SAR Techniques & Applications for Forestry

Nesrin Salepci (nesrin.salepci@uni-jena.de), Christian Thiel Friedrich-Schiller-University Jena

Germany

FRIEDRICH-SCHILLER-UNIVERSITÄT JENA

Outline

I. Introduction

forest cover mapping, forest cover change mapping (deforestation, forest fires, wind damage...

II. Important forest parameters

biomass, forest height, forest structures...

III. SAR for forest applications - some basics

scattering in forests, penetration depths of signal in forests, linking SAR measures with forest parameters

IV. SAR techniques for forest applications

- Backscatter analysis
- Interferometry: Phase analysis & Coherence analysis
- Polarimetry
- Polarimetric Interferometry
- SAR (Polarimetric) Tomography

Why Forest Observation?

- Forests cover approximately 33% of the Earth's land surface (JENSEN, 2000)
- Forests play an important role in the global carbon cycle, since *each year forests absorb approximately 1/12 of the Earth's atmospheric CO₂ stock* (MALHI et al., 2002)
- Forested ecosystems account for app. 72% of the Earth's terrestrial carbon storage (MALHI et al., 2002)
- Therefore, Vegetation biomass is a *larger global store of carbon than the atmosphere* (FAO, 2009)
- Between 1850 and 2011, humans have released app. 480 Gt (480 BILLION TONS!!!) of CO₂ into the atmosphere through fossil fuel burning and land use changes (e.g. deforestation and fires) (GHASEMI et al., 2011)

- Forest Cover Mapping -

GoogleEarth Image

Normalized backscatter

Interferometric coherence

Forest/non-forest map

TanDEM-X forest/non-forest map over Amazon forest

Martone et al. (2018).

- Forest Cover Mapping -

Global TanDEM-X forest/non-forest map at 50 m × 50 m sampling Martone et al. (2018).

ESA PECS SAR Remote Sensing Course, September 2018, Slovakia – SAR Applications for Forestry

Forest Cover Change Mapping - Deforestation -

Observe clear-felling (ALOS PALSAR, Multitemporal Composite, Siberia)

Forest Cover Change Mapping - Forest Fires -

Observe damage by forest fires (mid-August 2010, fires close to Moscow)

Wind damage area

Outline

I. Introduction

forest cover mapping, forest cover change mapping (deforestation, forest fires, wind damage...

II. Important forest parameters

biomass, forest height, forest structure ...

III. SAR for forest applications - some basics

scattering in forests, penetration depths of signal in forests, linking SAR measures with forest parameters

IV. SAR techniques for forest applications

- Backscatter analysis
- Interferometry: Phase analysis & Coherence analysis
- Polarimetry
- Polarimetric Interferometry
- SAR (Polarimetric) Tomography

What is biomass and why do we need accurate estimates of the (global) biomass?

Why do we need to estimate forest biomass?

- Forest biomass can be defined as the amount (mass) of dry organic matter of plant origin
- It is the basic parameter for characterizing the distribution of carbon in the biosphere

- For a better understanding and quantification of:
 - the *global carbon cycle*
 - global warming
 - terrestrial *carbon stocks and fluxes* in forests
 - terrestrial *carbon sources and sinks*
- Information of forest biomass is needed to support sustainable forest resource management

Main components of biomass distribution

• Stem Biomass is strongly related to the commercially interesting biomass.

- The major part of forest biomass is concentrated in the major trees. The contribution of minor trees (and hidden biomass) to total biomass is rather low
- Characterizing biomass using tree height will cover 75-95% of the vegetated earth and could directly characterize 80-90% of the aboveground biomass stock

Main components of biomass distribution

Field-measured biomass distributions for different sections (stem, bark, living and dead branches) of the tree for Scots pine and Norway spruce

Kankare et al. (2013).

ESA PECS SAR Remote Sensing Course, September 2018, Slovakia – SAR Applications for Forestry

Forest biomass

In Forestry, the biomass calculation is based on measurements of trunk diameter and height of sample populations of trees:

$$Biomass_{forest} = N \times \pi \times \left(\frac{1}{2} \text{ dbhmid}\right)^2 \times hmid \times \rho \times fz$$

<i>Biomass_{forest}</i> [t/ha]	is defined as aboveground woody of trunk and branches exceeding 7 cm diameter
dbh _{mid} [cm]	is the mean diameter at breast height 1.3 m
<i>h_{mid}</i> [m]	is the height of the tree
ρ [g/cm³]	is the species-specific wood density
<i>f</i> _z []	is a form factor (= 0.4-0.5, constant in a first order approximation)
Ν	is the tree density (tree number per area unit)

The product of $N \times \pi \times \left(\frac{1}{2} \operatorname{dbh}_{mid}\right)^2$ is also called **basal area**

Forest biomass

Although no remote sensing technique allows a direct measurement of biomass, we can still derive estimations of biomass :

- the sensitivity of the backscatter to the biomass
- the sensitivity of interferometric coherence to the forest volume, hence biomass
- estimation of forest height with SAR data forest height plays an important role for estimation of forest volume & aboveground biomass!
 Allometric relations between biomass & forest height-

Forest structure

Forest structure implies the horizontal and vertical variability of the tree distribution

(a)-(b) Pauli representation of the tomogram with Capon and with the Compressive Sensing.(c)-(f) Examples of inventory plots (50x50 m) with different structures, as represented with field, LIDAR and TomoSAR data.

[Tello et al., 2015]

Outline

I. Introduction

forest cover mapping, forest cover change mapping (deforestation, forest fires, wind damage...

II. Important forest parameters

biomass, forest height, forest structures...

III. SAR for forest applications - some basics

scattering in forests, penetration depths of signal in forests, linking SAR measures with forest parameters

IV. SAR techniques for forest applications

- Backscatter analysis
- Interferometry: Phase analysis & Coherence analysis
- Polarimetry
- Polarimetric Interferometry
- SAR (Polarimetric) Tomography

Scattering mechanisms in forest

A - When a wave reflects off only one target and returns to the instrument this is known as direct scattering (or "single bounce"). This occurs when the wave hits a target that is at an orientation such that the wave is returned directly to the radar.

Fig.: Global Biomass (after METTE et al., 2002).

Scattering mechanisms in forest

Fig.: Global Biomass (after METTE et al., 2002).

Scattering mechanisms in forest

C - If the wave reflects off two surfaces before returning to the instrument, such as often arises in urban areas between ground and wall, or in forests between ground and tree trunks or between trunks and twigs, this is termed "double bounce".

Fig.: Global Biomass (after METTE et al., 2002).

Penetration of SAR signal into forests

Penetration of SAR signal into forests

image (size 50 km by 100 km) (LUCKMAN et al., 2000).

Different wavelengths in forest observation

- Small dynamic range
- Variable response to water
- Variable response to open areas

- Medium dynamic range
- Stable response to water
- Possible to identify agricultural fields

Fig.: Different wavelengths in biomass estimation and coherence (LE TOAN et al., 2001).

Why forest observation with SAR?

compared to optical remote sensing data or in-situ measurements

- → Higher spatial coverage
- → Higher temporal resolution (repeat cycle e.g. 11 days)
 - ⇒ Remotely sensed data therefore can be used to fill spatial, attributional, and temporal gaps in forest inventory data
- - \Rightarrow Detection of unknown regions
- Retrospective analysis

 (archived SAR data since 1991 (but not globally))
- Microwaves enable a weather- and illumination-independent imaging process

Challenges of SAR data in forest observation

(compared to optical remote sensing data or in-situ measurements)

- Ì
- ✓ Limitations in applicability of RS data for AGB estimation are related to
 - Backscatter saturation, especially in mature forests with complex stand structure
 - In rugged or mountainous regions, topography can affect vegetation reflectance and influence relationships between backscattering values and AGB → topographic correction is necessary
 - Complex interactions of SAR signal
- ✓ Satellite approaches to estimate biomass are still in pre-operational state

Outline

I. Introduction

forest cover mapping, forest cover change mapping (deforestation, forest fires, wind damage...

II. Important forest parameters

biomass, forest height, forest structures...

III. SAR for forest applications - some basics

scattering in forests, penetration depths of signal in forests, linking SAR measures with forest parameters

IV. SAR techniques for forest applications

• Backscatter analysis

- Interferometry: Phase analysis & Coherence analysis
- Polarimetry
- Polarimetric Interferometry
- SAR (Polarimetric) Tomography

Backscatter analysis: correlation with stem volume

Stem volume vs. backscatter (HV) (05aug2007) - 12.5 m data 0,07 0,06 0,05 sigma zero (linear) 0,04 0,03 0,02 y = 0,00011x + 0,022300,01 $R^2 = 0,64579$ 0,00 0 50 100 150 200 250 300 350 stem volume [m³/ha]

- Correlation between SAR data and stem volume -

Saturation problem in Backscatter analysis

- → Saturation means the SAR response levels offs, i.e. the slope of the regression line approach zero.
- → Biomass is not longer predictable from the signal.

[after WOODHOUSE]

Saturation problem in Backscatter analysis

Regression analysis of radar backscatter with forest AGB.

SATURATION PROBLEM

Fig.: Regression analysis of radar backscatter with forest AGB. P-band HV backscattering coefficient plotted against AGB from experiments conducted at five different forests. The green with error points bars represent the mean value and standard deviation of all points falling within a biomass bin of +/- 10 tons/ha. The line is a regression curve applied to the full dataset. The corresponding RMSE in biomass is 51.6 tons/ha and the coefficient of determination $r^2 = 0.67$ (Credis: LE TOAN, in ESA, 2008).

Saturation problem in Backscatter analysis

The saturation level depends on:

Wavelength (i.e. different bands, such as C, L, P)

Polarization (HV, HH and VV)

Object characteristics (vegetation stand structure and ground conditions)

Incidence angle

Available time series (number of images)

Backscatter – time series analysis

SEN4REDD

Sensor: Pleíades

Location: Central Mexico -Temperate forests

Outline

I. Introduction

forest cover mapping, forest cover change mapping (deforestation, forest fires, wind damage...

II. Important forest parameters

biomass, forest height, forest structures...

III. SAR for forest applications - some basics

scattering in forests, penetration depths of signal in forests, linking SAR measures with forest parameters

IV. SAR techniques for forest applications

- Backscatter analysis
- Interferometry: Phase analysis & Coherence analysis
- Polarimetry
- Polarimetric Interferometry
- SAR (Polarimetric) Tomography

A complex SAR image

A complex SAR image can be decomposed into ...

SAR Interferometry

B_p: perpendicular baseline ei : look angle

 Δr : range difference

SAR interferometry imaging geometry

Interferometric phase

Interferometric Phase is composed of many different phase terms

In the absence of deformation, or removal of phase due to deformation & flat-earth and compensation of phase due to atmospherical artefacts digital surface models can be estimated.

Interferometric phase

ERS SAR image Bachu, China approx. 100 km × 80 km
Interferometric phase

Interferometric phase Bachu, China approx. 100 km × 80 km

Phase is always ambiguous w.r.t. integer multiples of 2π \rightarrow phase unwrapping required!

Interferometric phase

InSAR DEM Bachu, China approx. 100 km × 80 km

Interferometric phase analysis for forests

ESA PECS SAR Remote Sensing Course, September 2018, Slovakia – SAR Applications for Forestry

Interferometric phase analysis for forests

SAR Interferometry: InSAR phase & Coherence

Interferometric phase is the phase difference of two SAR images

Interferometric coherence is the cross-correlation coefficient of the SAR image pair estimated over a small window.

Coherence between both SAR images gives information about

- SAR image similarity
- the interferometric phase noise content

$$\gamma = \frac{\langle s_2 s_1 * \rangle}{\sqrt{\langle s_1 s_1 * \rangle \langle s_2 s_2 * \rangle}}$$

S1: Image 1, S2: Image 2 The coherence value ranges from 0 (the interferometric phase is just noise) to 1 (complete absence of phase noise)

Different wavelengths in forest observation

- Small dynamic range
- Variable response to water
- Variable response to open areas

- Medium dynamic range
- Stable response to water
- Possible to identify agricultural fields

- Higher contrast between forest/non forest
- Confusion between water and dense forest

Fig.: Different wavelengths in biomass estimation and coherence (LE TOAN et al., 2001).

Interferometric coherence

• Interferometric Coherence – correlation of two complex SAR images

Coherence is reduced by:

- Temporal decorrelation
- Geometric decorrelation
- Atmosphere
- Noise

Interferometric coherence : temporal decorrelation

Fig. 33: Temporal Change of the surface (PALLAN o. J.:o. S.).

Interferometric coherence : temporal decorrelation

[Strozzi, T., Sommerschule 2002]

Coherence Images – Examples Chunsky N – **Summer-Summer** (Temp. Baseline 46 days)

20jun07_05aug07

05aug07_20sep07

22jun08_07aug08

1

0

Coherence Images – Examples Chunsky N – Winter-Summer

05nov07_20jun07

22mar08_20sep07

1

0

Forest cover mapping using Intensity and Coherence

Composite of HV & HH backscatter and winter coherence

Test area (light green patch, right image) in the centre of the prototype area

Forest cover mapping using Intensity and Coherence

SAR data (HV/HH/Coherence)

Map (forest: green, very low biomass forest: brownish green, non-forest: light brown)

Outline

I. Introduction

forest cover mapping, forest cover change mapping (deforestation, forest fires, wind damage...

II. Important forest parameters

biomass, forest height, forest structures...

III. SAR for forest applications - some basics

scattering in forests, penetration depths of signal in forests, linking SAR measures with forest parameters

IV. SAR techniques for forest applications

- Backscatter analysis
- Interferometry: Phase analysis & Coherence analysis
- Polarimetry
- Polarimetric Interferometry
- SAR (Polarimetric) Tomography

Interferometry vs Polarimetry

- > The Phase is essential for **Interferometry** and **Polarimetry**
- Both techniques require at least two complex SAR images

Same polarisation – different position

Interferometry

A)

Polarimetry B) Same position – different polarisation

Polarimetry

- Investigation backscatter at different polarisations
- Computation of polarimetric parameters

The polarization of the signal can be linked to:

- geometrical characteristics like shape, roughness & orientation
- intrinsic properties of the scatterer like humidity /moisture, salinity & medium density

Different polarizations

type of polarization affects the sensitivity to different scattering mechanisms.

- co-polarization (HH, VV) is more sensitive to the surface scattering and double-bounce,
- cross-polarization (HV, VH) is more to the volume

Polarimetric decomposition example

ESA PECS SAR Remote Sensing Course, September 2018, Slovakia – SAR Applications for Forestry

Polarimetry - example

• Investigation of clear cuts based on polarimetric parameters

Pauli Decomposition $S_{HH} + S_{VV}$ Surface Scattering $S_{HH} - S_{VV}$ Double Bounce $2S_{HV}$ Volume Scattering

Outline

I. Introduction

forest cover mapping, forest cover change mapping (deforestation, forest fires, wind damage...

II. Important forest parameters

biomass, forest height, forest structures...

III. SAR for forest applications - some basics

scattering in forests, penetration depths of signal in forests, linking SAR measures with forest parameters

IV. SAR techniques for forest applications

- Backscatter analysis
- Interferometry: Phase analysis & Coherence analysis
- Polarimetry
- Polarimetric Interferometry
- SAR (Polarimetric) Tomography

Polarimetric Interferometry (PolInSAR)

- Height localisation of different scattering mechanism
- Requires coherent interferometric pair of polarimetric data

A) Same polarisation – different position

B) Same position – different polarisation

Interferometry

Polarimetry

Tree height from PolInSAR

Combination of polarimetry and interferometry leads to separation of scattering mechanisms within a resolution cell.

Airfield Oberpfaffenhofen L-Band pol. InSAR result

Tree height

(Papathanassiou & Cloude, 2001)

Outline

I. Introduction

forest cover mapping, forest cover change mapping (deforestation, forest fires, wind damage...

II. Important forest parameters

biomass, forest height, forest structures...

III. SAR for forest applications - some basics

scattering in forests, penetration depths of signal in forests, linking SAR measures with forest parameters

IV. SAR techniques for forest applications

- Backscatter analysis
- Interferometry: Phase analysis & Coherence analysis
- Polarimetry
- Polarimetric Interferometry
- SAR (Polarimetric) Tomography

SAR Tomography (TomoSAR)

- Height localisation of different scattering mechanism
- Requires multiple coherent interferometric pairs

Same polarisation – different position

Interferometry

Same polarisation – many different positions

Tomography

SAR Tomography imaging geometry

SAR Tomography uses multiple acquisitions from slightly different viewing angles forming an aperture in elevation and locates the scatterers along the elevation which is perpendicular to the radars line of sight.

 A_{cr} : cross range (tomographic) aperture r_0 : slant range of the master track $r_1 \ldots r_n$: slant range of the slave tracks θ_1 : look angle

SAR Tomography resolution cell

The 2D resolution cell depends on :

- Pulse bandwidth along slant range (W)
- Synthetic aperture in azimuth (A_{az})

The 3D resolution cell depends on :

- Pulse bandwidth along slant range (W)
- Synthetic aperture in azimuth (A_{az})
- Synthetic aperture in cross range (A_{cr})

SAR resolution cel Tomographic SAR resolution cell

SAR Tomography reflectivity profiles

SAR Tomography reflectivity profiles

ESA PECS SAR Remote Sensing Course, September 2018, Slovakia – SAR Applications for Forestry

3D model of the Forest

Polarimetric SAR Tomography (PolTomoSAR)

• Horizontal information on backscatter intensity (and backscattering mechanism)

+

• Requires many coherent interferometric SAR images

Same polarisation – many different positions

Tomography

Same position – different polarisation

Polarimetry

Polarimetric SAR Tomography (PolTomoSAR)

It is also possible to combine polarization and tomography so that different scattering contributions can be separated depending on the elevation.

L-band E-SAR data with 13 tracks, Oberpfaffanhofen, Germany

Upper image: tomographic azimuth slice with Polarimetric color composite using Pauli basis Odd bounce = HH + VV Even bounce = HH - VV Volume scattering = 2*HV Lower image: Schematic representation of the imaged area

[Reigber & Moreira 2000]

- 1. Backscatter analysis (wavelength, polarisation, incidence angle, number of images)
- 2. Interferometry: Phase analysis (wavelength, incidence angle, high coherence required, temporal and spatial baselines)
- **3.** Interferometry: Coherence analysis (wavelength, polarisation, incidence angle, temporal and spatial baseline, number of images, acquisition conditions)
- 4. Polarimetry (wavelength, incidence angle, number of images)
- **5. Polarimetric Interferometry** (wavelength, polarisation, incidence angle, temporal and spatial baseline)
- 6. SAR (Polarimetric) Tomography (wavelength, polarisation, incidence angle, spatial baseline, high coherence required, number of images)

References

- F. Cremer, M. Urbazaev, C. Berger, M. D. Mahecha, C. Schmullius and C. Thiel, (2018) "An Image Transform Based on Temporal Decomposition." IEEE Geoscience Remote vol. 15. in Sensina Letters. 537-541. and no. 4. pp. doi: 10.1109/LGRS.2018.2791658
- Dobson, M. C., Ulaby, F. T., LeToan, T., Beaudoin, A., Kasischke, E. S., & Christensen, N. (1992). Dependence of radar backscatter on coniferous forest biomass. *IEEE Transactions on Geoscience and Remote Sensing*, *30*, 412-415.
- FAO (2009). Assessment of the status of the development of the standards for the terrestrial essential climate variables: BIOMASS. Rome, Italy: GTOS Secretariat, NRL, FAO.
- Fransson, J. E. (2001). Stem volume estimation in boreal forests using ERS1/2 coherence and SPOT XS optical data. *International Journal of Remote Sensing*, 25, 2777-2791.
- Ghasemi, N., Sahebi, M. R., & Mohammadzadeh, A. (2011). A review on biomass estimation methods using synthetic aperture radar data. *International Journal of Geomatics and Geosciences*, 1(4), 776-788.
- Hyyppä, J. H.-H. (2000). Accuracy comparison of various remote sensing data sources in the retrieval of forest stand attributes. *Forest Ecology and Management, 128*(1-2), 109-120.
- Jensen, J. R. (2000). *Remote Sensing of the Environment: An Earth Resource Perspective*. Upper Saddle River, New Jersey: Prentice Hall.
- Kankare, V., Holopainen, M., Vastaranta, M., Puttonen, E., Yu, X., Hyyppä, J., Vaaja, M., Hyyppä, H. & Alho, P. (2013): Individual tree biomass estimation using terrestrial laser scanning, ISPRS Journal of Photogrammetry and Remote Sensing 75, pp. 64–75.
- Le Toan, T. (2001). On the relationships between Radar measurements and forest structure and biomass. Proceedings of the *Third International Symposium on* Retrieval of Bio- and Geophysical Parameters from SAR Data for Land Applications, September 11.-14., Sheffield, UK.
- Le Toan, T., Beaudoin, A., Riom, J., & Guyon, D. (1992). Relating Forest Biomass to SAR Data. *IEEE Transactions on Geoscience and Remote Sensing*, 30(2), 403-411.
- Luckman, A., Baker, J. R., & Wegmüller, U. (2000). Repeat-Pass interferometric coherence measurements of disturbed tropical forest from JERS and ERS satellites. *Remote Sensing of Environment*, *73*, 350-360.

References

- Malhi, Y. P. (2002). Forests, carbon and global climate. *Philosophical Transactions of the Royal Society of London A, 360*(1797), 1567-1591.
- Martone, M., Rizzoli, Wecklich, C., Gonzalez, C. Bueso-Bello, J.L., Valdo, P., Schulze, D., Zink, M., Krieger and G. Moreira, A, (2018) The global forest/non-forest map from TanDEM-X interferometric SAR data, Remote Sensing of Environment 205, 352-373.
- Mette, T., Papathanassiou, K. P., Hajnsek, I., & Zimmermann, R. (2002). Forest biomass estimation using polarimetric SAR interferometry. Proceedings Geoscience and Remote Sensing Symposium IGARSS 2002 (pp. 817-819), June 24-28, 2002, Toronto, Canada.
- Mette, T. (2004). Applying a common allometric equation to convert forest height from Pol-InSAR data to forest biomass. Proceedings Geoscience and Remote Sensing Symposium IGARSS 2004 (pp. 269-272), Sep 20-24, 2004, Anchorage, USA.
- Papathanassiou, K. and Cloude, S. (2001), IEEE Transactions on Geoscience and Remote Sensing, vol39, no:11, , VOL. 39, NO. 11.
- Pulliainen, J. M. (2003). Feasibility of multitemporal interferometric SAR data for stand-level estimation of boreal forest stem volume. *Remote Sensing of Environment, 85*(4), 397-409.
- Reigber, A., & Moreira, A. (2000). "First Demonstration of Airborne SAR Tomography using Multibaseline L-band Data". IEEE Transactions On Geoscience And Remote Sensing, 38, no. 5., pp. 2142-2152
- Reigber, A., & Roessing, L. (2008) Radar Imaging of Urban Areas by Means of Very High-Resolution SAR and Interferometric SAR, IEEE Transactions on Geoscience and Remote Sensing, VOL. 46, NO. 10
- Tebaldini, S. (2012). "Remote Sensing of Biomass Principles, chapter: Forest Structure Retrieval from Multi-Baseline SARs". Temilola Fatoyinbo, InTech, pp. 28-58
- Tello, M., Cazcarra-Bes, V., Pardini, M., & Papathanassiou, K. P. (2015). "Structural Classification of Forest By Means of L-band Tomographic SAR". IGARSS2015, Milan, Italy, 26-31 July.
- Woodhouse (not specified): Forest biomass from active remote sensing? University of Edinburgh. Edinburgh Earth Observatory. Retrieved on August, 10, 2012 from http://www.geos.ed.ac.uk/ conferences/measuring-carbon-inpractice/presentation_IW.pdf>

Hi, welcome to the **EO college.** Your hub to learn Earth observation. Here you can **discuss with the EO**

https://eo-college.org

Supported by:

Federal Ministry of Economics and Technology

on the basis of a decision by the German Bundestag

ESA PECS SAR Remote Sensing Course, September 2018, Slovakia – SAR Applications for Forestry

Thank you!!!!

Linking SAR measures & forest parameters - Example

Modeling Example: A Water Cloud-like model

A water cloud with gaps is close to reality and easy to handle

$$\sigma_{for}^{o} = (1 - \eta)\sigma_{gr}^{o} + \eta\sigma_{gr}^{o}T_{tree} + \eta\sigma_{veg}^{o}(1 - T_{tree})$$
Canopy cover
$$tree transmissivity$$
(depends on tree height
and signal attenuation)

Water cloud with gaps

The model expresses the forest backscatter as function of the area-fill factor η , i.e. the forest canopy cover For applications it can be written in terms of growing stock volume

$$\sigma_{for}^{o} = \sigma_{veg}^{o} \left(1 - e^{-\beta V}\right) + \sigma_{gr}^{o} e^{-\beta V}$$

ground backscatter canopy backscatter forest transmissivity coefficient

 $\sigma_{\text{gr}} \\ \sigma_{\text{veg}}$

β

Linking SAR measures & forest parameters - Example

BIOMASAR GSV map of Central Siberia

- 1 km resolution
- 2,400,000 km²
- ENVISAT ASAR Global Monitoring mode (Jan. 2005 – Feb. 2006)
- GLC 2000 land cover used as background

