SAR Marine Applications

Practicals

Martin Gade Uni Hamburg, Institut für Meereskunde martin.gade@uni-hamburg.de

FAKULTÄT

FUR MATHEMATIK, INFORMATIK UND NATURWISSENSCHAFTEN

SAR Marine Applications

Friday, 9 Sep, Morning:

1 - History & Basics Introduction Radar/SAR History Basics Scatterometer

2 - Wind and Waves SAR Wind Fields Storms, Tropical Cyclones Ocean Surface Waves Deceanic Internal Waves Marine Surface Films Rain

Friday, 9 Sep, Afternoon:

3 - Currents and Objects Surface Currents Sea Bottom Topography Ship Detection Oil Pollution Monitoring Sea Ice

4 - Practicals
SNAP Toolbox:
Georeferencing, Mosaics
Image Interpretation:
Wind Fields, Oil Pollution,
Sea Ice, Objects

Ocean Features on SAR Imagery

Feature	Scale	Derived Measurement	Imaging Mechanism	Wind Speed Range [m s ⁻¹]	Characteristics and Considerations
Surface Waves	100 - 600 m wavelength	Wavelength Propagation direction Wave height	Tilt Hydrodynamic Velocity Bunching	3 - 40	Azimuth-traveling waves may be nonlinear without correction. Other limiting factors include wavelength, wave height and fetch.
Internal Waves	0.3 - 3 km wavelength	Wavelength Direction Amplitude Mixed layer depth	Convergence/Divergence Surfactants	2 - 10	Curvilinear packets with multiple waves, decreasing wavelength from front to back. Sensitive to wind conditions, wave crest orientation to platform.
Internal Tides	10 - 20 km	Wavelength Direction	Interaction of centimeter Waves/Currents/Surfactants	3 – 7	
Currents and Fronts	1 - 100 km	Location Shear Strain Velocity	Shear/Convergence Convergence Wind stress Surfactants	3 - 10 3 - 10 3 - 10 3 - 7	Sensitive to wind conditions. Often multiple mechanisms present simultaneously.
Eddies	1 - 200 km diameter	Location and source Diameter Velocity Shear Strain	Shear/Convergence Wind Stress Surfactants	3 - 10 3 - 10 3 - 7	Sensitive to wind conditions. Often multiple mechanisms present simultaneously.
Shallow Water Bathymetry	5 - 50 m depth	Location/change detection Current velocity Depth	Convergence	3 - 12	Sensitive to wind, current properties, depth.
					[Jackson & Apel 2004]

Air-Sea Interactions on SAR Imagery

Feature	Scale	Derived Measurement	Imaging Mechanism	Wind Speed Range [m s ⁻¹]	Characteristics and Considerations
Surface Winds	> 1km grid	Wind speed Wind direction	Wind stress Indirectly via windrows, models, or sensors	3 – 25	For mesoscale, coastal variability. Requires good calibration.
Roll Vortices	1 - 5 km wavelength	Boundary Layer: Stratification	Wind stress	3 - 15	Long axis/crests parallel to wind direction.
Gravity Waves	2 - 10 km wavelength	Height Turbulence spectrum Drag coefficient	Wind stress	3 - 15	Long axis/crests perpendicular to wind direction, often associated with topography
Rain Cells	2 - 40 km diameter	Rain rate	Wind stress Rain damping	3 - 15	Appearance sensitive to frequency, rain rate, wind speed.

Universität Hamburg

Surface Films on SAR Imagery

Feature	Scale	Derived Measurement	Imaging Mechanism	Wind Speed Range [m s ⁻¹]	Characteristics and Considerations
Biogenic Surfactants	> 100m² area	Areal extent	Convergence	2 – 8	Both forms have signatures similar to low wind, cold thermal water masses, etc.
Mineral Oils	> 100m² area	Areal extent	Seeps Ship discharge Run-off	3 – 15	Wind speed, combination of L- and C-/X- bands may enable discrimination of each form.

[Jackson & Apel, 2004]

Seasat SAR Image

What is shown here?

Seasat SAR Image (L-HH, 80 km × 75 km) Nantucket Island (27 August 1978, 12:34 UTC)

Cesa Training Course on Radar & Optical RS, IES, Cesis, Latvia, 5 - 9 September 2016

Practicals !

Sentinel 1A SAR Images (C-VV, 259 km × 167 km) Baltic Proper (19 August 2016, 16:36 UTC)

Georeferencing

SNAP:

- Radar
 - Geometric
 - Terrain Correction
 - Range-Doppler TC

Sentinel 1A SAR Images (C-VV, 259 km × 167 km) Baltic Proper (19 August 2016, 16:36 UTC)

Range Doppler Terrain Correct	tion ×
File Help	
I/O Parameters Processing Parame	eters
Source Bands:	Amplitude_VH
	Intensity_VH
	Amplitude_VV
	Intensity_vv
Divital Elevation Madels	
Digital devation Model:	SRTM 3Sec (Auto Download)
DEM Resampling Method:	BILINEAR_INTERPOLATION ~
Image Resampling Method:	BILINEAR_INTERPOLATION ~
Source GR Pixel Spacings (az x rg):	10.0(m) x 10.0(m)
Pixel Spacing (m):	10.0
Pixel Spacing (deg):	8.983152841195215E-5
Map Projection:	UTM Zone 33 / World Geodetic System 1984
Mask out areas without elevatio	n 🔄 Output complex data
Output bands for:	
Selected source band	DEM Latitude & Longitude
Incidence angle from ellipsoid	Local incidence angle Projected local incidence angle
Apply radiometric normalization	
Save Sigma0 band	Use projected local incidence angle from DEM $$ $$ $$
Save Gamma0 band	Use projected local incidence angle from DEM 💦 🗸
Save Beta0 band	
Auxiliary File (ASAR only):	Latest Auviliary Eile
	Due Class

SNAP:

- Radar
 - Geometric
 - Terrain Correction
 - Range-Doppler TC

Sentinel 1A SAR Images (C-VV, 259 km × 167 km) Baltic Proper (19 August 2016, 16:36 UTC)

SAR Mosaicking

SNAP:

- Radar
 - Geometric
 - SAR-Mosaic

Sentinel 1A SAR Images (C-VV, 259 km × 167 km) Baltic Proper (19 August 2016, 16:36 UTC)

ProductSet-Reader SAR-Mosaic	Write		
Source Bands:	Amplitude_VH::S1A_IW_GRDH_1SDV_20150301T041313_20150301T041338_004833 Intensity_VH::S1A_IW_GRDH_1SDV_20150301T041313_20150301T041338_004833 Amplitude_VV::S1A_IW_GRDH_1SDV_20150301T041313_20150301T041338_004833 Intensity_VV::S1A_IW_GRDH_1SDV_20150301T041313_20150301T041338_004833 Amplitude_VH::S1A_IW_GRDH_1SDV_20150301T041338_20150301T041403_004833 Intensity_VH::S1A_IW_GRDH_1SDV_20150301T041338_20150301T041403_004833 Amplitude_VH::S1A_IW_GRDH_1SDV_20150301T041338_20150301T041403_004833 Intensity_VH::S1A_IW_GRDH_1SDV_20150301T041338_20150301T041403_004833 Amplitude_VV::S1A_IW_GRDH_1SDV_20150301T041338_20150301T041403_004833 Amplitude_VV::S1A_IW_GRDH_1SDV_20150301T041338_20150301T041403_004833		
lesampling Method:	INTERSITY_VV::S1A_IVV_GRDH_ISDV_201503011041338_201503011041403_0048335		
Pixel Size (m):	10.0		
Scene Width (pixels)	42831		
Scene Height (pixels)	37796		
Feather (pixels)	0		
Veighted Average of Overlap			
	Help DRun		

One Sentinel 1A – SAR Mosaic

Sentinel 1A SAR Images (C-VV, 259 km × 167 km) Baltic Proper (19 August 2016, 16:36 UTC)

One Sentinel 1A – SAR Mosaic

SNAP: - Raster - Masks - Land/Sea Mask

Sentinel 1A SAR Images (C-VV, 259 km × 167 km) **Baltic Proper** (19 August 2016, 16:36 UTC)

Landmask

SNAP: - Raster - Masks - Land/Sea Mask

Different projection!

Sentinel 1A SAR Images (C-VV, 259 km × 167 km) Baltic Proper (19 August 2016, 16:36 UTC) Cesa Training Course on Radar & Optical RS, IES, Cesis, Latvia, 5 - 9 September 2016

Books: Basics & Theory

Universität Hamburg

Cesa Training Course on Radar & Optical RS, IES, Cesis, Latvia, 5 - 9 September 2016

Books: Examples and Applications

Some Articles on Basics and Theory

- Donelan, M.A., and W.J. Pierson, 1987: Radar scattering and equilibrium ranges in wind-generated waves with application to scatterometry, *J. Geophys. Res.*, *92*, 4971-5029
- Jones, W.L., and L.C. Schroeder, 1978: Radar backscatter from the ocean: dependence on friction velocity, *Boundary Layer Meteor.*, 13, 133-149.
- Kwoh, D.S., and B.M. Lake, 1985: The nature of microwave backscattering from water waves, in *The Ocean Surface*, Y. Toba & H. Mitsuyasu (Eds), D. Reidel Publishing Company, 249-256.
- Liu, W.T., 2002: Progress in scatterometer application, J. Oceanogr., 58, 121-136.
- Liu, W.T., X. Xie, and W. Tang, 2010: Scatterometer's Unique Capability in Measuring Ocean Surface Stress, in *Oceanography from Space*, V. Barale, J.F.R. Gower, and L. Alberotanza (Eds), Springer, Heidelberg, 93-111.
- Phillips. O.M., 1988: Radar returns from the sea surface Bragg scattering and breaking waves, J. Phys. Ocean., 18, 1065-1074.
- Valenzuela, G.R., 1978: Theories for the interaction of electromagnetic and oceanic waves A review, Boundary Layer Meteor., 13, 61-85.

Wright, J.W., 1969: A new model for sea clutter, IEEE Trans. Antennas Propagat., AP-16, 217-223.

Some Articles on Examples and Applications

- Alpers, W., D.B. Ross, and C.L. Rufenach, 1981: On the detectability of ocean surface waves by real and synthetic aperture radar, *J. Geophys. Res.*, **86**, 6481-6498.
- Alpers, W., and E. Salusti, 1983: Scylla and Charybdis observed from space, *J. Geophys. Res.*, 88, 1800-1808.
- Alpers, W., and I. Hennings, 1984: A theory of the imaging mechanism of underwater bottom topography by real and synthetic aperture radar, *J. Geophys. Res.*, **89**, 10529-10546.
- Brekke, C., and H.A.S. Solberg, 2005: Oil spill detection by satellite remote sensing, *Remote Sens. Environ.*, **95**, 1-13.
- Gade, M., W. Alpers, H. Huehnerfuss, H. Masuko, and T. Kobayashi, 1998: The imaging of biogenic and anthropogenic ocean surface films by the multi-frequency/multi-polarization SIR-C/X-SAR, *J. Geophys. Res.*, **103**, 18851-18866.
- Gade, M., W. Alpers, C. Melsheimer, and G. Tanck, 2008: Classification of sediments on exposed tidal flats in the German Bight using multi-frequency radar data, *Remote Sens. Environ.*, 112, 1603-1613.
- Melsheimer, C., W. Alpers, and M. Gade, 1998: Investigation of multifrequency/ multipolarization radar signatures of rain cells derived from SIR-C/X-SAR data, *J. Geophys. Res.*, **103**, 18867-18884.
- Romeiser, R., S. Suchandt, H. Runge, U. Steinbrecher, and S. Grünler, 2010: First analysis of TerraSAR-X along-track InSAR-derived current fields, *IEEE Trans. Geosci. and Remote Sensing*, 48, 820-829.

Cesa Training Course on Radar & Optical RS, IES, Cesis, Latvia, 5 - 9 September 2016

Liels paldies!

