced GPP reductions range between 2 – 25%, with Italian forests reaching
~50% during severe O3 episodes.

• Jarvis stomatal conductance model suggests strong dependence of GPP reductions on soil moisture over
most regions.

• Direct estimation of GPP reductions using MODIS data and statistical modelling may be useful for
independent verification of model-based analyses. However, high multicollinearity between variables prevents
this method from working well everywhere

Remaining work

• Calculate crop yield losses using literature functions

• Investigate reasons for lack of O3 sensitivity observed over some forests with the statistical model

• Draft publications on Empirical and Statistical methods to model O3-induced GPP reductions from satellite
data
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