

Water vapour Isotopologues from TROPOMI (WIFT)

Andreas Schneider

SRON Netherlands Institute for Space Research, Utrecht, the Netherlands

LPF Final Review, Online, 3rd December 2020

ATMOSPHERE

Introduction

2 / 25

Project objectives

- Develop a validated water vapour isotopologue data product for TROPOMI
 - Non-scattering retrieval: clear sky scenes over land
 - Scattering retrieval: scenes with clear sky or low clouds
- Science study on hydrological cycle using the new data set

Performed work

- Bias in validation data (TCCON HDO) corrected
- Clear-sky data set
 - Produced and published
 - Small scientific case study using single overpass data
- Data set over cloudy scenes
 - Fitting effective cloud parameters concurrently to trace gases does not work
 - Different cloud models tried without success
 - Solution: fitting effective cloud parameters in other spectral range
 - Data set over low clouds or clear-sky produced
 - Large enhancement in data coverage, e.g. now data over oceans
 - Publication currently written up

Retrieval setup

• Profile-scaling approach with SICOR algorithm

- Fit of H_2O , HDO, CH_4 , CO, and Lambertian surface albedo
- Forward model ignoring scattering, cloud filtering with VIIRS
- Porward model accounting for scattering, fitting effective cloud parameters in pre-fit, regularising surface albedo

Retrieval setup: details

- Scattering cross-sections from HITRAN 2016
- A priori profiles of water vapour from ECMWF analysis, scaled according to standard abundances
- A priori profiles of CH_4 and CO from TM5 simulations
- A priori surface albedo for scattering retrieval from one year average of non-scattering retrieval (0 over oceans)

Validation data sets: ground based FTIR measurements

- Fourier transform infrared (FTIR) observations of direct solar beam
- Two networks of stations: Total Carbon Column Observing Network (TCCON) and Network for the Detection of Atmospheric Composition Change (NDACC)
- Seven stations in both networks

- TCCON data product
 - H₂O and HDO included
 - H₂O column validated with and adapted to in situ measurements
 - Data available 3 months to 1 year after measurement
- MUSICA-NDACC data product Set

- Multi-platform remote Sensing of Isotopologues for investigating the Cycle of Atmospheric water
- Dedicated water vapour isotopologue product from reprocessed NDACC observations
- Includes H₂O. HDO and H₂¹⁸O
- δD validated with aircraft measurements
- Data after 2014 available for only three stations

Correcting inconsistency in validation data sets

• Scaling of HDO with factor a equivalent to $\delta \mathrm{D}\mapsto a\,\delta\mathrm{D}+a-1$ Wollongong, Australia

Validation: Correlation H₂O/HDO at Edwards

Validation: Correlation a posteriori $\delta \mathsf{D}$ at Edwards

Validation at low-altitude stations: H₂O/HDO

Validation at low-altitude stations: a posterior δ D

Prior profiles: Obtaining HDO profile from H_2O profile

LIVING PLANET FELLOWSHIP ATMOSPHERE

14/25

Validation at high-altitude stations

scaled HDO prior depleted HDO prior

Non-scattering product September 2018

State of the art

Scattering product September 2018

Large enhancement in data coverage: data over oceans!

Case study: cold air outbreak: 17 Jan 2020

Case study: cold air outbreak: 18 Jan 2020

19/25

Case study: cold air outbreak: 19 Jan 2020

Case study: cold air outbreak: 20 Jan 2020

Case study: cold air outbreak: 21 Jan 2020

- Before beginning of fellowship: H₂O/HDO from satellite either from thermal infrared (no sensitivity in boundary layer) or with bad spatial coverage
- Achievement: first H_2O/HDO satellite data set with good data quality, daily global coverage with high spatial resolution and sensitivity in the boundary layer
- Problem with reference data sets: bias in TCCON corrected by scaling HDO to match MUSICA δD for collocated measurements
- Good agreement of TROPOMI with corrected TCCON
- Single overpass results allow new interesting case studies

- Current state of the art: H₂O/HDO in SWIR only for clear-sky scenes over land (e.g. S5P+I H2O-ISO)
- Achievement: first SWIR H₂O/HDO satellite data set for scenes with low clouds (also over oceans) or clear-sky
- Huge enhancement in data coverage
- Single overpass results allow new interesting case studies

- Andreas Schneider, Tobias Borsdorff, Joost aan de Brugh, Franziska Aemisegger, Dietrich G. Feist, Rigel Kivi, Frank Hase, Matthias Schneider, and Jochen Landgraf. First data set of H₂O/HDO columns from the Tropospheric Monitoring Instrument (TROPOMI). Atmos. Meas. Tech., 13 (1): 85–100, 2020. doi:10.5194/amt-13-85-2020
- Andreas Schneider, Tobias Borsdorff, Joost aan de Brugh, Alba Lorente Delgado, Franziska Aemisegger, and Jochen Landgraf. Retrieving H₂O/HDO columns over cloudy and clear-sky scenes from the Tropospheric Monitoring Instrument (TROPOMI). To be submitted to *Atmos. Meas. Tech.*, 2020.